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Application of Kalman Filter Model 
in the Landslide Deformation 
Forecast
Fumin Lu* & Huaien Zeng

Nonlinear exponential trend model is linearized into the linear model, then linearized model parameters 
are regarded as the state vector containing the dynamic noise to erect Kalman filter model based on 
exponential trend model to predict the deformation of the rock landslide. Deformation observation 
values of the landslide are regarded as a time series to erect AR(1) model, then model parameters 
of AR(1) model are regarded as the state vector containing the dynamic noise to erect Kalman filter 
model based on AR(1) model to predict the deformation of the rock landslide. The deformation of the 
landslide is regarded as the function of the time, then Taylor series is used to determine the functional 
relationship between the deformation of the landslide and the time, and Taylor series is spread to 
erect Kalman filter model based on Taylor series to predict the deformation of the earthy landslide. 
The deformation of landslides relates to many factors, the rainfall and the temperature influence the 
deformation of landslides specially, thus Kalman filter model based on multiple factors is erect to 
predict the deformation of the earthy landslide on the basis of Taylor series. Numerical examples show 
that the fitting errors and the forecast errors of the four Kalman filter models are little.

The landslide is a common natural disaster, and the disaster caused by the landslide not only harms the produc-
tion and the life of people, but also greatly destroys the natural resource and the natural environment1–3. In order 
to provide the early warning of the landslide geohazard, it is important to monitor landslides and erect landslide 
deformation forecast models4,5.

Landslide deformation prediction models include mainly grey model6–12, time series model13–21, neural net-
work model22–29 and wavelet transform model30–33.

Grey model weakens the randomness of original data by accumulating original data, and can convert complex 
raw data into time series consistent with the objective law. Grey model has the advantages that the calculation is 
simple and the forecast accuracy is high in the short time, but grey model is suitable for the situation that original 
data show the exponential growth34. Time seris model is a parametric time domain analysis model. Time series 
model establishes the corresponding mathematical model for all kinds of dynamic data, and analyses the mathe-
matical model in order to predict the variation tendencey of data, but time series model is suitable for stationary 
data35. Neural network model has featuers of the parallel computation, distributed information storage, adaptive 
learning. Neural network model has some advantages in the simulation about nonlinear problems34, but neu-
ral network model presents some local minimum points, and its velocity of the convergence is slow36. Wavelet 
transform model can provide the local characterization of the signal in the time and frequency domain. Wavelet 
transform model is suitable for processing the non-stationary signal, but wavelet transform model involve the 
choice of the threshold value, and the choice of the threshold value is very difficult37.

The filter means that the best estimator is obtained by means of processing observation data containing errors. 
In order to obtain some unknown parameters, some observations must be gathered. The observation value is the 
function of some parameters, and the observation value contains some errors. Our aim is to obtain the estimated 
value of the unknown parameter by means of the observation value containing errors. Kalman filter equations are 
obtained by means of the maximum posterior estimation or the minimum variance estimation, and it uses the 
previous eatimated value or the recent observation value to estimate the current value. Klman filter uses the state 
to describe the physical system, and uses the state transition to reflect the inherent law of the system change38. 
Kalman filter is a recursive filtering method. Kalman filter estimates the new state estimator on the basis of the 
state estimator and the observation value at the current time, and can process massive repeated observation data 
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quikly, and can combine the parameter estimation with the forecast39, thus it is used widely in many applications, 
such as navigation, target trcking, control and data processing39–43.

This paper establishes four Kalman filter models, i.e. Kalman filter model based on exponential trend model, 
Kalman filter model based on AR(1) model, Kalman filter model based on the time factor and Taylor series, 
Kalman filter model based on multiple factors and Taylor series, and these models are used to forecast the defor-
mation of some landslides. Numerical examples show that the fitting effect and forecast effect of these models are 
good.

Methods
Kalman filter model.  The state equation and the observation equation of Kalman filter model are44–47:

Φ Ω= ++ +X X (1)k k k k k1 1,

Δ= ++ + + +L B X (2)k k k k1 1 1 1

where
Xk = the state vector at the time tk
Lk = the observation vector at the time tk
Φk+1, k = the state transfer matrix at the time tk to tk+1
Bk+1 = the observation matrix at the time tk+1
Ωk = the dynamic noise at the time tk
Δk = the observation noise at the time tk
The random model of Kalman filter model are44–47:
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where
E(Ωk) = the mathematical expectation of Ωk
E(Δk) = the mathematical expectation of Δk
cov(Ωk, Ωj) = the covariance of Ωk and Ωj
DΩ(k) = the variance of Ωk
cov(Δk, Δj) = the covariance of Δk and Δj
DΔ(k) = the variance of Δk
cov(Ωk, Δj) = the covariance of Ωk and Δj
E(X0) = the mathematical expectation of X0
var(X0) = the variance of X0
cov(X0, Ωk) = the covariance of X0 and Ωk
cov(X0, Δk) = the covariance of X0 and Δk
On the basis of the state equation and the observation equation and the random model, the solution of Kalman 

filter equations are obtained44–47:

= − + − −k k k k k kX X J L B X( / ) ( / 1) [ ( / 1)] (3)k k k

= − −D k k D k kI J B( / ) [ ] ( / 1) (4)k kX X

where I is a unit matrix, and

Φ− = − −−k k k kX X( / 1) ( 1/ 1) (5)k k, 1

Φ Φ− = − − + −Ω− −D k k D k k D k( / 1) ( 1/ 1) ( 1) (6)k k k k
T

X X, 1 , 1

= − − + Δ
−

D k k D k k D kJ B B B( / 1) [ ( / 1) ( )] (7)k k
T

k k
T

X X
1

Kalman filter model based on exponential trend model.  Wang used exponential trend model to ana-
lyze the deformation of the rock landslide48. Exponential trend model is a nonlinear model as follows:
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=y ae (8)bt

where
a = the parameter of the model
b = the parameter of the model
t = the observation time of the model
y = the fitting value of the model
Equation (8) can be written as follows:

= +y a btln ln (9)

Denoting

′ = ′ =y y a aln , ln

Equation (9) can be rewritten as follows:

′ = ′ +y a bt (10)

On the basis of deformation observation data, a′ and b can be obtained by means of least square method, then 
a can be obtained by means of a′.

In order to improve the fitting precision of exponential trend model, we can regard a′ and b of Eq. (10) as 
the state vector containing the dynamic noise to erect Kalman filter model, and then we can obtain following 
equation:

′ = ′ + + Δy a b t (11)k k k k k

where
′κa  = the parameters of the linearized exponential trend model

bk = the parameters of the linearized exponential trend model
tk = the observation time

′y k = the natural logarithm of the deformation observation value
Δk = the observation noise at the observation time tk
Denoting

Δ= ′ = =
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Equation (11) can be expressed as follows:

Δ= +L B X (12)k k k k

For the next time tk+1, Eq. (12) can be written as follows:

Δ= ++ + + +L B X (13)k k k k1 1 1 1

In order to make Kalman filter, Xk is regarded as the state vector containing the dynamic noise, thus the fol-
lowing equation is obtained:

Ω= ++X X (14)k k k1

Equation (14) can be written as follows:

Φ Ω= ++ +X X (15)k k k k k1 1,

where Φk+1, k = I, i.e. Φk+1,k is a unit matrix.
On the basis of the state Eq. (15) and the observation Eq. (13), by means of Kalman filter equation, Kalman 

filter can be performed.

Kalman filter model based on AR(1) model.  The deformation value of the landslide at the time tk can be 
regarded as a time series49 {yk}, thus AR(n) model of the time series is:

ϕ ϕ ϕ= + + ⋅ ⋅ ⋅ + +− − −y y y y a (16)k k k n k n k1 1 2 2

In Eq. (16) let k = n + 1, n + 2, …, N, we have:
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In Eq. (17) let n = 1, we have AR(1) model:
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Denoting

ϕ ϕ ϕ Δ= ... = ... = =+ + − − − + +
y y y a yX B L[ ] , [ ], ,k n

T
k k k k n k k k k1 1 2 1 1 2 1 1

Equation (16) can be rewritten as follows:

Δ= ++ + + +L B X (19)k k k k1 1 1 1

To stationary random sequence AR(1), we have:

Ω= ++X X (20)k k k1

Equation (20) can be written as follows:

Φ Ω= ++ +X X (21)k k k k k1 1,

where

Φ =+ Ik k1,

Obviously Xk and Ωk are the one-dimensional vector to AR(1) model. On the basis of the state Eq. (21) and the 
observation Eq. (19), by means of Kalman filter equation, Kalman filter can be performed.

Kalman filter model based on the time factor and Taylor series.  The deformation of the landslide 
can be regarded as the function of the time, because the time interval of the deformation observation to the 
landslide is very short, and the variation of the deformation value is very small, thus the deformation value of the 
landslide x(tk+1) at the time tk+1 can be spread at the time tk by means of Taylor series:

= +



∂
∂



 − +





∂
∂






− +




∂
∂






− ++ + + +x t x t x
t

t t x
t

t t x
t

t t g( ) ( ) ( ) 1
2

( ) 1
6

( )
(22)

k k
t

k k
t

k k
t

k k k1 1

2

2 1
2

3

3 1
3

k k k

Denoting

= =



∂
∂



 =





∂
∂






=




∂
∂






x x t v x
t

a x
t

s x
t

( ), , , 1
6k k k

t
k

t
k

t

2

2

3

3
k k k

Equation (22) can be rewritten as follows:

= + − + − + − ++ + + +x x v t t a t t s t t g( ) 1
2

( ) ( ) (23)k k k k k k k k k k k k1 1 1
2

1
3

where
vk = the deformation velocity at the time tk
ak = the deformation acceleration at the time tk
sk = the influence of the third power of the time variation to the deformation
gk = the remainder term of Taylor series
Because gk is very small, it can be regarded as the dynamic noise whose mathematical expectation is 0. Let

= + − ++ +v v a t t c( ) (24)k k k k k k1 1

= ++a a r (25)k k k1

= ++s s p (26)k k k1

where
ck = the small perturbation
rk = the small perturbation
pk = the small perturbation
They can be regarded as the dynamic noises whose mathematical expectation are 0.
Equations (23) to (26) can be written in the matrix form as:
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Equation (27) can be written as follows:

Φ Ω= ++ +X X (28)k k k k k1 1,

Equation (28) is the state equation of Kalman filter model.
To the deformation observation, the following Equation is obtained:

= + Δ+ + +l x (29)k k k1 1 1

Denoting

Δ= = = Δ+ + + + +lL B, [1 0 0 0],k k k k k1 1 1 1 1

Equation (29) can be be rewritten as follows:

Δ= ++ + + +L B X (30)k k k k1 1 1 1

Equation (30) is the observation equation of Kalman filter model.
On the basis of the state Eq. (28) and the observation Eq. (30), by means of Kalman filter equation, Kalman 

filter can be performed.

Kalman filter model based on multiple factors and Taylor series.  The deformation of landslides 
relates to many factors, the rainfall and temperature influence the deformation of landslides specially. The rainfall 
causes the runoff of the slope, and the rainwater infiltrates into the landslide mass to increases the weight of the 
landslide mass, thus the sliding power of the landside mass is augmented. The change of the temperature causes 
the constriction or the dilation of the crack of the landslide and influences the stability of the landslide. Thus the 
deformation of the landslide can be regarded as the function of the time and the rainfall of every month and the 
temperature, i.e.

=F x t j w( , , ) (31)x

where
t = the observation time
j = the rainfall of every month at t
w = the temperature at t
Fx = the deformation of the landslide
Because the time interval of the deformation observation to the landslide is very short, and the variation of the 

deformation value is very small, thus the deformation value x(tk+1, jk+1, wk+1) at tk+1 can be expanded by means 
of Taylor series, i.e.
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Equation (32) can be rewritten as follows:
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where
gk = the remainder term of Taylor series
Because gk is very small, it can be regarded as the dynamic noise whose mathematical expectation is 0, Let
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where
dk = the very small perturbation
rk = the very small perturbation
pk = the very small perturbation
ek = the very small perturbation
hk = the very small perturbation
zk = the very small perturbation
They can be regarded as the dynamic noises whose mathematical expectation are 0.
Equations (33) to (39) can be written in the matrix form as:
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Equation (40) can be written as follows:

Φ Ω= ++ +X X (41)k k k k k1 1,

Equation (41) is the state equation of Kalman filter model.
To the deformation observation, we have

= + Δ+ + +l x (42)k k k1 1 1

where
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lk+1 = the deformation observation value at the time tk+1
Δk+1 = is the observation noise at the time tk+1
Denoting

= =+ + +lL B, [1 0 0 0 0 0 0]k k k1 1 1

Equation (42) can be rewritten as follows:

Δ= ++ + + +L B X (43)k k k k1 1 1 1

On the basis of the state Eq. (41) and the observation Eq. (43), by means of Kalman filter equation, Kalman 
filter can be performed.

Results and Discussion
The example of the calculation about Kalman filter model based on exponential trend 
model.  We choose horizontal displacement observation data of the monitoring point FA in a rock landslide to 
perform some calculations, initial values are set as follows:

= ± = 



.

.




= 







= 







∆

Ω

k

k

D X

D

D

( ) 1 mm, (0/0) 2 88932
0 12862 ,

(0/0) 1 0
0 1 ,

( ) 1 0
0 1

X

Where
DΔ(k) = the variance of horizontal displacement observation values
X(0/0) = the calculation value of parameters of exponential trend model
Some calculation results are listed in Table 1.
Table 1 shows that residuals of exponential trend model are greater than 1 mm, the maximum residual is 

13.32 mm, and the minimum residual is 1.93 mm. Residuals of Kalman filter model are less, two residuals are 
greater than 1 mm, and other residuals are less than 1 mm.

Exponential trend model predicts that the horizontal displacement value of the monitoring point FA in 
December 2017 is 74.01 mm, the horizontal displacement observation value of the monitoring point FA in 
December 2017 was 52.50 mm, the forecast error is 21.51 mm. Kalman filter model predicts that the horizontal 
displacement value of the monitoring point FA in December 2017 is 53.27 mm, the forecast error is 0.77 mm. 
Computed results show that Kalman filter model based on exponential trend model is better than exponential 
trend model in the fitting precision and the prediction precision.

Parameters of exponential trend model are fixed values, thus the ability that the model adapts to the observa-
tion data is weaked, and the fitting precision and the prediction precision of the model are reduced.

Kalman filter model based on exponential trend model regard parameters of exponential trend model as the 
state vector containing the dynamic noise to carry out Kalman filter. In the process of Kalman filter, parameters of 
the model constantly change, thus the ability that the model adapts to the observation data is enhanced, and the 
fitting precision and forecast precision of the model are improved.

The example of the calculation about Kalman filter model based on AR(1) model.  We choose 
vertical displacement observation data of the monitoring point P10 in a rock landslide to perform some calcula-
tions, and initial values are set as follows:

Observation 
time (year-
month)

Observation 
value (mm)

Exponential trend model Kalman filter model

Fitted value 
(mm) Residual (mm)

Fitted value 
(mm) Residual (mm)

2007–12 10.32 20.45 10.13 13.45 3.13

2008–12 26.96 23.26 −3.70 25.60 −1.36

2009–12 34.07 26.45 −7.62 34.43 0.36

2010–12 38.65 30.08 −8.57 39.17 0.52

2011–12 42.98 34.21 −8.77 43.32 0.34

2012–12 44.93 38.90 −6.03 45.20 0.27

2013–12 47.16 44.24 −2.92 47.33 0.17

2014–12 48.38 50.31 1.93 48.52 0.14

2015–12 49.95 57.22 7.27 50.04 0.09

2016–12 51.75 65.07 13.32 51.82 0.07

Table 1.  Horizontal displacement observation values and their filter values of the monitoring point FA.
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= ± .
= .
= =

Δ

Ω

k

k

D
X

D D

( ) 1 0 mm,
(0/0) 35 8,
(0/0) 1, ( ) 1X

where
DΔ(k) = the variance of vertical displacement observation values
35.8 = the vertical displacement observation value of the monitoring point P10 in December 2015
Some calculation results are listed in Table 2.
Table 2 shows that residuals of AR(1) model are greater, the maximum residual is −1.19 mm, the minimum 

residual is −0.05 mm. Residuals of Kalman filter model are less, the maximum residual is −0.11 mm, the mini-
mum residual is 0.00 mm.

AR(1) model predicts that the vertical displacement value of the monitoring point P10 in December 2017 
is 50.71 mm, the vertical displacement observation value of the monitoring point P10 in December 2017 was 
50.9 mm, the forecast error is 0.19 mm. Kalman filter model predicts that the vertical displacement value of the 

Observation 
time (year-
month)

Observation 
value (mm)

AR(1) model Kalman filter model

Fitted value 
(mm) Residual (mm)

Fitted value 
(mm) Residual (mm)

2016–01 36.4 35.21 −1.19 36.29 −0.11

2016–02 37.2 36.43 −0.77 37.27 0.07

2016–03 37.6 37.32 −0.28 37.60 0.00

2016–04 38.3 38.11 −0.19 38.28 −0.02

2016–05 38.5 38.61 0.11 38.50 0.00

2016–06 39.7 39.52 −0.18 39.73 0.03

2016–07 40.2 40.33 0.13 40.21 0.01

2016–08 41.6 41.52 −0.08 41.60 0.00

2016–09 42.0 42.17 0.17 42.02 0.02

2016–10 42.5 42.42 −0.08 42.51 0.01

2016–11 42.9 43.18 0.28 42.92 0.02

2016–12 43.7 43.56 −0.14 43.70 0.00

2017–01 43.9 43.99 0.09 43.89 −0.01

2017–02 44.2 44.15 −0.05 44.22 0.02

2017–03 44.6 44.69 0.09 44.57 −0.03

2017–04 45.1 45.00 −0.10 45.11 0.01

2017–05 45.9 45.28 −0.62 45.91 0.01

2017–06 46.7 46.93 0.23 46.70 0.00

2017–07 48.0 47.11 −0.89 48.03 0.03

2017–08 48.8 48.22 −0.58 48.76 −0.04

2017–09 49.2 49.33 0.13 49.21 0.01

2017–10 49.7 49.64 −0.06 49.70 0.00

2017–11 50.3 50.77 0.47 50.28 −0.02

Table 2.  Vertical displacement observation values and their filter values of the monitoring point P10.

Observation time 
(year-month-day)

Observation 
value (mm)

Fitted value 
(mm)

Residual 
(mm)

2017–01–12 468.6 468.3 −0.3

2017–02–20 471.5 471.3 −0.2

2017–03–18 487.1 486.0 −1.1

2017–04–18 498.9 499.3 0.4

2017–05–18 525.3 524.6 −0.7

2017–06–16 551.3 551.1 −0.2

2017–07–16 577.1 577.8 0.7

2017–08–17 594.3 595.6 1.3

2017–09–19 623.0 622.3 −0.7

2017–10–17 624.3 625.2 0.9

2017–11–11 639.0 638.1 −0.9

Table 3.  Horizontal displacement observation values and their filter values of the monitoring point G8.
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monitoring point P10 in December 2017 is 50.88 mm, the forecast error is 0.02 mm. Computed results show that 
Kalman filter model based on AR(1) model is better than AR(1) model in the fitting precision and the prediction 
precision.

The parameters of AR(1) model is a fixed value, thus the ability that the model adapts to the observation data 
is weaked, and the fitting precision and the prediction precision of the model are reduced.

Kalman filter model based on AR(1) model regard the parameters of AR(1) model as the state vector contain-
ing the dynamic noise to carry out Kalman filter. In the process of Kalman filter, the parameter of the model con-
stantly change, thus the ability that the model adapts to the observation data is enhanced, and the fitting precision 
and forecast precision of the model are improved.

The example of the calculation about Kalman filter model based on the time factor and Taylor 
serie.  We choose horizontal displacement observation data of the monitoring point G8 in a earthy landslide to 
perform some calculations, initial values are set as follows:

= ± =
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
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448 5
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0

,

(0/0)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

( )
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

X

where
DΔ(k) = the variance of horizontal displacement observation values
448.5 = the horizontal displacement observation value of the monitoring point G8 on December 10, 2016
Some calculation results are listed in Table 3.
Table 3 shows that residuals obtained by Kalman filter method are less, the maximum residual is 1.3 mm, the 

minimum residual is −0.2 mm, two residuals are greater than 1 mm, other residuals are less than 1 mm. Some 
residuals are negative, and others are positive. It shows that residuals are random and fitting errors are less.

Kalman filter model predicts that the horizontal displacement value of the monitoring point G8 on December 
8, 2017 is 648.9 mm, the horizontal displacement observation value of the monitoring point G8 on December 8, 
2017 is 650.6 mm, the forecast error is 1.7 mm, thus the forecast error is very small.

Because the state vector Xk of Kalman filter model based on the time factor and Taylor series constantly change 
in the process of Kalman filter, the ability that the model adapts to the observation data is enhanced, and the fit-
ting precision and forecast precision of the model are improved.

The example of the calculation about Kalman filter model based on multiple factors and Taylor 
series.  A landslide is a earthy, some cracks pass through the landslide, the rainfall and the temperature cause 
the deformation of the landslide. We use the horizontal displacement observation data of the monitoring point 
H4 at the landslide to perform some calculations, initial values are set as follows:

= ±
= .

Δ kD
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where
DΔ(k) = the variance of horizontal displacement observation values
115.4 = the horizontal displacement observation value of the monitoring point H4 on March 15, 2016.
Some calculation results are listed in Table 4.
Table 4 shows that when rainfall and temperature increase, the deformation of the monitoring point H4 

increases, thus the deformatin of the landslide relates to the rainfall and the temperature. Residuals of quadratic 
polynomial regression model are greater than 3 mm, the maximum residual is −50.38 mm, the minimum residual 
is −3.14 mm, fitting errors of quadratic polynomial regression model are great, while residuals of Kalman filter 
model based on multiple factors are less than 1 mm, and the maximum residual is 0.99 mm, the minimum resid-
ual is −0.02 mm, the fitting effect of Kalman filter model based on multiple factors is good.
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Quadratic polynomial regression model predicts that the horizontal displacement value of the monitoring 
point H4 on November 15, 2017 is 431.84 mm, the horizontal displacement observation value of the monitoring 
point H4 on November 15, 2017 is 454.9 mm, the forecast error is 23.06 mm. Kalman filter model based on mul-
tiple factors predicts that the horizontal displacement value of the monitoring point H4 on November 15, 2017 
is 456.20 mm, the forecast error is 1.30 mm. Computed results show that Kalman filter model based on multiple 
factors is better than quadratic polynomial regression model in the fitting precision and the prediction precision.

The parameters of quadratic polynomial regression model is a fixed value, thus the ability that the model 
adapts to the observation data is weaked, and the fitting precision and the prediction precision of the model are 
reduced.

Because the state vector Xk of Kalman filter model based on multiple factors and Taylor series series constantly 
change in the process of Kalman filter, the ability that the model adapts to the observation data is enhanced, and 
the fitting precision and forecast precision of the model are improved.

This paper establishes four Kalman filter models, i.e. Kalman filter model based on exponential trend model, 
Kalman filter model based on AR(1) model, Kalman filter model based on the time factor and Taylor series, 
Kalman filter model based on multiple factors and Taylor series, and these models are used to forecast the defor-
mation of some landslides.

Nonlinear exponential trend model is linearized into the linear model, then linearized model parameters are 
regarded as the state vector containing the dynamic noise to erect Kalman filter model based on exponential trend 
model, and computed results show that Kalman filter model based on exponential trend model is better than 
exponential trend model in the fitting precision and the prediction precision. The model parameters of AR(1) 
model are regarded as the state vector containing the dynamic noise to erect Kalman filter model based on AR(1) 
model, and computed results show that Kalman filter model based on AR(1) model is better than AR(1) model 
in the fitting precision and the prediction precision. Taylor series is used to establish the functional relationship 
between the deformation of the landslide and the time, then Kalman filter model based on Taylor series is estab-
lished, and computed results show that Kalman filter model based on Taylor series is goog in the fitting precision 
and the prediction precision. The deformation of landslides relates to many factors, the effect of the atmospheric 
rainfall and the air temperature to the deformation of the landslide is significant, thus the deformation of the 
landslide is regarded as the function of the time and the rainfall of every month and the temperature to establish 
Kalman filter model based on multiple factors, and computed results show that Kalman filter model based on 
multiple factors is better than quadratic polynomial regression model in the fitting precision and the prediction 
precision.

Because the state vector of Kalman filter model constantly change in the process of Kalman filter, the ability 
that the model adapts to the observation data is enhanced, thus the fitting precision and prediction precision of 
these Kalman filter model are improved.

Received: 9 August 2019; Accepted: 26 December 2019;
Published: xx xx xxxx

Observation time 
(year-month-day)

Rainfall 
of month 
(mm)

Temperature 
(°C)

Observation 
value (mm)

Residual 1 
(mm)

Residual 2 
(mm)

2016–04–19 49.5 18.2 118.3 33.30 0.56

2016–05–19 173.0 24.6 128.2 19.48 0.07

2016–06–18 124.6 26.3 172.7 15.49 −0.92

2016–07–20 187.9 30.4 228.4 −22.21 0.84

2016–08–18 114.9 27.4 253.9 −23.93 0.95

2016–09–21 121.4 24.1 259.7 −29.09 −0.02

2016–10–18 46.0 18.9 290.3 −36.90 −0.78

2016–11–18 49.3 13.8 294.6 −35.41 −0.21

2016–12–14 8.6 8.5 298.3 −12.99 −0.36

2017–01–15 6.6 7.2 296.0 6.49 0.81

2017–02–25 20.8 9.8 299.3 16.16 −0.57

2017–03–19 40.5 14.4 298.0 24.22 0.99

2017–04–18 76.0 17.8 304.9 24.50 0.21

2017–05–16 129.4 22.8 310.9 27.60 0.75

2017–06–15 86.9 25.6 338.7 38.51 −0.11

2017–07–14 162.6 29.5 364.4 19.57 0.75

2017–08–16 198.7 28.2 380.9 −3.41 0.98

2017–09–07 44.3 25.8 438.8 −11.28 0.87

2017–10–13 102.0 19.2 449.9 −50.38 −0.51

Table 4.  Horizontal displacement observation values and their filter values of the monitoring point H4. 
*Residual 1 is the residual of quadratic polynomial regression model, Residual 2 is the residual of Kalman filter 
model.
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