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Nearest Neighbour Propensity 
Score Matching and Bootstrapping 
for Estimating Binary Patient 
Response in Oncology: A Monte 
Carlo Simulation
Tine Geldof   1,2, Dusan Popovic3, Nancy Van Damme4, Isabelle Huys1 & Walter Van Dyck2*

Nearest Neighbour (NN) propensity score (PS) matching methods are commonly used in 
pharmacoepidemiology to estimate treatment response using observational data. Unfortunately, there 
is limited evidence on the optimal approach for accurately estimating binary treatment response and, 
more so, to estimate its variance. Bootstrapping, although commonly used to accurately estimate 
variance, is rarely used together with PS matching. In this Monte Carlo simulation-based study, we 
examined the performance of bootstrapping used in conjunction with PS matching, as opposed to 
different NN matching techniques, on a simulated dataset exhibiting varying levels of real world 
complexity. Thus, an experimental design was set up that independently varied the proportion of 
patients treated, the proportion of outcomes censored and the amount of PS matches used. Simulation 
results were externally validated on a real observational dataset obtained from the Belgian Cancer 
Registry. We found all investigated PS methods to be stable and concordant, with k-NN matching to 
be optimally dealing with the censoring problem, typically present in chronic cancer-related datasets, 
whilst being the least computationally expensive. In contrast, bootstrapping used in conjunction with 
PS matching, being the most computationally expensive, only showed superior results in small patient 
populations with long-term largely unobserved treatment effects.

Estimating treatment effects in real-world clinical practice becomes increasingly important in domains 
like oncology, due to the high complexity of cancers and to recent developments of targeted medicines and 
immune-oncology drugs1. However, cancer registries, which are often used in epidemiological studies while 
monitoring changes in disease prevalence and investigating differences in incidence rates, only collect data at 
the time of diagnosis and, as such, do not contain any longitudinal information2. Therefore, estimating patient 
responses to a treatment, which could be based on tumour growth and/or toxic events, becomes very difficult. 
In those cases, patient-level response to a treatment can be based on overall survival (OS) as identified in clinical 
trials. Patient-level treatment effect can then be derived using the Propensity Score (PS) modelling technique 
proposed by Rosenbaum et al. (1983) for estimating average treatment effects3,4, a common method used in 
pharmacoepidemiology. In this technique, the PS is the likelihood of a patient being assigned to a treatment 
(treatment status Z = 1 for treated vs. Z = 0 for control patients), conditional on observed covariates X prior to 
the application of the treatment. It forms the basis for matching treated and control patients who have a similar 
PS value, that is, are nearest neighbours3,4. Henceforward, changes in patients’ individual Survival Gain (SG) (i.e. 
the difference between OS for treated and matched control patient), for each treated patient forms an indication 
for the response of the patient to the treatment.
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Yet, caution should be taken when using Nearest Neighbour (NN) PS matching. First, one assumes that the OS 
of both treated and matched control patient(s) are exact and hence that the time of death is observed. In reality, 
patients get lost to follow up or are still alive during data collection, censoring the actual survival time and hence 
causing a problem when estimating the SG. This is especially true for chronic cancers like colorectal cancer fea-
turing a median OS extending to a couple of years with treatment5–8. Secondly, there is still some controversy in 
the literature as to how variance and standard error of treatment effects should be calculated9–11. Providing a pre-
diction error seems to be challenging as the variance will be high for one-by-k NN PS matching, on the one hand 
due to the small sample sizes when k is very low (approaching one) and on the other hand due to high patient 
heterogeneity when k is very high, that is, approaching the entire patient population.

Bootstrap-based methods, relying on random resampling, have been proposed in a few simulation studies 
and found to be effective for estimating variance of average patient treatment effects (ATE)9–13. Although rarely 
used in conjunction with PS matching, the technique is well-known for its ability to accurately measure variances 
of estimations in analytical difficult cases such as small datasets14, and shows therefore promise for use in uncer-
tainty surrounding (individual) treatment effects.

The main goal of this research is to assert which technique is the best for reducing the censoring problem and 
estimating the variance of the estimated SG in the context of predicting binary patient-level treatment response. 
Simulation-based approaches are well suited for this purpose, because these simulate true values which can then 
be compared to estimates generated from different PS matching approaches under varying conditions. Therefore, 
we examine the performance of three different state-of-the-art techniques on simulated datasets with different 
levels of heterogeneity. In particular, we compare k-NN, weighted k-NN and complex bootstrapping as described 
by Austin (2014) in series of Monte Carlo simulations. Finally, we further validate our findings on four case stud-
ies of metastatic colorectal patients treated with targeted medicines.

Counterintuitively, we found complex bootstrapping not to outperform k-NN or weighted k-NN methods 
when estimating survival gain variance in highly heterogeneous patient populations. However, from the afliber-
cept case featuring a small amount of patients assigned to the treatment with highly censored survival times, we 
did observe the bootstrap method to have favourable estimations. As expected, although computationally being 
the most expensive, bootstrapping outperformed other methods estimating variance in fairly small datasets.

Background: Propensity Score Matching and Boostrapping
This section presents the PS matching technique for estimating treatment effect and describes how different 
greedy NN algorithms14 and the bootstrapping method9–13 can be used to mitigate the censoring problem and 
to estimate uncertainty on individual treatment effects. Each of the matching algorithms uses matching with 
replacement, so that each control unit can be matched to multiple treated units.

PS NN matching and treatment effect.  In NN PS matching, each treated patient is matched to one or 
more patients from the control group based on the closest = = |Pr Z XPS ( 1 )i i  value3,4,15. In principle, any regres-
sion technique can be used to develop the propensity model as long as it provides reasonable fit to the data. It is 
not necessary that the chosen technique produces calibrated probabilities as units are matched on a score16. 
Optimal selection of variables Xi is based on observed variables which affect the outcome of interest, because this 
is associated with better PS estimations17.

Let T and C be the set of NT treated and NC control patients respectively and OSi
T and OSi
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Following oncology guidelines and depending on disease severity, patients can be labelled with ‘response’ 
whenever their SG is longer than a threshold of λ months.

One-by-one matching.  The most common implementation of PS matching in practice is one-by-one 
matching, in which pairs of treated and control units are formed. Using one-by-one nearest neighbour PS match-
ing =N( 1)i

C , one treated unit i ∈ T is matched to one control unit j ∈ C. When the OS of treated, control or both 
are censored, the estimated SGs will be highly uncertain (see Supplementary Material). Hence, for those matched 
pairs where censoring is problematic, the binary response-label based on the estimated SGs becomes highly 
uncertain. For those cases, the SG cannot be assessed if any of the following conditions apply:

•	 when j ∈ C(i) and i ∈ T are censored
•	 when j ∈ C(i) is censored and λ≥SGi

s

•	 when i ∈ T censored and λ<SGi
s
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Denote κ = NAij  when i and j are censored or when j is censored and λ− ≥OS OSi
T

j
C  and κ = 1ij  otherwise. 

Define ρi = 1 when i is observed or when i is censored but κ λ− ≥OS OSi
T

ij j
C  and ρi = NA otherwise. Formula (1) 

becomes:
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with OSi
T assumed to be a constant. We can make a crude estimation of the SGi

s variance by taking the variance of 
the entire control set C, i.e. =V var OS( )i

s C .

One-by-k matching.  Using one-by-k nearest neighbour PS matching ( =N ki
C  = 50), one treated unit i ∈ T 

is matched to k nearest control units. Labelling for matched units subject to the censoring problem cannot be 
estimated if any of the following conditions are satisfied:

•	 when ∀ ∈j C i j( ):  and i ∈ T are censored
•	 when ∀ ∈j C i j( ):  is censored and λ≥SGi

s

•	 when ∈i T  censored and λ<SGi
s

When none of these conditions are met the response label of treated unit i ∈ T can be estimated. However, if 
∃ ∈j C i j( ):  is censored, j cannot contribute to the estimation of this label.
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One-by-k weighted matching.  In formula (2–5) all the k nearest neighbour units j ∈ C included in the 
calculation (i.e. for which censoring is not a problem) have weights =wij N

1

i
C
 and all others weight zero, meaning 

that all matched control units have equal contribution to the calculated mean. This can be generalized to weighted 
NN PS matching, where the contribution of j ∈ C(i) to the mean depends on how similar the PSs are of subjects i 
and j, i.e. on the distance = −d PS PSij i j (with minimal and maximal values equal to 0 and 1 respectively). Using 
an exponential distance function, the previous defined weights can be generalized to =

α

α

−
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j ∈ C(i) and wij = 0 otherwise19. The value of α is set to 5 to ensure weights close to zero for maximal distances 
while having large enough differences in weights for small distances. Matched control units with equal PS as the 
treated unit contribute to the mean with a weight equal to one, while matched control units with distance 
approaching one contribute only with a weight approaching zero.

Matching through bootstrapping.  Using the complex bootstrap method as described by Austin (2014), 
b bootstrap samples are drawn from the original control group with sample size equal to the control group9. In 
each of the bootstrap samples, the PS model is estimated, and one-by-one PS matching is performed for creating 
matched pairs, forming the set C(i) of control units (Ni

C = b) matched to the treated unit i ∈ T. In this k-NN boot-
strapping method, one treated patient can be matched multiple times to the same control patient, i.e. j ∈ C(i) can 
occur multiple times in C(i), lowering the heterogeneity of the matched sets. The estimation of the subject-specific 
gain in survival SGi

s and its variance Vi
s can be calculated as given by Eqs. (4) and (5) in one-by-k matching14.

Material and Methods
We used simulated datasets with three levels of patient heterogeneity to examine the performance of the different 
matching techniques over a series of Monte Carlo simulations. There, performance was evaluated based on their 
ability to estimate the individual SG under these three scenarios. In this section, we describe the design of the 
datasets and the Monte Carlo simulations. The results were externally validated by examination of case studies for 
treated metastatic colorectal patients.

Simulated data generation.  Data was simulated in R following the data-generating process described by 
Austin (2014), generating 1000 patients with 10 baseline covariates X1 − X10, of which seven affecting treatment 
selection (X1 − X7) and OS outcome (X3 − X10)9. Very weak, weak, moderate, strong and very strong effects of the 
covariates on treatment selection and OS outcome is introduced by the regression coefficients 
α α α α= = = =log log log log log log log log(1, 25), (1, 5), (2), (4)VW W M S  a n d  α = log(8)VS .  P S s 

= = |p Pr Z X( 1 )i i i  were determined using logistic regression, following:

https://doi.org/10.1038/s41598-020-57799-w


4Scientific Reports |          (2020) 10:964  | https://doi.org/10.1038/s41598-020-57799-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

α α α α α α α α

α α α α α α α α

α α α α α α α α

= + + + + + + +

= + + + + + + +

= + + + + + + +

logit p x x x x x x x
logit p x x x x x x x
logit p x x x x x x x

( ) ,
( ) ,
( )

i L treat L VW W VW W VW W M

i M treat M W M S W M S VS

i H treat H M S M S M S VS

0, , 1 2 3 4 5 6 7

0, , 1 2 3 4 5 6 7

0, , 1 2 3 4 5 6 7

for low, medium and high heterogeneity respectively. Treatment status was generated from a Bernoulli distribu-
tion on the subject-specific PS ~p Z Be p: ( )i i i , through which the intercept α0,treat indirectly affects the proportion 
of patients treated in the simulation. The OS outcome was generated as described by Bender (2005) and Austin 
(2014)9,12, that is, based on the linear predictor

β α α α α α α α
β α α α α α α α
β α α α α α α α

= + + + + + + +
= + + + + + + +
= + + + + + + +

LP Z x x x x x x x
LP Z x x x x x x x
LP Z x x x x x x x

,
,

L treat L W VW W M VW W VW

M treat M W M S VS W M S

H treat H S M S VS M S M

, 4 5 6 7 8 9 10

, 4 5 6 7 8 9 10

, 4 5 6 7 8 9 10

for low, medium and high heterogeneity respectively, using the formula =
λ

−( )OS log u

e

( ) 1
2LP

, with u a random num-
ber from the uniform distribution and 𝜆 equal to 0.00002. The conditional hazard ratio exp(βtreat) was fixed to 0.8. 
The true SG for the treated SGi was generated from the OS outcome as produced by the linear predictors for Zi = 1 
and 0: | = = | = − | =SG Z OS Z OS Z( 1) ( 1) ( 0)i i i i i i . From this, the corresponding average true SG, i.e. the “true 
ATE” SG, and the variance of the true SG, i.e. the “true variance” V, is calculated. The censoring status of the sub-
jects’ survival was drawn from a Binominal distribution given the probability of being censored 

⁎ ⁎~p c Binom p: ( )i .

Case study data.  Patients were collected from the Belgian Cancer Registry (BCR), a population based cancer 
registry. We used ICD-10 codes (C18 up to and including C20) to select 10426 metastatic colorectal patients (sta-
dium IV carcinoma) diagnosed between 2006 and 2014 with vital status information updated until July 1, 2017 
(Table 1). Patients were classified in five groups according to their targeted treatment assignment: 2784, 845, 308 
and 31 patients received bevacizumab, cetuximab, panitumumab, and aflibercept respectively. 6458 patients were 
not treated with the targeted medicine and were classified as the control group (irrespective of radiotherapeutic 
and/or chemotherapeutic treatments). Of these five groups, 26% (731), 15% (127), 11% (35), 52% (16) and 15% 
(965) had censored survival, respectively.

OS, the RCT’s primary endpoint, was used as the main indication of treatment effect. Selected variables were 
taken from the full standard set of variables nationally collected by the BCR and Inter Mutualistic Agency, which 
were further limited for relevance by BCR oncologists.

The data set consisted of (a) the patient’s OS and censoring status; (b) (historical) treatment paths i.e. radio-
therapeutic and/or chemotherapeutic treatment and treatment with the four targeted medicines; and (c) patient 
and tumour characteristics, i.e. age, sex, tumour differentiation grade, topography, tumour location (left/right), 
total amount of tumours, WHO performance score at diagnosis and TNM classification. Multiple imputation was 
used for handling missing data for PS-relevant variables assuming data was missing completely at random20–23.

Analysis on simulated data.  Using the data-generating process described above, three types of heteroge-
neity were simulated by using the regression coefficients denoting very weak to very strong impact on treatment 
selection and survival, which were iterated 1000 times. For each of these heterogeneity types (low, medium and 
high), three factors were varied: the proportion of patients treated (given no censoring), the proportion of out-
comes censored (given 20% of patient treated) and the number of nearest neighbours used in matching (given 
20% of patient treated and 20% of outcomes censored). (See Supplementary Materials for more information). For 
all these scenarios and datasets, the PS is estimated using a logistic regression model3,4, with selected observed 
variables being those affecting the survival time (X3 − X10)16.The three PS NN matching techniques (k-NN, 

Product PS NN techn. ATE (SG s, months) V̂ V s var V( )s C

Bevacizumab 
(2784 patients)

1:5 8.00 567.51 310.21 2.45e + 5 4.6%

weighted 1:5 7.97 566.04 312.30 2.51e + 5 4.6%

5 bootstrap 7.39 600.79 282.97 2.35e + 5 5.2%

Cetuximab  
(845 patients)

1:5 7.38 477.96 261.86 1.54e + 5 1.8%

weighted 1:5 7.31 482.54 264.88 1.56e + 5 1.8%

5 bootstrap 6.33 534.84 293.23 2.18e + 5 2.5%

Panitumumab 
(308 patients)

1:5 11.25 359.27 282.25 2.48e + 5 1.6%

weighted 1:5 10.96 329.42 309.92 2.60e + 5 1.6%

5 bootstrap 9.71 453.27 276.24 2.75e + 5 1.6%

Aflibercept  
(31 patients)

1:5 2.28 323.71 424.96 3.16e + 5 23%

weighted 1:5 2.56 320.35 428.04 3.32e + 5 23%

5 bootstrap 3.18 340.35 337.58 2.50e + 5 19%

Table 1.  Outcomes for each treatment resulting from the different NN PS matching techniques (k = 5).
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weighted k-NN and complex bootstrapping described above) are performed to estimate the STE, i.e. the esti-
mated subject-specific gain in survival SGi

s, and STE variance Vi
s for each treated unit i ∈ T, given by formula (4 

and 5). These are then investigated for the different PS NN methods by calculating their means over all units, 
SGs the mean STE) and V s (the mean STE variance), and comparing the latter with the simulated “true vari-

ance” V. We propose the PS NN method with the smallest relative difference = −δ V V( )
V

svar )/V the best estima-
tor of the true variance. Lastly, the variance of V s, i.e. var(Vs), is compared between the PS NN methods, as well 
as the proportion of patients subject to the label-censoring problem as defined by the rules of formula (4)-(5). 
These analyses were carried out across the 1000 iterations of the Monte Carlo simulation conducted in R. 
Therefore, results of these analysis are reported as averaged values over the iterations.

Simulation Results
The following section describes the results of the label-censoring problem and the variance estimations for the 
three PS NN methods on the simulated datasets with low, medium and high heterogeneity.

Impact of number of units matched.  The relative difference δvar between the true variance V and the 
mean estimated STE variance V s together with the resulting variance of the STE variance var(Vs) and the propor-
tion of labels censored are reported in Fig. 1 for varying amount of NN units k considered during matching. The 
three panels show the different levels of heterogeneity.

As expected, the amount of predicted labels that are censored decrease with increasing amount of matched 
units k considered during the three PS NN matching methods for all heterogeneity sets, this at a similar pace 
until k = 5. Hence all methods perform equally well for solving the label-censoring problem, regardless of 
heterogeneity.

Similarly, no difference is found between the methods for estimating variance in low heterogeneous groups 
unless for computational complexity using bootstrapping. However, for increasing heterogeneity, we observe the 
bootstrap method to have less accurate predictions of variances, showing higher relative differences δvar although 
lower variances of V s for small k. Hence, for high heterogeneity the bootstrap method would be inferior to the 
k-NN matching methods based on both accuracy and computational complexity, while for low heterogeneity the 
bootstrap method is inferior on computational complexity alone.

Impact of proportion of outcomes censored.  The relative difference δvar between the true variance V 
and the mean estimated STE variance V s and the resulting variance of the STE variance var(Vs) are reported in 
Fig. 2 for varying amount of outcomes OS censored. The three panels show the different levels of heterogeneity.

We see the relative difference δvar to be quite unaffected by the proportion of OS outcomes censored for all 
heterogeneity sets. Hence, the estimation of V s remains constant, even though increased outcomes censored 
means less units j ∈ C(i) contribute to the estimation of Vi

s for every unit i ∈ T. However, we can verify that this has 
an effect on the accuracy of this estimation, because the variances of V s have an increasing trend for low hetero-
geneity. This trend disappears for higher heterogeneity because of both δvar and especially var(Vs) fluctuate. For all 
levels of heterogeneity, the bootstrap method would be inferior to the k-NN matching method based on compu-
tational complexity.

Impact of proportion of patients treated.  The relative difference δvar between the true variance V and 
the mean estimated STE variance V s and the resulting variance of the STE variance var(Vs) are reported in Fig. 3 
for varying amounts of patients treated in the population. The three panels show the different levels of 
heterogeneity.

Figure 1.  Monte Carlo simulation results in function of the number of NN matched (given 20% of patient 
treated and 20% of outcomes censored) for (a) low heterogeneity; (b) medium heterogeneity and (c) high 
heterogeneity.
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As expected, δvar increases and becomes more uncertain (V s variance increases) for increasing proportion of 
treated patients in all heterogeneity sets, as the control group C (the pool to which treated units are matched) 
becomes smaller. No difference is found between the different methods, except for a slightly higher V s variance 
for low heterogeneity. However, as for each proportion of treated units a different linear predictor was simulated, 
affecting the OS outcome of the dataset, we see δvar and V s variance fluctuates, especially for high heterogeneity. 
Therefore, results for δvar for the different PS NN methods are inconclusive.

Case Study
In this section, the performance of the three different PS NN techniques are examined on a case study of meta-
static colorectal cancer patients treated with bevacizumab, cetuximab, panitumumab or aflibercept as a targeted 
medicine. Numerical results of the one-by-one, one-by-25 (weighted) and 25-bootstrap PS NN matching tech-
niques are depicted in Fig. 4 and Table 1.

The results show that the three methods are stable and concordant. Only for the aflibercept case, with a small 
treated population (31) and high amount of survival censoring (52% or 16 out of 31), we observe a difference 
between the k-NN techniques and the bootstrap method. Specifically, the censoring problem reduces dramati-
cally with increasing k with lower estimated V s and V s variance for the bootstrap method as opposed to the k-NN 
techniques.

Discussion
Bootstrapping, a method commonly used to accurately estimate variance, is rarely used together with PS match-
ing. In this Monte Carlo simulation-based study, we examined the performance of the complex bootstrap method, 
as described by Austin (2014), to estimate binary treatment response and variance in the domain of oncology. 
Specifically, the subject-specific survival gain (that is, the individual treatment effect) and its variance together 
with its ability to mitigate the problem of label-censoring, obtained from the individual treatment effect as a 
binary treatment response label, were the main factors under investigation. The Monte Carlo study was based 

Figure 2.  Simulation results in function of the proportion of OS outcomes censored (given k = 15 NN used 
in matching and 20% of patients treated) for (a) low heterogeneity; (b) medium heterogeneity and (c) high 
heterogeneity.

Figure 3.  Simulation results in function of the proportion of patients treated (given k = 15 NN used in 
matching and 0% of outcomes censored) for (a) low heterogeneity; (b) medium heterogeneity and (c) high 
heterogeneity. The error bars have been omitted for clarity.
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on simulated datasets containing 1000 patients with varying levels of heterogeneity found in real world patient 
populations. Counterintuitively, we found that the estimation of survival gain variance in patient populations 
with a high patient heterogeneity does not benefit from using the complex bootstrapping method instead of 
(weighted) k-NN. Indeed, we expected the relevant matches to be small for increasing k and increasing heteroge-
neity, implying that k-NN PS matching would contain a large set of irrelevant matches for large k, as opposed to 
the complex bootstrapping method, which always matches a treated patient to the one closest control patient. As a 
consequence, while also taking into account the computational complexity we found the bootstrap method to not 
show to favourable results even for high heterogeneous patient populations. Additionally, no major differences 
were found between the k-NN and weighted k-NN method, because the resulting weights were approximately 
equal to one in most cases of the simulated data. While it can be argued that this behaviour would change if one 
chooses a value of the parameter of the exponential distance function that is better suited to the data at hand, 
we note that this parameter cannot be tuned in practice because, as opposed to that in simulation study, the real 
variance is unknown before estimation.

Applying these methods to four colorectal cancer treatments with varying amount of patients treated and 
unobserved outcomes, we found all three PS methods to be stable and concordant. From the analysis, we can 
conclude that the computationally cheapest method, being k-NN PS matching, should be used in most of the 
cases. However, for the aflibercept case, where a small amount of patients are assigned to the treatment while the 
majority of survival times are censored, we did observe the bootstrap method to have favourable estimations. 
This result was expected because bootstrapping is a statistical method often used for estimating variance in fairly 
small datasets13.

Note that some concerns may arise when using bootstrapping in conjunction with PS matching in observa-
tional studies. First, one specified PS model was used for each resampled control group in the analysis of this 
study, which may be inappropriate in high heterogeneous patient populations. However, identifying the best fitted 
model for each bootstrapped sample would be highly unpractical. Second, for comparison reasons, a low number 

Figure 4.  Case study comparison of (weighted) k-NN and bootstrap matching for (a) bevacizumab (2784 
treated patients), (b) cetuximab (845 treated patients), (c) panitumumab (308 treated patients), and (d) 
aflibercept (31 treated patients). Shown are the number of SG outcomes being censored (top), the mean subject-
specific treatment-effect (STE) variance (middle) and the variance of the STE variance (bottom).
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of bootstrap samples was used equal to the number of matched control units in k-NN. Although this amount 
should provide a decent estimate13, a higher amount would be recommended in observational studies13,23,24.

Overall, given these findings, we suggest that the complex bootstrap method, while being computationally 
more expensive, should not be used for estimating subject-specific survival gain in large cohorts of treated and 
non-treated patients. However, this most computationally expensive method might show to be necessary when 
considering small patient populations with long-term and largely unobserved treatment effects.

Data availability
The case study data that support the findings of this study are available from the Belgian Cancer Registry but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permission 
of the Belgian Cancer Registry.
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