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A Mathematical theory of cortex-
Receptor Artificial Extension
You-Lu Xing

Many physiology experiments demonstrate that an organism’s cortex and receptor system can be 
artificially extended, giving the organism new types of perceptual capabilities. To examine artificial 
extension of the cortex-receptor system, I propose a computational model that allows new types of 
sensory pathways to be added directly to the computational model itself in an online manner. A synapse 
expandable artificial neuron model that can grow new synapses, forming a bridge between the novel 
perceptual information and the existing neural network is introduced to absorb the novel sensory 
pathway. The experimental results show that the computational model can effectively integrate sudden 
emerged sensory channels and the neural circuits in the computational model can be reused for novel 
modalities without influencing the original modality.

Many physiological experiments have demonstrated the expandability of an organism’s cortex-receptor system. 
Human L-pigment gene knock-in mice, which express a human long-wavelength-sensitive cone photopigment, 
acquired a new capacity for chromatic discrimination1. Rats that receive information from the infrared environ-
ment in their somatosensory cortex can perceive infrared light2. Monkeys have learned to discriminate artificial 
tactile stimuli in an active tactile exploration task, where a brain-machine-brain interface was used to deliver the 
stimuli to their primary somatosensory cortex3. The rat and monkey experiments imply that the sensing capa-
bility of an organism can be expanded artificially throughout the organism’s lifetime, differing from the natural 
way, where organisms acquire new experiences through genetic variation and those sensory transducers are fixed 
at birth4,5. To provide a mathematical theory for the cortex-receptor artificial extension, in this study, I build a 
computational model that can adapt to a novel sensory pathway in an online manner.

According to the experiments1–3, I divide the extension into two situations: (i) emergence of novel sensory 
receptors in an existing perceptual channel (Fig. 1a) and (ii) emergence of novel perceptual channels in the whole 
system (Fig. 1b).

Inspired by the phenomenon that novel experience can induce a formation of new spines in the brain6,7, a 
synapse expandable artificial neuron model that can grow new synapses to absorb extended sensory signal during 
learning is designed. The model is different from the classic artificial neuron model whose synapse structure is 
fixed8, which implies a non-extendibility for the novel sensory signals. Meanwhile, to enable the extension of the 
sensory pathway in the above two situations, a hierarchical and modularized computational structure inspired by 
the brain structure9 is designed. The synapse expandable artificial neuron can work on any level of the computa-
tional structure, which provides an adequate theoretical explanation to the cortex-receptor artificial extension.

Results
Computational framework. The computational framework for situation (i) (Fig. 2a) and situation (ii) 
(Fig. 2b) is based on a perception coordination network10, which is a hierarchical and modularized neural net-
work (see Methods section perception coordination network for algorithmic details). The framework includes 
the primary sensory areas, the unimodal association areas, and the multimodal association areas. The primary 
sensory areas contain feature neurons, that respond to elementary features, for example, color, shape, or syllable 
features. The unimodal association areas contain concept neurons, which combine the elementary features to 
represent unimodal object concepts; for example, in the visual channel, they combine information from color and 
shape neurons to represent object images. The multimodal association areas contain association neurons, which 
connect concept neurons in different perceptual channels, for example, connecting concept neurons in visual 
and auditory channels to associate the visual and auditory concepts of objects. Figure 2a shows an example of a 
novel type of receptor added to the retina of an organism, which receives stimuli synchronously with the inherent 
receptors. Impulses generated by both the novel and inherent receptors are transmitted to the primary sensory 
areas where they are integrated. Figure 2b shows a novel perceptual channel X being added to the network, which 
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then receives stimuli synchronously with the congenital perceptual channels. Impulses generated by both the 
novel and congenital channels are transmitted to the primary sensory areas and unimodal association areas, 
respectively, and are finally combined in the multimodal association area. The neural interactions launched by 
the association neurons, working as an adhesive, integrates new structure into the original structure to form a 
single system.

Synapse expandable artificial neuron model. To integrate novel sensory receptors or perceptual chan-
nels into the pre-existing neural network, I design a synapse expandable artificial neuron model (Fig. 3a). New 
synapses (shown in red) can be created to allow pathways for the novel receptor and novel perceptual channel. 
The expanded synapses on the dendrite (input) side can transmit signals received from new types of sensory 
receptors. Then, the new type sense has a signal pathway to the existing system; the expanded synapses on the 
axon (output) side can transmit signals from the existing system to the new type of sense channel. Then, the sys-
tem has a signal pathway to the new type sense channel. When new synapses are created, the activation function 
of the synapse expandable artificial neuron model evolves as follows,

θ θ= → =z f x w z z f x x w w( , , ) [ , ] ([ , ], [ , ], ) (1)0 0 0 0 1 0 1 0 1

where x0 and z0 are the input and output in the original synapses, respectively, w0 is the weights of the original 
input synapses, x1 and z1 are the input and output in the new synapses, respectively, w1 is the weights of the new 
input synapses, θ is the threshold of the artificial neuron. The implanted electrodes in the IR rat experiment2 can 
be regarded as another form of synapses. Then, a special case of the activation function can be used to explain the 
IR rat system, where x1 equals the input infrared light, w1 transforms the input infrared signal x1 to the microstim-
ulation which is sent to the neuron, and z1 is empty here because the IR rat system reuses the original output 
pathway of the neuron with high probability.

Novel receptor added to existing perceptual channel. Assume that a perceptual channel initially has 
n sensory receptors, that receive an n- dimensional vector = … ∈x x x x R( , , , )n

n
I 1 2 . After m new sensory recep-

tors, which receives an m-dimensional vector = … ∈+ + +x x x x R( , , , )n n n m
m

II 1 2 , are added to the perceptual 
channel, the dimension of the internal mapping space of the channel grows from Rn to +Rn m, and the learned 
concepts in space Rn are mapped to a higher-dimensional feature space +Rn m, as illustrated in Fig. 3b. For exam-
ple, assuming that novel receptors that receive very short wavelength light are added to a trichromatic color vision 
organism, the organism’s color perception will evolve from the original 3-dimensional system (R, G, B) to a 
4-dimensional system (R, G, B, X). Feature neurons are used to realize the mapping from space Rn to space +Rn m, 
and new synapses are created between the new sensory neurons and the feature neurons for the xII pathway, as 
illustrated in Fig. 3c. The main idea of the algorithm is as follows. When an input sample x x( , )I II  arrives, feature 
extraction is conducted using xI and xII. I assume that the feature vectors yI and yII are obtained through xI and 
xII, respectively. Then, yI tries to activate a feature neuron in its corresponding primary sensory areas. When some 
feature neuron is activated but no synapse exists between the feature neuron and the novel sensory neurons, new 
synapses are created between them and the weights of the synapses are initialized to yII, which means that 

=w w w( , )I II , where wI represents the original weights of the feature neuron, wII represents the original weights 
of the feature neuron which is initialized to yII. According to Eq. (1), the activation function of the feature neuron 
evolves as follows,

Figure 1. Two situations of extensions of the cortex-receptor system. (a) Emergence of novel sensory receptors 
in an existing perceptual channel. The figure illustrates a new type of cone cells being added to the retina, 
which is inspired by the experiment in which human L-pigment gene knock-in mice showed enhanced long 
wavelength sensitivity1. In this situation, novel receptors receive environmental stimuli and transmit signals 
synchronously with the pre-existing receptors, which means that the perceptual channel spectrum is expanded. 
(b) Emergence of novel perceptual channels in the whole system. The figure illustrates a new type of sensory 
channel X being added to the organism and the channel communicates with other parts of the cortex that are 
responsible for different sensory types. As a result, the organism gains the ability to sense X. This situation 
corresponds to the experiment in which rats were able to perceive infrared light through electrodes implanted 
in their cortex2 and monkeys were able to feel artificial tactile stimuli via a brain-machine-brain interface3.
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θ θ= → =z f x w z x x w yf( , , ) ([ , ], [ , ], ) (2)I I I II I II

where xI and wI are the input and weights in the original synapses, respectively. xII and yII are the input and ini-
tialized weights in the new synapses, respectively, θ is the threshold of the artificial neuron. z is the output of the 
neuron. Finally, a deeper feature reflecting the external world is formed in the network, and the feature neuron 
can perform calculations in the high dimension feature space (see Methods section dimensionality increasing 
process of the feature neurons for algorithmic details).

Novel perceptual channel added to whole system. Assume that the system has an inherent perceptual 
channel L, that receives an n-dimensional vector = … ∈x x x x R( , , , )n

nI I I I
1 2 . After a new perceptual channel X, 

which receives an m-dimensional vector = … ∈x x x x R( , , , )m
mII II II II

1 2 , is added to the system, a new internal 
mapping space emerges in the system. The system should associate concepts in the new space with the concepts 

Figure 2. Computational framework of extensions to the cortex-receptor system. (a) A novel sensory receptor 
is added to an existing perceptual channel. (b) A novel perceptual channel is added to the entire system.
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in the inherent space, as illustrated in Fig. 3d. Association neurons are used to associate the concepts in the two 
spaces by creating synapses between the concept neurons in channel X and the association neurons that already 
connect to some concept neurons in the inherent perceptual channel, as illustrated in Fig. 3e. This process is based 
on the Hebbian theory that neurons that fire together wire together. The main idea of the algorithm are as follows. 
When an input sample pair x x( , )I II  arrives, xI tries to activate some association neuron through the inherent 
perceptual channel. If the activated association neuron is not connected with any concept neurons in channel X, 
a new synapse is created between the association neuron and the concept neuron, which is activated by xII in 
channel X. According to Eq. (1), the activation function of the association neuron evolves as follows,

θ θ= → =z f x w z z f x x w w( , , ) [ , ] ([ , ], [ , ], ) (3)I I I I II I II I II

where z II is the new output synapse to channel X which provides a signal pathway from channel L to channel X. 
Meanwhile, z I can provide a reverse signal pathway from channel X to channel L now. xI and xII are the input 
from the concept neurons in L and X, respectively. w I and w II are the weights of the synapses from the concept 
neurons in L and X to the association neuron, respectively. These synapses are two independent groups. 
Subsequently, the system can respond to the new perceptual channel, which means that the system can respond 
to a new world by feeling X (see Materials and Methods section response modal expansion of the association 
neurons for algorithmic details).

Experiments. An experiment (Supplementary Fig. 1 shows the objects used) is designed to validate our 
computational model, which is called the CRAET (cortex-receptor artificial extension theory) network. Figure 4a 
shows the experimental setting, I first give the computational model a visual channel. To simulate the visual 
system evolving from achromatopsia to dichromatopsia and then to trichromatopsia, I initially give the visual 
channel a brightness receptor (corresponding to the Rods) that receives grayscale object images, and let the net-
work learn object shapes. After a period of learning with all objects, I provide the visual channel with new green 
and blue color receptors (corresponding to the M-Cones and L-Cones) so that it additionally receives the green 
and blue light, respectively. Now, the network can receive a grey + green + blue image of the object. Then, I let the 
network perceive all objects again to learn color information of each object. After that, I add a red color receptor 
(corresponding to the S-Cones), allowing it to receive the red light. The network can now receive a Grey + RGB 
image of the object. Similarly, I let the network perceive all objects another round to update its color feature 
neurons. Next, I introduce an auditory channel that enables audible sound input to the network. At this time, 
visual and auditory input can be received simultaneously. I let the network learn the Chinese name of each object 
by receiving pairs consisting of images accompanied by the Chinese names of each object. After all objects are 

Figure 3. Computational solutions. (a) Synapse-expandable artificial neuron model. New synapses (shown in 
red) can be created to allow a pathway for novel perceptual receptors or channels. (b) Mathematical modelling 
of situation (i). After a new type of sensory receptor is added to an existing perceptual channel, the organism 
has a new way to perceive the environment. Consequently, the internal mapping space of the organism has a 
corresponding new dimension. Thus, the points that represent the learned concepts in the original low dimension 
feature space are mapped to a higher-dimensional feature space. (c) The dimensionality increasing process of 
the feature neuron. Feature neuron grows new synapses to absorb novel features. (d) Mathematical modelling 
of situation (ii). After a new perceptual channel is added to the entire system, the internal mapping space of the 
organism has a corresponding new space, and new concepts will be generated in this space. Finally, the concepts 
in the original space and the new space become associated with each other. (e) The response modal expansion 
process of the association neuron. Association neuron grows new synapses to absorb novel modality concept.
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learned, I add an ultrasonic receptor to the auditory channel and use ultrasonic sounds to name all objects again. 
Finally, a gustatory channel is added to the network. Pairs of image and taste samples are provided to the network 
simultaneously at this stage to let the network learn the taste of each object.

Figure 4b shows the neurons in the learned network that associate with concept pear. The top line shows the 
change of the network structure of the concept pear as the network acquires new visual receptors. Initially, the 
network receives only a greyscale image of the object and learns the shape of the object. After the green and blue 
color receptors are added, the network can receive certain object colors, and color feature neurons are created in 
the network. The visual concept neuron is then able to respond to color information. In this case, two colors are 
associated with the pear shape, one appears a little brighter and the other is somewhat darker. However, they are not 
easy to distinguish in this color space. After the red color receptor is added, the color feature neurons are mapped 
to a higher-dimensional space: the RGB color space. One color feature neuron becomes responsive to yellow, and 
another becomes responsive to green. Thus, the bright green pear and dark green pear become more easily distin-
guishable in the RGB color space: one is yellow, and the other is green. This gives trichromatic organisms an advan-
tage compared to dichromatic organisms. The middle line shows the change in the network structure of the concept 
pear after adding an auditory channel. On the left, the auditory channel which provides audible frequencies is added. 
On the right, the auditory receptor which provides ultrasonic frequencies is added. The association neuron connects 
the images and names (audible and artificial ultrasonic words) of the object correctly. The bottom line shows the 
change in the network structure of the concept pear after a gustatory channel is added. The artificial taste data of the 
pear contain sweet and sour flavors. The network learns these two flavors (sweet 0.67, sour 0.22) and (sweet 0.63, 
sour 0.14). The response modal of the associate neuron is expanded with the concept of taste. Figure 4c,d show two 
similar results. The experiment demonstrates the CRAET network can effectively integrate newly introduced sen-
sory receptors and channels in an online manner (Supplementary Fig. 2 shows more learning results).

Inspired by the phenomenon found in the IR rat experiment in which a new receptive field was embedded in 
S1 neurons without hijacking their original receptive field2, I designed a modality embedding experiment. 

Figure 4. Experiment. (a) Experimental settings. (b–d) Neurons in the learned network that associate with 
concept pear, banana and apple. The icons next to the neuron are the objects to which the neuron maximally 
responds. Thresholds for neurons to be activated are set as follows: in the visual channel, thresholds of the shape 
and color neurons are 1/4 times the L2 norm of their weights; in the auditory channel, thresholds of the audible 
and ultrasonic syllable neurons are 200 and 9, respectively; in the gustatory channel, thresholds of the basic 
flavor neurons are 0.015.
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Figure 5a shows the computational modelling. The network receives a pair of samples that includes an exogenous 
signal xe to be embedded and a guidance signal xg , which leads xe to the host neuron. The guidance signal first 
transmits in ascending fashion in the reference channel to activate some association neuron. Then, the activated 
association neuron transmits signals in descending fashion to the host area, where the new modality is embedded, 
to activate some host neuron used to absorb the novel modality. If the host neuron does not have synapses con-
nected to the novel modal signal pathway, new synapses will be created, and their weights will be initialized as 

=w xf ( )eexog  to store the pattern of the exogenous signal xe, where fexog(·) is the feature extraction function of the 
novel modality. If the host neuron already has synapses connected to the novel modal signal pathway, the weights 
of the synapses are updated using the competitive learning rule, δ= + −w w x wf( ( ) )eexog , where δ is the learn-
ing rate (see Methods section modality embedding for algorithmic details).

Figure 5b shows the experimental setting, where an ultrasonic modality is embedded into the neurons in the 
shape feature primary sensory area using a taste sample as a guidance signal. Figure 5c shows two examples of 
embedding results. In the results, the shape feature neurons are embedded with an ultrasonic modality without 
being deprived of their original receptive field. The ultrasonic modality reuses the vision-gustation circuit effec-
tively (Supplementary Fig. 3 shows more embedding results).

Discussion
In this study, a mathematical theory for the cortex-receptor artificial extension is studied. I design a synapse 
expandable artificial neuron mode to absorb novel information flow. A hierarchical and modularized computa-
tional structure is proposed to enable novel information flow be integrated in different concept levels. Meanwhile, 
I design different computational models for different types of neurons found in many physiological experiments 
including the feature neurons11, concept neurons12 and association neurons13 (see Methods section perception 
coordination network for different neuron models).

Currently, the computational mechanism is built only at the neuron level. The computational mechanism of 
the cortex and receptor extension at the large-scale neural circuit level should be studied. This raises an interesting 
question: can we design new modality feelings with electronic circuits and then integrate them into organisms? 
Regarding the question of whether organisms experience novel sensory inputs as a new distal sensory modality2, 
I feel the computational and behavioral dimensions of this question are extremely interesting avenues for future 
research, with particular potential to be studied in human subjects. Organisms’ cortex and receptor systems tend 
to become more complex over time; As more information arrives at the brains of the organisms, and in response, 
there is increasing number of information processing modes of the brain which seem to become increasingly 
complicated. The organisms are able to understand the real world more deeply. The brain-machine interface 

Figure 5. Modality embedding experiment. (a) Computational framework of the modality embedding.  
(b) Experimental settings. I set the gustatory channel as the reference channel and the visual channel as the 
target channel. The ultrasonic modality is embedded into the shape feature primary sensory area. (c) Examples 
of the embedding result. The shape feature neurons are embedded with an ultrasonic modality without being 
deprived of their original receptive field, which means the ultrasonic modality reuses the vision-gustation 
circuit effectively. Thresholds for neurons to be activated are set as follows: thresholds of the ultrasonic syllable 
neurons are 200 and 9, respectively; thresholds of the basic flavor neurons are 0.015.
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experiments2,3 showed the potential to expand a species’ normal perceptual range. Building up a corresponding 
computational theory will deepen our understanding about the extensibility of the central nervous system and 
the organism-machine hybrid intelligence. It seems clear from experimental results that we have not come close 
to exhausting the potential for incorporating novel sources of information into cortical processing modes14, this 
also raises a very interesting question: can we know or prove that we can already perceive all the dimensions of 
the world?

Methods
Perception coordination network. The perception coordination network is an online learning framework 
that aims to incrementally learn and bind concepts. As shown in Fig. 6, the network includes the primary sensory 
areas, the unimodal association areas and the multimodal association areas.

The primary sensory areas include feature neurons that respond to particular features, for example, shape 
features, color features, or syllable features. Feature neurons that respond to the same feature type are located in 
the same area α, and I use the set αN F  to represent them. As mentioned above, α can be the shape area b, the color 
area c, or the syllable area s. αNi

F  denotes feature neuron i in area α and σ=α wN { , }i
F

i i , where wi represents the 
weights and σi is the cumulative number of times the neuron has been activated. The activation function of αNi

F  is 
θ
θ

=





− ≤
− >

x
x w
x w

f ( )
1,
0,

i

i

, where θ is a parameter that controls the response range of the feature neuron.

The unimodal association areas include concept neurons, which connect the feature neurons to represent a uni-
modal concept, for example, to form visual concepts by connecting shape and color feature neurons, or to form 
words (auditory concepts) by connecting syllable feature neurons. Concept neurons with the same modality are 
located in the same area, β, and I use set βN C  to represent them. β can be a visual association area v, an auditory 
association area a, or some other sensory association area. βNi

C  denotes the concept neuron i in area β. The activation 
mode of the concept neuron is one of two types: order-independent activation mode and order-dependent activa-
tion mode. For example, a visual concept neuron has an order-independent activation mode because different 
sequences in the activation of shape and color feature neurons to which a visual concept neuron connects do not 
affect the activation of the visual concept neuron. In contrast, auditory concept neurons (for example, words) have 
an order-dependent activation mode because a word is composed of a sequence of syllables. Correspondingly, two 
types of circuit structure between a concept neuron and a feature neuron are defined as follows

Figure 6. Computational model of the perception coordination network. The hierarchical and modularized 
structure of the network is inspired by the brain’s structure. Note that the figure depicts only vision and audition, 
other sensations could also be included in the structure.
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where the arrows represent connections between neurons. Then, the activation function of βNi
C  is 

… =






= ≤ ≤α α α
α

f N N N N i n( , , , ) 1, 1, 1
0, else

F F
n
F i

F

1 2 , where feature neurons αN F
1 , αN F

2 , …, αNn
F  connect to βNi

C , and 

=αN 1i
F  means αNi

F  is activated. For the order-dependent activation mode, αN F
1 , αN F

2 , …, αNn
F  must be activated in 

sequence. The connection between concept neuron βNi
C  and feature neuron αN j

F  is denoted as 
ρ= β αc N N{ , , }i j i

C
j
F

i j( , ) ( , ) , where ρ i j( , ) is the cumulative number of times the connection is activated.
The multimodal association areas include association neurons, which connect the concept neurons in differ-

ent unimodal association areas, for example, they connect an image of an object represented by a visual concept 
neuron with its name, which is represented by an auditory concept neuron. The association neurons are stored in 
set NA, and Ni

A is used to denote the association neuron for i. There are four types of circuit structures between an 
association neuron and a concept neuron,

Each concept neuron in the circuit can activate the association neuron. Thus, the association neuron has a multimo-

dality activation mode, and the activation function of Ni
A is … =







= ∈ …β β β
β

f N N N N i n
else

( , , , ) 1, 1, {1, 2, , }
0,

C C
n
C i

C

1 2 , 

where the concept neurons βN C
1 , βN C

2 , …, βNn
C  connect to Ni

A, and =βN 1i
C  means βNi

C  is activated. The connection 
between concept neuron βNm

C  and another concept neuron βNn
C  through association neuron Ni

A is denoted as 
ρ= β βc N N N{ , , , }m i n m

C
i
A

n
C

m i n( , , ) ( , , ) , where ρ m i n( , , ) is the cumulative number of times the connection is activated.
Without loss of generality, in the following I use a pair of visual (an object image) and auditory (the name of 

an object) inputs to describe the method in detail.
When an image and voice (name) pair arrives, feature extraction is conducted first. Currently, the normalized 

Fourier descriptors of the object’s boundary d and the color histogram of the object h are used for visual features. 
The Mel-Frequency Cepstral Coefficients (MFCCs) of the syllables contained in the voice m are used for the audi-
tory features, where short-time energy and short-time zero crossing are used to extract the syllables from a voice 
wave. Then, a competitive learning process is executed among the feature neurons.

In the visual channel, a winner neuron Nb
Fb in the shape feature area and a winner neuron Nc

Fc in the color 
feature area are found using = −

∈
 d wN argminb

F

N N
i 2

b

i
Fb Fb

 and = −
∈

 h wN argminc
F

N N
i 2

c

i
Fc Fc

, where N Fb and N Fc are the 

sets of neurons in the shape area and color area, respectively. In the shape area, if − ≤d w wb b
2

1
4 2

, Nb
Fb is 

activated and updated using the winner-take-all principle: σ σ= + 1b b , σ= + −w w d w( )/b b b b ; If 
− >d w wb b

2

1
4 2

, the network recognizes d as a new feature and creates a new feature neuron to record it: 
= hN { , 1}new

Fb . Then, Nnew
Fb  is activated. A similar process is executed in the color area. Finally, the activated feature 

neurons in the shape area (assumed to be N f
F
b
b) and color area (assumed to be N f

F
c
c) transmit their activation signals 

to the visual unimodal association area.
In the auditory channel, dynamic time warping (DTW) is used to find the winner neuron for each syllable 

contained in the voice input: =
∈

m wN dtwargmin ( , )f
F

N N
i ji

s

j
Fs Fs

, where ≤ ≤i k1 , wj represents the MFCCs of syllable 

feature neuron j, mi is the MFCCs of the i-th syllable in the voice input, and there are k syllables in total in the 
voice input. If <m wdtw( , ) 200i fi

, N f
F
i
s is activated; otherwise, the network recognizes mi as a new feature and 

creates a new feature neuron to record it: = mN { , 1}new
F

i
s . Then, Nnew

Fs  is activated. Finally, the activated feature 
neurons in the syllable area (assumed to be N f

F
i
s, ≤ ≤i k1 ) transmit their activation signals to the auditory uni-

modal association area.
Meanwhile, self-organization is conducted among feature neurons using the competitive Hebbian rule 

(Supplementary Figs. 4–6 show examples of self-organization among feature neurons).

https://doi.org/10.1038/s41598-020-57591-w


9Scientific RepoRtS |          (2020) 10:765  | https://doi.org/10.1038/s41598-020-57591-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

When the visual unimodal association area and auditory unimodal association area receive the activation 
signals = =N N( 1, 1)f

F
f
F

b
b

b
b  and = = … =N N N( 1, 1, , 1)f

F
f
F

f
Fs s
k
s

1 2
, a unimodal-concept incremental learning pro-

cess is executed.
In the visual channel, if the activation signal = =N N( 1, 1)f

F
f
F

b
b

b
b  satisfies the activation function of a visual 

concept neuron N f
C
v
v, which means that the activation function of N f

C
v
v is =








= =
f N N

N N
( , )

1, 1, 1

0, else
f
F

f
F f

F
f
F

a
a

c
c a

a
c
c

, 

then N f
C
v
v is activated and the cumulative number of activations of the connection between N f

C
v
v and N f

F
b
b, N f

C
v
v and 

N f
F
c
c is increased by one. If the activation signal = =N N( 1, 1)f

F
f
F

b
b

b
b  does not satisfy the activation function of any 

visual concept neuron, the network assumes the current input is a new concept and creates a new visual concept 
neuron Nnew

Cv  to record it. Therefore, an order-independent circuit with Nnew
Cv , N f

F
b
b, and N f

F
b
b is introduced into the 

network. Then, Nnew
Cv  is activate. A similar process is executed in the auditory channel. Finally, the activated con-

cept neurons in the visual channel (assumed to be N f
C
v
v) and auditory channel (assumed to be N f

C
a
a) transmit their 

activation signals to the multimodal association area.
When the multimodal association area receives signals =N 1f

C
v
v  and =N 1f

C
a
a , the network first checks whether 

=N 1f
C
v
v  and =N 1f

C
a
a  can activate some association neurons. I assume that the association neurons in set Nv

A can 
be activated by =N 1f

C
v
v  and that association neurons in set Na

A can be activated by =N 1f
C
a
a . Next, the network 

activates the auditory concept neurons that connect to the association neurons in Nv
A and the visual concept neu-

rons that connect to the association neurons in Na
A. I use sets Nv

Ca and Na
Cv to represent these auditory concept 

neurons and visual concept neurons, respectively. Obviously, there are four possible combinations between set Nv
A 

and set Na
A.

When = ∅Nv
A  and ≠ ∅Na

A , the view of the current input of the object is new to the network, but the voice 
has been encountered previously and has been used to name some other views. However, the current object 
should look like the views symbolized by the visual concept neurons in set Na

Cv according to the current voice 
input. Now, the network asks the user a question: “I find the current input name N f

C
a
a has been used to call other 

views in Na
Cv; can it also represent the current input view?” If the answer from the user is positive, a connection is 

created between N f
C
v
v and N f

C
a
a through each association neuron in set Na

A; otherwise, the view N f
C
v
v is stored as a 

Type O circuit using a new association neuron.
When ≠ ∅Nv

A  and = ∅Na
A , the current voice input is new to the network, but the view of the current object 

has been encountered previously. However, the object should be named as symbolized by the auditory concept 
neurons in set Nv

Ca. Therefore, the network asks the user a question: “The object was called Nv
Ca previously. Is it 

also called N f
C
a
a?” If the answer is positive, a connection is created between N f

C
v
v and N f

C
a
a through each association 

neuron in set Nv
A; otherwise, the current input name N f

C
a
a is rejected by the network.

When ≠ ∅Nv
A  and ≠ ∅Na

A , both the view and the voice input have been encountered previously. Their 
coherence should be checked. When ∩ ≠ ∅N Nv

A
a
A , then N f

C
v
v and N f

C
a
a activate some association neurons in 

common. The current image/voice pair is consistent with some previous pairs. The cumulative number of activa-
tions of the connections between N f

C
v
v  and N f

C
a
a through the activated association neurons in common are 

increased by one to strengthen the association. When ∩ = ∅N Nv
A

a
A , it means the current combination of N f

C
v
v 

and N f
C
a
a is inconsistent with previous pairs. Therefore, the network asks the user a question: “The current input 

pair is inconsistent with previous pairs, is this pair an expected combination?” If the answer is positive, the con-
nections between N f

C
v
v and N f

C
a
a through the activated association neurons in common are created; otherwise, the 

current input pair is rejected by the network.
When = ∅Nv

A  and = ∅Na
A , the current combination of N f

C
v
v and N f

C
a
a has not been encountered previously. A 

new association neuron is created to associate N f
C
v
v and N f

C
a
a with a 1-to-1 circuit.

At this point, the entire learning process for the visual and auditory input pair is complete, and the network 
continues with the next input pair.

Dimensionality increasing process of the feature neurons. When novel receptors are added to an 
existing perceptual channel, feature neurons handle the signals from the novel receptors. As illustrated in Fig. 3c, 
new synapses will grow to connect the new sensory receptors, which means that the spectrum range of the feature 
neuron is broadened by the new receptors. I call it a dimensionality increasing process.

I denote = … ∈x x x x R( , , , )n
n

I 1 2  as the data received from the originally existing n sensory neurons, 
= … ∈+ + +x x x x R( , , , )n n n m

m
II 1 2  as the data received from the m new sensory neurons, =S Rn

I  as the original 
sensory space, and = +S Rn m

II  as the new sensory receptor space. During the dimensionality increasing process, 
two types of feature neurons can exist: type one consists of neurons that already completed the dimensionality 
increasing process, and type two is the neurons that have not completed the dimensionality increasing process. I 
use the sets αN F

I  and αN F
II  to represent the type one and type two feature neurons, respectively, and use 

∪=α α αN N NF F F
I II  to store the feature neurons in area α.

When an input sample =x x x( , )I II  arrives, feature extraction is conducted using xI and xII first, 
= =y x y xg g( ), ( )I I II II , where g(·) is the feature extraction function, and =y y y( , )I II  is the total number of fea-

tures in the current input sample x. Next, among the neurons in set αN F , a winner neuron is found through com-
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petition in the original sensory space SI, such that =
∈

α

α α
ˆD y wN argmin ( , )a

F

N N
jI

j
F F

, where = …ŵ w w w( , , , )j n1 2  represents 

the weight vector of αN j
F  in space SI, and function D(·,·) measures the similarity between the two variables. Among 

the neurons in set αN F
II , a winner neuron is found in the evolved sensory space SII, such that =

∈

α

α α
y wN Dargmin ( , )b

F

N N
j

j
F F

II

, 

where = … +ŵ w w w( , , , )j n m1 2  represents the weight vector of αN j
F  in space SII. Then, I check whether yI and y can 

activate the feature neurons αNa
F  and αNb

F , respectively, which requires calculating equations α yf ( )N Ia
F  and α yf ( )Nb

F , 
where αf Na

F (·) and αf Nb
F (·) are the activation functions of αNa

F  and αNb
F , respectively.

If =α yf ( ) 1N Ia
F  and =α yf ( ) 0Nb

F , then yI activates αNa
F  but y does not activate αNb

F . This implies that a familiar 
feature yI is accompanied by a novel feature in the unity form y that is not recognized by the network. As a result, 
the dimensionality increasing process should be applied to αNa

F :

σ σ
σ

= + = + −

=

w w y w

w w y

1, 1 ( )

( , ) (4)

a a a a
a

a

a a II

I

where σa represents the cumulative number of times that αNa
F  has been activated and wa is the weight vector of αNa

F . 
It is worth noting that Eq. (4) increases the number of synapses for a neuron. The weights of the new added syn-
apses are set to yII which causes αNa

F  to connect to the novel feature yII. Consequently, the response range of αNa
F  is 

broadened. Equation (4) denotes the dimensionality increasing process for a feature neuron.
When =α yf ( ) 1N Ia

F  and =α yf ( ) 1Nb
F , then yI activates αNa

F  and y activates αNb
F . Therefore, the input feature y 

is recognized by the network. In this situation, αNb
F  inhibits αNa

F , and αNb
F  is updated as follows:

σ σ
σ

= + = + −w w y w1, 1 ( )b b b b
b

b

When =α yf ( ) 0N Ia
F  and =α yf ( ) 1Nb

F , then yI does not activate αNa
F  but y activates αNb

F . The input feature y is 
recognized by the network, and αNb

F  is updated using the above equations.
When =α yf ( ) 0N Ia

F  and =α yf ( ) 0Nb
F , it means yI does not activate αNa

F  and y does not activate αNb
F . A new 

feature neuron =α yN { , 1}new
F  is created to record the input feature y. Then, αNnew

F  is activated.
Finally, the activation signal generated by the activated feature neuron is transmitted to the unimodal associ-

ation areas.

Response modal expansion of the association neurons. When a new perceptual channel X is added 
to the network, the association neurons handle the signals transmitted from X. As illustrated in Fig. 3e, new syn-
apses will grow to connect the concept neurons in channel X, which implies that the response modal of the asso-
ciation neuron is extended.

I denote = … ∈x x x x R( , , , )n
nI I I I

1 2  as the data received from the pre-existing perceptual channel L and 
= … ∈x x x x R( , , , )m

mII II II II
1 2  as the data received from the new channel X.

When an input sample pair x x( , )I II  arrives, xI and xII activate the concept neurons (the same as in Algorithm 
1, steps 2 and 3; therefore, I omit them here). Assume that the concept neurons Na

CL and Nb
CX  are activated in 

channels L and X, respectively. Then, Na
CL and Nb

CX transmit their activated signals to the multimodal association 
areas to activate the association neurons. Assume the association neurons in set NL

A are activated by Na
CL and the 

association neurons in set NX
A are activated by Nb

CX . Obviously, four combinations exist between set NL
A and set 

NX
A.

When = ∅NX
A  and ≠ ∅NL

A , then xI activates some association neurons but xII does not. That is, xI has been 
encountered previously, but xII is new to the network. The network obtains a new modality feature for the current 
object through channel X. The association neurons in NL

A should associate Nb
CX with Na

CL. Thus, a new connection 
is created between Nb

CX and Na
CL through each association neuron in set NL

A:

= ∈c N N N N N{ , , , 1}, where (5)m i n a
C

i
A

b
C

i
A

L
A

( , , )
L X

It is worth noting that Eq. (5) connects the concept neurons in channel X to the association neuron which was not 
previously able to respond to channel X. Thus, this process realizes the response-modal expansion process of the 
association neuron. Subsequently, the network can respond to channel X.

When ≠ ∅NX
A  and ≠ ∅NL

A , both xI and xII activate some association neurons, and xI and xII have been 
encountered previously. When ∩ ≠ ∅N NX

A
L
A , xI and xII activate some association neurons in common. The 

current input pair xI and xII is an encountered pair. Consequently, the cumulative number of activations of the 
connections between Na

CL and Nb
CX through the activated association neurons they have in common are increased 

by one to strengthen the association:

∩ρ ρ= + ∈where N N N1,a i b a i b i
A

L
A

X
A

( , , ) ( , , )
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when ∩ = ∅N Nv
A

a
A , the current input pair xI and xII is not an encountered pair. New connections are created 

between Na
CL and Nb

CX to bind them,

∪= ∈c N N N where N N N{ , , , 1},m i n a
C

i
A

b
C

i
A

L
A

X
A

( , , )
L X

when ≠ ∅NX
A  and = ∅NL

A , then xII activates some association neurons but xI does not. The association neurons 
in NX

A will associate Na
CL with Nb

CX . New connections are created between Na
CL and Nb

CX  through the association 
neurons in set NX

A:

= ∈c N N N where N N{ , , , 1},m i n a
C

i
A

b
C

i
A

X
A

( , , )
L X

when = ∅NX
A  and = ∅NL

A , neither xI nor xII activates any association neurons, and the concepts Nb
CX and Na

CL 
are new to the network. A new association neuron is created to connect Nb

CX and Na
CL with a 1-to-1 circuit.

At this point, the learning for the current input pair x x( , )I II  is complete, and the network continues with the 
next pair.

Modality embedding. To embed a new sensory modality in some particular neurons in an expected chan-
nel T, a guidance signal is needed to guide the new sensory input to a target neuron in channel T. Thus, the input 
format is x x( , )t g , where xt is the sample to be embedded and xg  is the guidance signal that will be fed into the 
guidance channel G.

When the network receives x x( , )t g , it uses the guidance signal xg  to find the target neuron in channel T that 
will absorb xt. Through channel G, some association neurons are activated by xg . Then, these association neurons 
activate the concept neurons to which they are connected in channel T, and subsequently, the concept neurons 
activate their feature neurons. The activated neurons in both channel G and channel T form a neural circuit that 
will be reused for the novel modality.

Assume that concept neuron Na
CT and feature neurons N F

1
T, N F

2
T, …, Nm

FT are activated in channel T. In the 
following, I choose feature neuron N f

FT  as the target neuron to be embedded with xt. The embedding can be 
divided into two situations: (1) N f

FT has not previously been embedded with the novel modality and (2) N f
FT has 

already been embedded with the novel modality.
For situation one, neuron Nf

FT creates new synapses to connect xt. This means that neuron N f
FT now has two 

sets of synapses: one is the original signal pathway, and the other is used to transmit the exogenous signals. The 
weights of these expanded synapses are initialized to xt,

=w w x{( ), ( )} (6)f f t

In the equation, I use the parentheses to separate the different sets of synaptic weights. Thus, the novel modality 
is embedded in the target neuron.

For situation two, the weights of the expanded synapses are updated with sample xt as follows:

σ σ
σ

= + = + −w w x w1, 1 ( )
(7)

f f f f
f

t f
II II II II

II
II

where w f
II represents the weights of the expanded synapses, and σf

II represents the cumulative number of times 
these synapses have been activated.

At this point, the embedding process for the current input sample is finished, and the network continues with 
the next input sample.

Data availability
Matlab code and data are available at https://github.com/cloudlee711/CREAT.
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