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Single-cell dispensing and ‘real-
time’ cell classification using 
convolutional neural networks 
for higher efficiency in single-cell 
cloning
Julian Riba1,2*, Jonas Schoendube1, Stefan Zimmermann1,2, Peter Koltay2,3 & 
Roland Zengerle2,3,4

Single-cell dispensing for automated cell isolation of individual cells has gained increased attention 
in the biopharmaceutical industry, mainly for production of clonal cell lines. Here, machine learning 
for classification of cell images is applied for ‘real-time’ cell viability sorting on a single-cell printer. 
We show that an extremely shallow convolutional neural network (CNN) for classification of low-
complexity cell images outperforms more complex architectures. Datasets with hundreds of cell images 
from four different samples were used for training and validation of the CNNs. The clone recovery, 
i.e. the fraction of single-cells that grow to clonal colonies, is predicted to increase for all the samples 
investigated. Finally, a trained CNN was deployed on a c.sight single-cell printer for ‘real-time’ sorting of 
a CHO-K1 cells. On a sample with artificially damaged cells the clone recovery could be increased from 
27% to 73%, thereby resulting in a significantly faster and more efficient cloning. Depending on the 
classification threshold, the frequency at which viable cells are dispensed could be increased by up to 
65%. This technology for image-based cell sorting is highly versatile and can be expected to enable cell 
sorting by computer vision with respect to different criteria in the future.

Up to now, more than 50 monoclonal antibodies for therapeutics have been introduced - most of them for cancer 
therapies - and the market for drugs based on monoclonal antibodies reached almost 100 billion USD a year1. 
The most widely adopted cell lines for production of these recombinant proteins are engineered Chinese ham-
ster ovarian (CHO) cells. Based on early regulatory guidelines released by the US federal drug administration 
(FDA) and other regulatory bodies, the production cell line for a recombinant product is to be cloned from a 
single progenitor cell2. This is required in order to minimize population heterogeneity and facilitate isolation 
and subsequent selection of high producing clones, which could be otherwise overgrown by fast growing but 
low producing clones. Therefore single-cell cloning is an important step for biopharmaceutical production of 
monoclonal antibodies.

Several methods for automated single-cell isolation for clonal cell line development have been proposed. 
The most commonly used methods include limiting dilution3, fluorescent-activated cell sorting (FACS)4, and 
single-cell dispensing5. Besides the assurance of monoclonality another important aspect of any cloning workflow 
is to achieve high cloning efficiency, i.e. to maximize the percentage of viable clonal cultures per plate. Using CHO 
cells and other cell lines, high cell viability and cloning efficiency has been achieved with single-cell dispensing5,6. 
However, in practice, cell samples often contain significant fractions of cells that are dead or are difficult to grow, 
which can result in low clone recovery. It is not uncommon in industrial cell line development workflows, that 
only 20% of the isolated single cells grow to usable colonies7. This problem might be due to cell damage caused by 
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the sample preparation process. Therefore, a single-cell isolation method, that allows selecting for cells that are 
likely to proliferate and form a colony, would be of great benefit.

FACS can be used to gate for viable cells based on forward (FSC) and side scatter (SSC) or on fluores-
cent viability dyes such as propidium iodide or 7AAD, which are DNA intercalating substances that do not 
pass through intact cell membranes and therefore only label dead cells, or CMFDA or Calcein AM which are 
membrane-permeable substances that are turned over to fluorescent products by viable cells. However, finding 
the optimal gating strategy is a manual process which must be repeated for each sample. Further, staining of cells 
can have an impact on their viability or proliferation.

In contrast to FACS or limiting dilution, in single-cell dispensing the selection of individual cells is based on 
the assessment of imaging data6. A liquid dispenser generates droplets of 50–200 pl in volume on-demand. The 
nozzle of the dispenser is monitored by a microscopic camera system. Based on the analysis of these images an 
algorithm decides whether the volume of the next droplet is expected to contain a single cell and to dispense the 
droplet onto the target (e.g. a microwell plate) or to remove it, for example by a vacuum suction mechanism. 
Compared to continuous droplet generation utilized in FACS, drop-on-demand dispensing provides flexibility 
for the timing of the decision-making algorithms. Instead of synchronizing the algorithm with a fixed dispensing 
frequency, the droplet generation is continuously adapted to the timing of the image processing step.

Previous studies have demonstrated that supervised machine learning can be used to analyze large datasets of 
single-cell images obtained from high-throughput microscopy8 or for classification of images that were obtained 
by imaging flow cytometry9. Very recently, convolutional neural networks (CNNs) have been applied for cell 
sorting on an imaging flow cytometry setup10.

In this work, single-cell dispensing is combined with machine learning in order to increase number of viable 
clones per microplate. Therefore, the object detection algorithm that identifies single-cells based on size and 
roundness was extended with an additional classifier that uses CNNs to predict whether a cell is likely to grow. 
For the first time, drop-on-demand dispensing is combined with machine-learning based image classification for 
droplet sorting. Here, the term ‘real-time’ used to highlight that cell selection and sorting on the instrument is 
based on the outcome of the image classification.

Results and Discussion
Implementation and training of the classifier for viability prediction. As shown previously3,6,11 the 
single-cell printer captures images of the region in proximity of the nozzle of a silicon/glass dispensing chip dis-
played also in Fig. 1A. Both the drop-on-demand dispenser and the highly magnifying vision system are coupled 
and controlled by a computer which allows for automated detection of single cells inside the dispensing chip. The 
pneumatic shutter system removes empty and otherwise unwanted droplets. Only droplets that are classified for 
deposition by the image processing algorithm can pass to the target substrate (e.g. a microwell). The CNN-based 
classification for viability prediction was implemented into the existing software for cell detection and controlling 
of the instrument (c.sight single-cell printer, cytena GmbH, Germany) without any hardware changes.

An overview of the training procedure is shown in Fig. 1A–C. During the single-cell isolation images of each 
individual cell that was dispensed are automatically stored to the hard drive. Here, cropped regions of the image, 
55 × 55 pixels in size, centered around the cell, are stored in addition (Fig. 1A). For a posteriori background 
removal, ‘empty’ images that were captured prior cell dispensing are stored as well. All images can be unambig-
uously linked to the microwell that was addressed by the dispenser. After single-cell deposition into microwells 
prefilled with growth medium, the plates are incubated for 10 days before colony growth was assessed by micros-
copy. Cells that resulted in viable colonies are labeled “viable” while cells that did not grow to visible colonies are 
labeled “dead” (Fig. 1B). The labeled cell images were then used to train a binary classifier based on a convolu-
tional neural network (CNN) (Fig. 1C). The trained classifier can now be used for ‘real-time’ viability prediction 
during cell dispensing. Here, the classifier was implemented in addition to the previously described feature-based 
object detection algorithm6, which is based on number of objects, object size and roundness. When this conven-
tional object detection algorithm identifies a single cell in the region of interest (ROI) inside the nozzle, a cropped 
region of the image with the cell in the center is selected for additional classification by the trained CNN as illus-
trated in the flowchart in Fig. 1D.

The concept of a binary classifier for viable cell selection. As outlined above, a binary classifier was 
trained to select for cells that have a high probability to grow to viable clonal colonies. In the following, several 
network architectures were trained with different datasets. The performance of a binary classifier on a set of data 
(the ‘test set’) for which the true values are known, can be expressed as confusion matrix:

To compare the performance of different models on different datasets the following metrics were used:
The accuracy for predicting viable cells correctly is given as true positive rate:
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and the accuracy for predicting dead cells correctly is given as false positive rate:
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The overall accuracy of a classification model on all cell images is defined as:

=
+

+ + +
ACC TP TN
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,

where TP, TN, FP and FN stand for the total number of such events according to the confusion matrix. The num-
ber of viable colonies that are predicted to grow using the classifier can be derived by multiplying the fraction of 
‘viable cells’ in the sample cv with TPR. The total number of dispensed single-cells passing the classifier yields 

+ − −c TPR c FPR(1 )(1 )v v , as it also includes the dead cells (1 - cv) which incorrectly classified as ‘viable’. In 
addition to this commonly used metrics, the growth increase GI is defined as the ratio of the number of viable 
colonies that are predicted to grow using the classifier divided by the number of viable colonies cv that were 
obtained in experiments not using the classifier.
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Figure 1. Overview of the training procedure and implementation of the CNN-based classifier. (A) Cell 
isolation: A microscopy image of the silicon/glass dispensing chip is shown. The cell suspension enters the 
chip via the inlet and ~160 pl droplets are ejected from the 40 µm x 40 µm sized nozzle. Images of the nozzle 
region are captured by the camera of the cell detection microscope in the single-cell printer. A cropped image 
of each dispensed single-cell with a size of 55 × 55 pixels is stored and can be unambiguously linked to the 
microwell the cell was deposited into. (B) Cultivation: Colony growth is assessed by imaging the plates. Cells 
that resulted in viable colonies after 10 days are labeled “viable”, cells that did not grow are labeled “dead”. (C) 
Training: Labeled cell images are used to train a convolutional neural network (CNN) with one output node for 
binary classification of input images 55 × 55 pixels in size. The flowchart in (D) illustrates the implementation 
of the additional CNN-based cell classifier into the cell detection algorithm of the single-cell printer: Only if the 
feature-based object detection algorithm identified a single cell in the nozzle, a cropped region with the cell is 
selected for additional prediction on the trained CNN (indicated in blue).
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Most classifiers, such as the ones used here, output a probability P value rather than an actual class label. Here, 
this probability value ranges between 0 (’dead’) and 1 (’viable’).

The metrics defined above depend on the threshold value T that is used for classification (for >P T  the cell is 
classified as ‘viable’). The classification performance for different values of T  is considered by another metric for 
binary classification, the area under curve (AUC) which can be retrieved from a receiver operator characteristic 
(ROC) that plots the true positive rate TPR against the false positive rate FPR for all valid threshold values 

∈T [0, 1]. An AUC of 1.0 represents a perfect classifier, while a classifier with an AUC of 0.5 is not performing 
better than random guessing.

A shallow convolutional neural network for cell classification. DeepYeast, a previously published 
CNN for classification of single-cell images from high-throughput microscopy8, was trained from scratch and 
validated on images obtained from the single-cell printer (scp). In order to use the model for the purpose of 
this work, the input shape of the first layer was set to 55 × 55 × 1 and the number of classes was reduced to two. 
However, the model did not perform well on the scp images. Although the training loss decreases steadily, the 
validation loss fluctuates strongly and increases after 100 epochs which suggests overfitting. Therefore, CNNs 
with a shallower architecture were applied. It turned out that models with only two convolutional layers and 
a single fully connected layer could be trained more robustly with regularization by random data augmenta-
tion (see Supplementary Data for details). More complex architectures did not further improve the classification 
performance (see Supplementary Data). This is likely due to the comparatively low complexity of the images of 
suspended cells obtained by the single-cell printer used in this work as compared to those images obtained from 
regular microscopy in microwells. In the following, a network with 4 filters in each layer and 32 fully connected 
nodes (CNN-4/32) and a slightly larger model with 32 filters in each convolutional layer and 128 fully connected 
nodes (CNN-32/128) were used as depicted in Fig. 2.

For performance characterization the models were trained on the CHO18all dataset which contains 1423 
images of CHO-K1 cells isolated with a single-cell printer. For a more detailed description of the training param-
eters see materials & methods and the Supplementary Data. As depicted in Fig. 3A, both the loss of CNN-4/32 
and CNN-32/128 converged well during training and overfitting was strongly reduced compared to DeepYeast. 
Classification accuracies of 78.6% and 79.7% were archived with CNN-4/32 and CNN-32/128, respectively. This 
is significantly higher than the accuracies archived with the more complex network (Fig. 3B). This is likely to 
be caused by the low complexity of the images used for training compared to the higher complexity and higher 
number of the images DeepYeast was designed for. The outperformance can be also seen in the receiver operator 
characteristic depicted in Fig. 3C. The two shallow CNNs also outperformed the feature-based classification algo-
rithm WND-CHARM which has been applied successfully for classification on various cell images12.

Figure 2. Architecture of the CNNs that were designed for classification of the images obtained from single-cell 
dispensing. CNN-4/32 (top) with four filters in each convolutional layer and 32 nodes in the fully connected 
layer, and CNN-32/128 (bottom) with 32 filters in each convolutional layer and 128 nodes in the fully connected 
layer. Each convolution is followed by a max pooling operation.
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Since the images for cell classification to be processed in ‘real-time’ on the single-cell printer, the processing 
time was determined for different image sizes ranging from 40 × 40 px2 to 100 × 100 px2 (Fig. 3D). Processing 
time for classification of a single image on the PC integrated into the c.sight instrument ranged from 34.8 ms to 
214 ms on CNN-4/32 and from 13.2 ms to 16.5 ms on CNN-32/128. An image section of 55 × 55 px2 turned out to 
be sufficiently large to capture the single-cells while the accuracy did not significantly increase for larger sections 
(data not shown). Although CNN-32/128 performed slightly better, prediction on CNN-4/32 was more than four 
times faster (13.7 ms versus 63.5 ms). The system was operated at a dispensing frequency of 20 Hz, i.e. every 50 ms 
a droplet is generated. In order to keep the throughput of the instrument high, the smaller model (CNN-4/32) was 
used from now on, since its performance is almost as good as for the larger model.

Additional CNN-based cell classification predicts more viable colonies and a higher throughput.  
Next, the CNN-based classifier for viability prediction was evaluated on four different datasets obtained from 
single-cell cloning experiments as summarized in Table 1. CHO18mix contained a high fraction of artifi-
cially damaged cells (see methods for details) to model a sample with low initial clone recovery. In contrast, 
CHO18fresh contains mainly viable cells which is also reflected by the cell images that were stored during 
single-cell isolation (Fig. S4). The CHO15 and CHO17 datasets were obtained from two industrial laboratories 
performing CLD with different single-cell printer instruments.

First, the question arose whether a classifier for cell viability prediction must be trained specifically for each 
cell sample and single-cell printer or whether generic features exist that can be learned by the model. The latter 
case would allow to train a single classifier with a large dataset and apply it to different samples on different 
devices for viability prediction. To address this question CNN-4/32 was trained on all four different datasets. Each 
of the resulting four models was then used for prediction of the other three datasets, respectively. The resulting 
AUC and GI values are depicted as heatmaps in Fig. 4. For all samples, the maximum AUC value is located on the 
diagonal, suggesting that the best performance can be achieved if a classifier is specifically trained for each sam-
ple. However, the GI values show that for = .T 0 5, the largest growth increase for the CHO18fresh and CHO15 
samples are obtained with a classifier trained on the CHO18mix dataset. This could be explained by the fact, that 
CHO18fresh and CHO15 contain mainly viable cells, while the CHO18mix contains a significant fraction of 
damaged cells. Therefore, a classifier trained on the CHO18mix learns more features that are related to dead cells. 
Interestingly, the model trained on CHO17 performed worst on the other datasets, and the other three models did 
not perform well in prediction the CHO17 data. This is likely due to the older version of the dispensing cartridge 

Figure 3. Training and classification performance. Models were trained on the CHO18all dataset with images 
of 55 × 55 px2 in size. (A) Training (–) and validation loss (−) over 220 epochs. (B) Classification accuracies 
of four different CNNs and the feature-based classifier WND-CHARM. (C) Receiver operating characteristic 
(ROC) curve of the CNNs. (D) Processing time of CNN-4/32 and CNN-32/128 for classification of a single 
image with different sizes. Images were processed on the CPU of a c.sight (cytena, Germany) device under full 
operation, i.e. while cells were dispensed.
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used for dispensing the CHO17 sample. As a result, the background is more irregular compared to the images of 
the training datasets. For all samples a GI > 1 could be obtained, i.e., the clone recoveries of all samples could be 
increased by with the additional classifier. By far the largest increase would be obtained with the CHO18mix 
sample that contains a large fraction of damaged cells.

The single output node of the CNNs used here has a sigmoid activation function (see Fig. 2) which outputs a 
floating-point value between 0 (dead) and 1 (viable) for each individual prediction. For the performance charac-
terization above, a threshold of = .T 0 5 was applied, but the threshold is a parameter that can be set by the oper-
ator prior to cell dispensing. Intuitively, for a higher threshold value more viable clones should be selected by the 
classifier. However, this should also result in more viable clones that are discarded. Therefore, the predicted clone 
recovery and the predicted cloning frequency – the number of ‘viable’ cells that are dispensed per second - were 
assessed as function of the threshold value T . Figure 5 depicts the predicted clone recovery and cloning frequency 
as function of T  based on a model that considers the dispensing frequency of the instrument, a typical cell con-
centration ( ⋅1 106cells/ml), and processing times for cell deposition (see Supplementary Data for a detailed 
description). For the CHO18mix sample the clone recovery can be increased from 22% to almost 80% (GI ~  3.6). 
However, the highest cloning frequency of 0.26 Hz (+66%) is obtained at a threshold of .~T 0 3 which results in a 
GI of ~ 3. As already stated, here the process would benefit significantly from the classifier. For the CHO18fresh a 
clone recovery of ~75% (GI ~ 1.14) seems feasible, but for higher threshold values the cloning frequency drops 
quickly. The maximum cloning frequency obtained with classifier is 0.47 Hz, which is slightly lower than what 
would be achieved without the classifier.

Real-time cell classification increases CHO-K1 clone recovery. Finally, and based on the findings 
described above a CNN-4/32 was trained with the CHO18all dataset for 350 epochs. This model was deployed on 
the c.sight for ‘real-time’ image classification during single-cell printing a mixture of fresh (97% viability based on 
Trypan blue cell counting) and damaged CHO-K1 cells (<1% viability based on Trypan blue). As depicted in 
Fig. 6 the clone recovery could be increased from 27% to 73% (GI = 2.7) using the trained classifier ( = .T 0 5) for 
selection of viable cells. This is close to the clone recovery of 76.8% achieved with freshly harvested sample that 
was processed as a reference. If the classifier would have been used for the freshly harvested sample, a clone recov-
ery of 79.2% (GI = 1.03) would have been achieved. This demonstrates that machine learning based sorting can 

Dataset for Training 
and Validation

Number of
images

Clone
recovery

Device used 
for isolation Comment

CHO18mix 991 22% c.sight mix of fresh and ‘damaged’ CHO-K1 sample

CHO18fresh 432 65.7% c.sight fresh CHO-K1 sample

CHO18all 1423 35.3% c.sight combination of CHO18mix and CHO18fresh

CHO15 755 79.3% scp fresh CHO-K1 sample

CHO17 1114 53.3% scp CHO-K1, obtained with previous version of cartridge*

Table 1. Overview of the image datasets of CHO cells used in this work for training the models. The number 
of images corresponds to number of single-cells that were dispensed. The clone recovery corresponds to the 
fraction of dispensed single cells that grew to a viable colony without the new classifier. *The CHO17 dataset 
was obtained with a previous version of the dispensing cartridge with a higher surface roughness. This resulted 
in a more irregular background in the scp images.

Figure 4. Per-column normalized heatmaps with absolute AUC and GI values. CNN-4/32 was trained on four 
different CHO datasets. Each of the resulting models was used for prediction of the three other datasets, 
respectively. The heatmaps illustrate the resulting AUC (left) and GI values (right). A GI > 1 results in more 
clones per plate, while a GI < 1 results in less clones per plate, if the classifier is used. For the color code the 
values were normalized with the maximum value of the respective column. The maximum AUC values are 
located on the diagonal, suggesting a specific training for each sample is necessary. For a threshold value of 

= .T 0 5 and the given sample compositions, the largest growth increase for CHO18fresh and CHO15 are 
achieved with a classifier trained on CHO18mix.
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lead to significantly more viable clones for samples that contain a high fraction of dead cells, while for a sample 
containing mainly viable cells, only a minor increase can be obtained.

Conclusion
As described above, drop-on-demand dispensing was combined for the first time with machine-learning based 
image classification for droplet sorting. The work demonstrates, that the cell images generated on a single-cell 
printer can be used for training of a CNN for ‘real-time’ cell classification during single-cell dispensing.

General purpose models for image classification did not perform well on the single-cell image datasets gen-
erated by the single-cell printer. A shallow network, with two convolutional layers, trained with randomly aug-
mented minibatches, performed more robustly during training and resulted in better classification performance. 
This is likely due to the low complexity of the images generated in this process. An advantage of such an extremely 
shallow network is the low computational effort for prediction, which is important for this ‘real-time’ application. 
On the smaller network designed for this work, prediction on a 55 × 55 px2 cell image took 13.7 ms on the instru-
ment´s CPU, which is negligible at the dispensing frequency of 20 Hz used here.

Based on the data analyzed here, it is not clear yet, whether it is feasible to train a generalized classifier that 
performs well on different cell samples and on different instruments. On the one hand it was found that training 
with a dataset that contains a significant portion of damaged cells could be beneficial – even for other samples 
with mainly viable cells. On the other hand, slight variations in the dispensing cartridge or optical detection sys-
tem of various instruments can limit the adoption of a generalized classifier.

One classifier was trained on a mixture of freshly harvested and damaged CHO cells which was prepared as a 
model system. It was shown that with a threshold value of 0.5 the actual clone recovery of 22% could be increased 
to 66%, a 3-fold increase (GI = 3). The cloning frequency, the frequency at which viable cells are dispensed, would 
increase by up to 61% if the operator sets a threshold value of 0.3.

Figure 5. Predicted clone recovery and predicted cloning frequency as function of the threshold value. For 
the CHO18mix sample (left) both the clone recovery and the cloning frequency - the number of ‘viable’ 
cells dispensed per second - could be significantly increased with the classifier for viability prediction. The 
CHO18fresh (right) sample contained mainly viable cells: The clone recovery can be increased, but the process 
would not benefit from a higher cloning frequency.

Figure 6. ‘Real-time’ classification for viability sorting on the c.sight single-cell printer. The graph shows 
the clone recovery 10 days after single-cell dispensing. As a reference, single-cells from a fresh sample were 
dispensed without additional classifier (two 96 well plates). Next, a mixed sample containing fresh cells and 
damaged cells was dispensed with and without the classifier for viability sorting (three 96 well plates, each). For 
the classifier CNN-4/32 was trained on the CHO18all dataset and deployed on the single-cell printer. Error bars 
indicate the standard deviation. Threshold value was set to 0.5.
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Finally, a trained classifier was deployed on a single-cell printer and applied for ‘real-time’ cell classification 
and sorting of a CHO-K1 sample with a large fraction of dead cells. Using the trained classifier developed in this 
work, the clone recovery of the sample could be increased from 27% to 73% (GI = 2.7), which is almost as high as 
the clone recovery of a fresh sample (76.8%). This demonstrates that the proposed implementation of CNN-based 
cell classification allows indeed for cell viability sorting to increase the cloning efficiency in a cell line develop-
ment process.

To assess the performance of the classifiers presented here, it is important to appreciate the fact that in a 
typical CLD situation most of the cells are actually viable prior single-cell cloning. However, this does not mean 
that they will grow after single-cell isolation: Cells could be in a resting phase of the cell cycle (G0) or in another 
non-division state such as cellular senescence, or in an early phase of apoptosis. In all these states, a differentiation 
of the cells according to pure morphological features is difficult, because the cells still would appear as ‘viable’ but 
would not proliferate.

The additional classifier could be a great tool for the isolation of ‘difficult’ cell samples with a large fraction of 
stressed or damaged cells. This can be the case after cell transfection or transduction for cell line engineering, or 
in cases where cells must be isolated immediately after thawing which is often required for clinical samples stored 
in biobanks. An advantage of the low-resolution images and the usage of shallow model are the low computing 
time needed for training and classification. This will allow for training of a classifier on a specific sample as part of 
a workflow optimization in cell line development (CLD). By increasing the number of output nodes, the proposed 
framework can be straightforwardly adapted for multi-class classification. This could be helpful for e.g. sorting 
cell types.

Materials & Methods
Cell culture and sample preparation. Chinese hamster ovary (CHO) the cells were cultured in DME 
F12 medium with 10% FBS and 1% penicillin/streptomycin in a humidified 5% CO2 atmosphere at 37 °C. Upon 
confluence cells were detached with trypsin and washed 2 times in phosphate buffered saline (PBS). For isolation 
of highly viable cells single-cell printing was performed within 3 hours while the cells were kept on ice. Prior 
loading 40 µl of the sample into the cartridge of the single-cell printer the concentration was adjusted to 106 cells/
ml by dilution with PBS. To model cell damage due to sample preparation, after resuspension in PBS cells were 
vortexed for 30 seconds at the highest setting (Vortex-Genie 2, Scientific Industries) and subsequently stored at 
room temperature for four days. Prior cell isolation the sample was washed two times with PBS, adjusted to 106 
cells/ml and mixed 1:1 with a freshly harvested CHO sample if not stated otherwise.

Single-cell printing. Single-cell isolation was performed on a c.sight single-cell printer (cytena, Germany) 
without additional hardware modifications. Some experiments were performed on a scp (cytena, Germany) and 
on a former prototype6 to investigate the impact of hardware variations. To retrieve the cell images for training the 
x.sight software was modified: For each dispensed single cell a region of 300 × 300 or 100 × 100 pixels around the 
respective cell was cropped and written to the hard drive together with the well ID. For a posteriori background 
removal, the 2 images before the ejection event were stored as well.

Clonal expansion and assessment of colony growth. Cells were dispensed into 96-well plates prefilled 
with 180 µl growth medium. After single-cell deposition the plates were incubated for 10 days in a humidified 
5% CO2 atmosphere at 37 °C. The growth of viable colonies was assessed manually using an inverted microscope 
with 4x objective. Cells that resulted in visible colonies were regarded as ‘viable’. The clone recovery is defined as 
number of viable colonies divided by the number of wells populated with single cells (96 per plate).

Datasets and image preprocessing. Several image datasets were used in this study as summarized in 
Table 1. Two datasets were collected by isolation of single CHO cells with a c.sight device. The other two image 
datasets were obtained previously on a scp single-cell printer. For training of the CNNs, the cell images from the 
single-cell dispensing experiments were further cropped to 55 × 55. The background was removed by subtracting 
the ‘empty’ images captured just before the respective cell was imaged in the nozzle and dispensed from the cell 
image.

Feature-based image classification with WND-CHARM. Classification performance of the CNNs 
were compared to WND-CHARM (version 1.60) which is a multi-purpose feature-based classification algo-
rithm12. First, the algorithm computes 1025 features from the images with:

wndchrm train
Second, classification metrics are computed using unbalanced training and 10-fold cross-validation with:
wndchrm test -r#0.9 -n10

Implementation and training of the CNN models. Python scripts were written to extract, label, and 
sort the image data. CNNs were implemented and trained using the Python deep learning library Keras (https://
keras.io) which is run on top of Tensorflow13. Training was performed on a NVIDIA GeForce GTX 960 GPU 
using a mini-batch approach. This means, for training one epoch on a training set of N images, i batches of 
n = batch size images are passed through the network in i iterations such that i = N/n. In total a model was trained 
for = ⋅ I e i iterations, where e is the number of training epochs. Since the batch size has a significant effect on the 
generalization performance and convergence of the model14 it was treated as hyper parameter that was to be 
fine-tuned. Class weighted binary cross-entropy was used for the loss function. scikit-learn15 was used to calculate 
classification performance metrics and for splitting the data into training and validation sets. Each combination 
of model and dataset was investigated by 10-fold cross-validation. That means the dataset is split into k = 10 sub-
sets and training is perform k-fold on a training set comprising k-1 subsets while 1 subset is hold back for 
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validation. Classification performance metrics (accuracy, AUC, etc.) of the models were then calculated as mean 
value of the k folds. Results were visualized with the python libraries Pandas and matplotlib. For ‘real-time’ clas-
sification during single-cell printing, trained models were exported into the protobuf format. The ‘frozen’ models 
were then imported into a modified version of the c.sight software using tensorflowsharp, a TensorFlow API for.
NET languages.
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