
1Scientific RepoRtS |          (2020) 10:711  | https://doi.org/10.1038/s41598-020-57631-5

www.nature.com/scientificreports

Sensing mechanism of a ratiometric 
near-infrared fluorescent 
chemosensor for cysteine 
hydropersulfide: Intramolecular 
charge transfer
Xiaofei Sun1, Aihua Gao2 & Hongxing Zhang1*

Previous studies have shown that the cysteine hydropersulfide (Cys-SSH) as the sulfur donor is crucial 
to sulfur-containing cofactors synthesis. Recently, a selective and sensitive near-infrared ratiometric 
fluorescent chemosensor Cy-DiSe has been designed and synthesized to detect Cys-SSH spontaneously. 
Herein, by means of the density functional theory (DFT) and time-dependent density functional 
theory (TD-DFT) approaches, the sensing mechanism has been thoroughly explored. According to our 
calculations, the experimental data have been reproduced. The results indicate the intramolecular 
charge transfer (ICT) is the reason for changes in fluorescence wavelengths. Compared with the 
chemosensor Cy-DiSe, the larger energy gap of Cy induced by ICT mechanism leads to the blue-shift 
of the absorption and emission spectra, which guarantees that Cy-DiSe can become a ratiometric 
fluorescent chemosensor to detect Cys-SSH.

As the widespread sulfur-containing biomolecules, reactive sulfur species (RSS) are essential in signal transduc-
tion and antioxidant physiological processes1,2. Among which, cysteine hydropersulfide (Cys-SSH), as the main 
source of hydropersulfide derivatives, is crucial to the synthesis of sulfur-containing cofactors, activating or inac-
tivating enzyme activities, modulating cellular signaling, and regulating the cellular redox equilibrium3–6. Thus, it 
is important to obtain the concentration of intracellular Cys-SSH in real-time and in situ.

Compared with other biological detection technologies, fluorescent chemosensors have been exploited as the 
indispensable technique for detecting a variety of intracellular reactive species, due to their apparent advantages 
such as less invasiveness, operational simplicity, high sensitivity and selectivity7–20. Among these studies, ratiom-
etric fluorescent chemosensors have attracted enormous attentions because they are able to function regardless 
of the external interferences, such as the concentration and polarity of solution, optic pollution and biological 
auto-fluorescence interference. Up to now, a mass of ratiometric fluorescent chemosensors have been synthesized 
by chemists16,17,21–28. It has been demonstrated that they can quantitatively detect bioactive molecules both in 
vitro and in vivo17,24,25,28–30. To the best of our knowledge, attentions are mainly focused on the novel synthesis of 
fluorescent chemosensors, and most of the sensing mechanisms are based on speculation17,24,25,28–30. Nevertheless, 
explorations on the sensing mechanisms of fluorescent chemosensors are also essential to design more effective 
fluorescent chemosensors. More importantly, with the help of computational chemistry, the relevant photophys-
ical process and detailed sensing mechanism for fluorescent chemosensors can be comprehensively investigated.

Until now, numerous sensing mechanisms have been proposed and elucidated for designing fluorescent 
chemosensors, including the intramolecular charge transfer (ICT)17,22,30–36, the photoinduced electron trans-
fer (PET)8,9,37–40, the excited state proton transfer (ESPT)16,41–45, and the fluorescence resonance energy transfer 
(FRET)46–50. Thereinto, ICT mechanism is usually adopted to design the ratiometric fluorescent chemosen-
sors17,21,22,29,34,51,52. An ICT-based ratiometric fluorescent chemosensor can lead to the fluorescence spectrum 
displacement by enhancing or suppressing such an ICT process accompanying with partial charge transfer7,32,53.
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Recently, Han et al.17. developed a near-infrared (NIR) ratiometric fluorescent chemosensor Cy-DiSe, which 
was designed according to the ICT mechanism, to detect Cys-SSH. Upon the detection of Cys-SSH, obvious 
changes in the spectra can be observed. The maximum value of absorption spectrum changes from 790 nm to 
614 nm, while the maximum emission spectrum exhibits blue-shift from 797 nm to 749 nm. As shown in Fig. 1, 
after adding Cys-SSH to Cy-DiSe, a two-step reaction process occurs. Based on the reduction of diselenide, the 
intermediate is formed instantly, then through the intramolecular cyclization, the five-membered cyclic sele-
nocarbonate is removed and the elimination product Cy is obtained ultimately. The authors only propose the 
reaction mechanism of modulating fluorescence changes, while the sensing mechanism still needs to be further 
clarified.

To elucidate the concrete sensing mechanism, we have carried out calculations based on the density functional 
theory (DFT) and time-dependent density functional theory (TD-DFT) approaches. We investigate the absorp-
tion and emission properties of Cy-DiSe and Cy involved in the sensing process. First, the ground (S0) and excited 
(S1) state geometries of the two molecules are optimized. Then, based on the optimized structures, the electronic 
transition energies, oscillator strengths, as well as the frontier molecular orbitals (FMOs) are analyzed. Besides, 
the DCT and Δr indexes54–56, which can be adopted to measure the charge-transfer length and the hole-electron 
distance, are also provided to verify the ICT quantitatively. Our theoretical calculations not only reveal the ICT 
sensing mechanism, but also illustrate the reason why Cy-DiSe can serve as a ratiometric near-infrared fluores-
cent chemosensor for Cys-SSH.

Results and Discussion
Optimized geometries. The galactose group in Cy-DiSe enables it to target the liver, while it is speculated 
not to influence the relevant fluorescent properties. Therefore, the galactose group is replaced by methyl group for 
the sake of simplification. By adjusting the position of two indole rings in the cyanine skeleton, three optimized 
structures of chemosensor Cy-DiSe, namely, a, a1 and a2 (shown in Fig. S1), are obtained at the ground state. The 
energy of a is 0.10 eV and 0.19 eV lower than that of a1 and a2, and a is chosen as the most stable configuration 
for the following research. The optimized ground and excited state geometries of the Cy-DiSe and its elimina-
tion product Cy are displayed in Fig. 2. The atomic coordinates of these structures are provided in the electronic 
supplementary information (ESI). In the ground state, the calculated C2–N3 bond length and C1–C2–N3–C4 dihe-
dral angle of Cy-DiSe are 1.44 Å and 90.9°, respectively. While in the excited state, the corresponding values are 
1.44 Å and 89.8°, which are similar to the ground state. There is no obvious difference in geometries between the 
ground and excited states for Cy-DiSe. However, a noticeable change in the steric configuration of Cy has been 
observed. The bond length of C2’-N3’ is 1.36 Å in the ground state, which is lengthened to 1.41 Å in the excited 

Figure 1. Proposed reaction mechanism for Cys-SSH detection.
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state. Simultaneously, Cy exhibits significant conformational rotation with the dihedral angle of C1’-C2’-N3’-C4’ 
decreasing from 143.9° to 105.6° upon excitation.

Absorption property analysis. Based on the optimized ground state structures, the low-lying singlet elec-
tronic transition energies and the corresponding oscillator strengths as well as the transition compositions of 
Cy-DiSe and Cy have been calculated and summarized in Table 1. In the experiment17, the initial absorption peak 
of Cy-DiSe lies in 790 nm. The addition of Cys-SSH results in a significant blue-shift, that is, with the increase 
of Cys-SSH concentration, the absorption peak at 790 nm gradually decreases in its height, while an increase of 
the new absorption peak at 614 nm is observed. The lowest electronic transition energies of Cy-DiSe and Cy have 
been calculated and shown in Table 1. Among all the calculated results, only the absorption spectrum of Cy-DiSe 
fails to be accurately reproduced because of the strong overestimation on the lowest excitation energy, regardless 
numerous methods have been tested (shown in Table S2). This result, though exhibiting difference comparing 
to experiment, is consistent with numbers of previous theoretical studies about cyanine57–61. The systematic and 
large overestimation of the lowest singlet excitation energy has been attributed to the difficulty of capturing the 
differential electron-correlation effects between ground and excited states, no matter what functionals, basis sets, 
or ground state geometries57–61 have been chosen. In fact, it is one of the theoretical signatures of cyanine that the 
obtained transition energy is rather insensitive to the selection of a specific (pure or hybrid) exchange-correlation 
functional59,60. It should also to note that, although the lowest singlet excitation energy is overestimated, the 
geometries and vibrational signatures in this study are accurate60,61. For Cy-DiSe, the first singlet-transition 
(S0 → S1) is the dominant transition with the largest oscillator strength of 2.2938, which is mainly assigned to 
the highest occupied molecular orbital (HOMO) → the highest occupied molecular orbital (LUMO). Similarly, 
the calculated results reveal that an intense S0 → S1 excitation with the largest oscillator strength of 2.0955 as the 
primary transition corresponds to HOMO → LUMO for Cy.

Figure 3 displays the calculated frontier molecular orbitals for Cy-DiSe and Cy, so as to reveal the blue-shift 
of the emitted fluorescence after adding Cys-SSH. The MO distributions in HOMO for the two molecules are 

Figure 2. Optimized structures of Cy-DiSe and Cy in the ground (a,c) and excited (b,d) states, respectively.

Compound
Electronic 
transition

Energy 
(nm/eV)

Experimental 
absorption (nm/eV) f Composition CI

Cy-DiSe S0 → S1 630/1.97 790/1.57 2.2938 HOMO → LUMO 98.2%

Cy S0 → S1 566/2.19 614/2.02 2.0955 HOMO → LUMO 99.9%

Table 1. Comparison of experimental and calculated absorption at the TD-DFT/B3LYP/6-311 G(d) level.
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delocalized over the conjugated chain of cyanine, while the LUMO for both molecules share the similar distribu-
tion with that of HOMO. At the same time, the increase of the MO distribution on group E (see Fig. 1) accompa-
nying with HOMO → LUMO transition implies that the S1 state of Cy own the ICT character. Figure 3 shows that 
the elimination of diselenide group leads to an increase of LUMO energy of Cy. Therefore, the larger energy gap 
of Cy induces the spectral blue-shift in contrast with Cy-DiSe. Such large obvious blue-shift between the spectra 
of Cy-DiSe and its elimination product Cy is essential for Cy-DiSe to act as a ratiometric fluorescent chemosensor 
for Cys-SSH.

Molecular orbital compositions and indexes. In order to quantitatively describe the ICT character, 
atoms in both Cy-DiSe and Cy are categorized into five parts (A, B, C, D and E), respectively, among which the 
cyanine skeleton is subdivided into parts A, B and C (shown in Fig. 1). The contribution of each part to the FMOs 
is calculated based on the ground state and the corresponding results are listed in Table 2. Neither Cy-DiSe nor 
Cy exhibits charge transfer between HOMO and LUMO on parts B and C. However, compared with Cy-DiSe, an 
obvious charge transfer occurs on one of the indole ring A from cyanine skeleton of Cy. An electron transition 
is observed from 26.360% on HOMO to 19.083% on LUMO. Besides, for part D of Cy-DiSe and Cy, the MO 
distribution decreases about 3% from HOMO to LUMO. More importantly, part E of Cy exhibits obvious charge 
transfer compared to Cy-Dise with a MO distribution difference at around 9% between HOMO and LUMO, while 

Figure 3. Calculated frontier molecular orbitals HOMO and LUMO in the absorption of Cy-DiSe and Cy, 
respectively.

Compound MO

Composition (%)

A B C D E

Cy-DiSe
HOMO 22.436 49.340 22.170 5.425 0.629

LUMO 23.433 49.555 23.620 0.804 2.588

Cy
HOMO 26.360 46.248 21.715 4.901 0.776

LUMO 19.083 48.203 21.367 1.379 9.969

Table 2. Molecular orbital compositions in S0 state geometries.

https://doi.org/10.1038/s41598-020-57631-5


5Scientific RepoRtS |          (2020) 10:711  | https://doi.org/10.1038/s41598-020-57631-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

in condition of Cy-DiSe, only about 2% is increased. From the results above, one can conclude that partial charge 
transfer from cyanine skeleton to methyl amino group exists in Cy upon excitation. Therefore, the S1 state of Cy 
shows the relatively distinct ICT character.

In addition, a quantitative analysis is performed to measure the hole-electron distance and the charge-transfer 
length by calculating the two indexes, namely Δr and DCT

56. The calculated results of Δr and DCT for Cy-DiSe 
and Cy are listed in Table 3, accompanying with the transferred charge (qCT) between the donor and acceptor 
groups. The values of Δr and DCT are larger, the characteristic of charge separation is more apparent, that is, the 
ICT character is more significant. For Cy-DiSe, the small values of Δr and DCT (about 0.5 Å) imply that there is 
almost no ICT character. Compared with Cy-DiSe, Cy exhibits the relatively obvious ICT character, which can be 
verified by the larger values close to 1 Å of Δr and DCT.

Emission property and sensing mechanism. According to the viewpoint of analytical science, the flu-
orescent emission of a chemosensor is more sensitive for detection than the corresponding UV-Vis absorption62. 
Thus, the fluorescent characters of Cy-DiSe and its elimination product Cy are investigated to verify the potential 
of Cy-DiSe as a ratiometric fluorescent chemosensor for Cys-SSH. The sensing mechanism can thus be under-
stood better. According to our calculations, all the involved excited states are the first singlet excited states. The 
optimized S1 state geometries of Cy-DiSe and Cy are displayed in Fig. 2, and the corresponding atomic coor-
dinates are supplied in the ESI. Then, the emission properties of the two molecules are investigated using the 
TD-DFT method based on the optimized excited state structures. Table 4 shows their low-lying singlet electronic 
transition energies, oscillator strengths as well as the transition compositions and the relevant FMOs for the 
emission are given in Fig. 4.

As shown in Fig. 4 and Table 4, the calculated emission wavelengths of Cy-DiSe and Cy are in agreement with 
the experimental measurements. For Cy-DiSe, the calculated emission wavelength is 772 nm and the experi-
mental result lies in 797 nm. With the addition of Cys-SSH, the wavelength in experiment blue-shifts to 749 nm, 
while the calculated emission wavelength of Cy is 725 nm. Besides, for both experimental and calculated results, 
the emission spectrum of Cy all shows a blue-shift of about 50 nm compared with Cy-DiSe, which ensures that 
Cy-DiSe can act as the ratiometric fluorescent chemosensor. As can be seen from Table 4 and Fig. 4, the main 
relaxation transition for Cy-DiSe and Cy is S1 → S0 transition assigned to LUMO → HOMO with the largest oscil-
lator strengths. Thus, the S1 state is a bright state which results in the strong fluorescence. Meanwhile, accompa-
nying with LUMO → HOMO transition, the charge transfer between the nitrogen group and the cyanine skeleton 
implies that the S1 state of Cy exhibits the ICT character. The larger energy gap of Cy leads to the emission spec-
trum blue-shift compared with Cy-DiSe. Based on the calculated emission results, Cy-DiSe is confirmed again 
that it can serve as a ratiometric fluorescent chemosensor on detecting Cys-SSH.

According to the above calculated results, the sensing mechanism of the chemosensor Cy-DiSe can be 
depicted as follows. The added Cys-SSH triggers the O = C–N single bond cleavage reaction in Cy-DiSe and its 
elimination product Cy is obtained subsequently, which leads to the change of the electron density distribution. 
The locally excited state is responsible for the strong fluorescence emission, at the same time, the S1 state of Cy 
possesses ICT between the cyanine skeleton and nitrogen group. The larger energy gap of Cy results in the spec-
trum blue-shift compared with Cy-DiSe. Thus, Cy-Dise can serve as an excellent candidate of ratiometric fluores-
cent chemosensor when the ICT process is triggered by Cys-SSH.

Conclusions
In summary, DFT and TDDFT methods have been applied to investigate the sensing mechanisms of the ratio-
metric fluorescent chemosensor Cy-DiSe and its elimination product Cy. The optimized geometries of the two 
molecules are obtained and there are no obvious differences between the ground and the excited states. It has 
been demonstrated that the theoretical calculated spectrum blue-shift, the strong fluorescence emission, and the 
large Stokes shift are all coincided with the experimental measurements. As the dominant transition for Cy-DiSe 
and Cy, S0 → S1 is assigned to HOMO → LUMO with the electron density mainly localized on the conjugated 
cyanine chain, which results in the strong fluorescence emission. Meanwhile, the partial intramolecular charge 
transfer from A and D groups of cyanine skeleton to the amino contained group E leads to the S1 state of Cy 
exhibit the ICT character. The calculated contribution results of each part to the molecular orbitals and the Δr 
and DCT indexes provide further evidences that the S1 state of Cy possesses the ICT character. Because of the 

Compound Δr (Å) DCT (Å) qCT (|e−|)

Cy-DiSe 0.45 0.57 0.40

Cy 0.80 0.89 0.48

Table 3. Computed hole-electron distance, CT length and transferred charge for the S1 states of Cy-DiSe and Cy.

Compound
Electronic 
transition

Energy 
(nm/eV)

Experimental 
emission (nm/eV) f Composition CI

Cy-DiSe S1 → S0 772/1.61 797/1.56 2.6054 LUMO → HOMO 99.6%

Cy S1 → S0 725/1.71 749/1.66 2.4889 LUMO → HOMO 99.4%

Table 4. Comparison of experimental and calculated emission at the TD-DFT/B3LYP/6-311 G(d) level.
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strong electron donating ability, amino can increase the LUMO energy of Cy, thus, the larger energy gap leads to 
the absorption spectrum blue-shift compared with Cy-DiSe. Accordingly, the calculated emission property results 
of Cy-DiSe and Cy are similar to those of absorption property. The large observable spectrum blue-shift supports 
that Cy-DiSe has the potential as a ratiometric fluorescent chemosensor when the ICT process is triggered by 
Cys-SSH. Our calculated results are helpful for the design of new ratiometric chemosensors with novel fluores-
cent properties based on the ICT sensing mechanism in future.

Methods
In the present work, all theoretical calculations are carried out by using the Gaussian 09 program package63. 
The ground and first excited state geometries are optimized using the DFT/TD-DFT methods, respectively. 
Afterwards, the absorption and emission properties are further investigated by the TD-DFT methods. All 
geometric optimization calculations are completed without constrains for symmetry, bonds, angles or dihedral 
angles. The vibrational frequency analyses are carried out to ensure that each optimized structure is the real 
minimum without imaginary vibration frequency. In order to find the appropriate functional and basis set, a 
series of different functionals and basis sets have been tested shown in Table S2. Taking into account of the accu-
racy and computation efficiency, the Becke’s three-parameter hybrid exchange functional with Lee-Yang-Parr 
gradient-corrected correlation (B3LYP functional)64–67 and the 6-311 G(d)68,69 are selected for the following the-
oretical calculations. In all calculations, the solvent effect is included using the conductor-like polarizable contin-
uum model (CPCM) with the dielectric constant of water (ε = 80.1) and the solute cavity is built with a special set 
of atomic radii as sug gested by Klamt70,71. Molecular orbital compositions and the indexes of Δr and DCT, which 
are used to indicate the hole-electron distance and the charge-transfer length, are calculated using the Multiwfn 
program72 to describe the ICT character quantitatively.
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