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free log-likelihood as an unbiased 
metric for coherent diffraction 
imaging
Vincent favre-nicolin1,2*, Steven Leake1 & Yuriy chushkin1

Coherent Diffraction Imaging (CDI), a technique where an object is reconstructed from a single (2D or 
3D) diffraction pattern, recovers the lost diffraction phases without a priori knowledge of the extent 
(support) of the object. The uncertainty of the object support can lead to over-fitting and prevents an 
unambiguous metric evaluation of solutions. We propose to use a ‘free’ log-likelihood indicator, where 
a small percentage of points are masked from the reconstruction algorithms, as an unbiased metric to 
evaluate the validity of computed solutions, independent of the sample studied. We also show how a 
set of solutions can be analysed through an eigen-decomposition to yield a better estimate of the real 
object. Example analysis on experimental data is presented both for a test pattern dataset, and the 
diffraction pattern from a live cyanobacteria cell. The method allows the validation of reconstructions 
on a wide range of materials (hard condensed or biological), and should be particularly relevant for 4th 
generation synchrotrons and X-ray free electron lasers, where large, high-throughput datasets require a 
method for unsupervised data evaluation.

Coherent Diffraction Imaging (CDI) is a technique that exploits the coherence properties of a light source, 
for instance, synchrotron generated X-ray beams, to reconstruct two- or three-dimensional objects from their 
diffraction pattern alone1–5. Such an approach can also be used with soft X-ray sources6 and coherent electron 
beams7,8 and when employed in the Bragg geometry yields quantitative strain information9–13. CDI has been suc-
cessfully used on a wide range of samples, from single cells14 to inorganic particles15,16, with applications exploit-
ing the temporal properties of X-ray Free Electron Lasers to viruses17 and time-resolved strain analysis18.

As CDI is based on the measurement of the far-field diffraction pattern of a single object, the reconstruction 
is only possible if the diffraction pattern is recorded at a spacing finer than the Nyquist frequency (this condition 
is called oversampling)1,3,19. This is easily done experimentally if the sample size can be estimated, and a vari-
ety of algorithms (Error Reduction (ER), Hybrid Input-Output (HIO), Relaxed Averaged Alternating Reflectors 
(RAAR), Charge Flipping (CF) etc.) can be used to phase the diffraction pattern and reconstruct the object5,20,21.

However the weakness of CDI lies in the absence of reliable figures of merit to assess the quality of the recon-
structed objects. In principle, it is easy to define a figure of merit by comparing the observed diffraction pattern 
to the calculated one. But as the diffraction pattern is oversampled and the actual size and shape of the object is 
unknown, it is easy to create incorrect solutions which involve an object size larger than the real one (i.e. with 
many extra free parameters), and thus yield a better figure of merit by over-fitting.

In this article, we propose a free log-likelihood as an objective figure of merit that outperforms those that exist 
in the literature. Then we show how it can be applied to evaluate the solutions and combine them to obtain the 
final optimal reconstruction.

All the data and the python notebooks used to generate the figures in this article are available from22.

figures of Merit
A number of figures of merit have been used in the literature, working either in the object or Fourier-space 
domain. A list of the most used figures of merit is shown in Table 1. Note that the most quantitative approach 
to a reliable figure of merit was introduced for Ptychography23, using a likelihood based analysis that considers 
Poisson noise.

In order to evaluate how discriminating these figures are, we used a 2D diffraction dataset, from an ESRF logo 
sample, recorded at the ID10 beamline15 (see25 for experimental details). A center of symmetry was applied to 
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Table 1. Figures of merit for CDI analysis: Eo
2 is the object-domain error4,21, where Ω denotes the object support 

(i.e. the area or volume where the object lies), and ρi is the density inside the object. EF
2 is the Fourier-space 

domain error4,21,24 comparing calculated and observed amplitudes (this formula can also be used based on 
intensities). LLK  is the Poisson log-likelihood23, where Ii

obs and Ii
calc are, respectively, the observed and 

calculated intensity at pixel i of the diffraction data. LLKfree is the Poisson log-likelihood computed only over 
a‘free’ set of pixels. The figures correspond either to the three solutions shown in Fig. 1, or to the eigen- and 
average solutions shown in Fig. 3. Only the LLKfree allows to correctly discriminate between individual 
reconstructions.

Figure 1. (a) Coherent X-ray diffraction pattern of the ESRF logo. Examples of the reconstructed logo obtained 
using (b) a tight support, (c) a tight support expanded by two pixels (producing more noise around the object), 
and (d) a tight support expanded by seven pixels. For each reconstruction, the average Poisson log-likelihood is 
reported in Table 1, as well as the free log-likelihood - the former does not allow to discriminate solutions, and 
allows clearly diminished results like (d) to have lower log-likelihood, whereas the free log-likelihood clearly 
discriminates them.
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the diffraction pattern in order to reduce the number of unobserved pixels behind the beamstop (in the case of a 
homogeneous object with a constant thickness, where the projected electronic density is constant i.e., the object is 
real up to a constant phase factor, the diffracted intensity (Fourier Transform) is centro-symmetric). In Fig. 1 the 
diffraction data and several reconstructed solutions are shown, which were obtained by starting from a random 
object with a fixed support, 400 cycles of Hybrid Input-Output followed by 200 cycles of Error Reduction. Note 
that the actual algorithm used here is irrelevant, as any global optimisation scheme will produce a distribution 
of solutions, and the aim of this article is to provide a way to assess their quality. We deliberately did not impose 
positivity to have a large enough range of solutions to evaluate.

The three solutions were generated using (b) a tight support (4353 pixels), and loose supports that radially 
expand the tight support by (c) two pixels, or (d) seven pixels. As is clearly seen in Fig. 1, the best result is obtained 
with a tight support, and quickly degrades for larger supports.

As can be seen in Table 1, none of the figures of merit are discriminating: while the solution in Fig. 1b) 
obtained from a tight support is obviously the best and corresponds to the scanned sample25, both the 
object-domain error and the Fourier-based metric EF

2 show little difference between the solutions, and are higher 
for the correct tight support solution. This is clearer for the LLK, which is worse for the tight solution (b) even 
though it is the best result. The main reason for these conflicting results is that the more points there are in the 
support, the more free parameters the algorithm can use to better fit the diffraction data - Fig. 1d) shows a clear 
case of over-fitting.

From this example one concludes that it is essential to simultaneously achieve both: a good fit between the 
calculated and observed diffraction pattern, and a tight support around the object. This has long been known and 
efficient algorithms, such as the shrink-wrap approach5, exist to produce a tight support which will normally yield 
a unique solution in two or three dimensions26–31.

Other constraints or figures of merit can be used based on physical properties, but they rely strongly on a 
priori knowledge of the object and thus are limited in application. For example, positivity of the reconstructed 
object (e.g. when operating in the small-angle regime for a thin object, or in the Bragg regime for an unstrained 
nanocrystal), or enforcing phase, density or other ad hoc constraints32.

The lack of an unambiguous evaluation metric often leads to the need to visually inspect, evaluate and select 
solutions, which is very slow, and hence unpractical. As brighter X-ray sources pave the way for serial CDI exper-
iments with larger data throughput33,34, the need, for a discriminating figure of merit to sort the computed solu-
tions without requiring a visual inspection, is paramount.

free log-likelihood. The risk of misleading figures of merit due to over-fitting also exists e.g. in 
macro-molecular crystallography, where the large number of parameters (the atomic positions) must be refined 
against the available diffraction data: in order to avoid over-fitting, a free R-factor was introduced35–37 and has 
since been used by the community. This consists of setting aside a small percentage of diffraction data (the ‘free’ 
set) and refining the structure against the remaining’ working set’ of data. The Rfree is then evaluated only by com-
paring the calculated diffraction data against the ‘free’ set, producing an un-biased figure of merit. This approach 
is more generally known as jack-knifing38,39, and was developed for unbiased statistical evaluation.

This approach is even more appealing for CDI because of the large uncertainty of the support area (contrary to 
refinement in crystallography where the atomic sequence or chemical formula is usually known). We have imple-
mented this in the PyNX accelerated coherent imaging toolkit40, which can be used for CDI analysis:

•	 ≈5% of the observed diffraction data is set aside in a ‘free’ set of pixels with pixels, which are grouped in 
islands of radius 3 pixels (volumes in 3D) - to make sure that correlations between neighbouring pixels does 
not create a strong relationship between the working set and the ‘free’ set. This is needed because the diffrac-
tion data is oversampled1,41, and thus neighbouring pixels are not completely independent. Note that the 
proposed size of the islands corresponds to a typical oversampling ratio in CDI experiments, but could be 

Figure 2. Scatter plot of log-likelihood (black) and free log-likelihood (red) vs the number of points in the 
support, obtained by generating 1000 solutions with random starting objects and different parameters. While 
the overall log-likelihood decreases with the number of points in the final support, the free log-likelihood points 
to an optimal support size around 4300 points. Note that a different, random set of ‘free’ pixels was used for each 
solution.
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tuned according for each experiment, even each direction. The effect of the island size can be seen in figures 
available as supplementary information.

•	 The free pixels are randomly located in the dataset, only excluding the center of the diffraction pattern (5% 
of the maximum radius): this area can include a large number of photons, and masking those can hinder the 
initial estimate of the object.

•	 when performing the usual projection algorithms20, in the Fourier update step (replacing the calculated 
amplitudes with the observed ones while keeping the calculated phases), pixels in the ‘free’ set are considered 
masked and keep their calculated complex value.

In the following we will only report the free Poisson log-likelihood LLKfree figure of merit, because the photon 
counting properties of modern X-ray detectors theoretically make Poisson log-likelihood the natural choice. 
However, we would like to point out that the ensuing discussion and examples would be identical with any other 
noise model or Fourier based metric.

As is shown in Table 1, the free log-likelihood correctly discriminates between the three solutions (tight sup-
port, +2 pixels, +7 pixels).

We conducted a more systematic study using the same dataset as for Fig. 1 and performed 1000 optimisations 
using a similar approach: starting from a random object with an initial tight support expanded by a radius of 7 
pixels, then performing 400 HIO cycles followed by 200 ER cycles, updating the support every 20 cycles, with a 
support threshold5 randomly chosen between 0.25 to 0.4. Note that we did not impose positivity: that and the 
random threshold values leads to a wide range of solutions for statistical purposes. With a positivity constraint, 
most solutions would have been much closer to the optimal one. Both LLK  and LLKfree are plotted against the 
final number of pixels in the support for all solutions in Fig. 2. In this graph the normal LLK  (measured against 
the ‘working’ set) monotonically decreases as the number of points in the support increases, even if a kink is 
clearly visible in the curve. LLKfree however, displays a clear minimum around 4300 pixels, which corresponds to 
an optimal solution similar to that in Fig. 1b.

While this demonstrates the capability of LLKfree to serve as an unbiased figure of merit, we have identified two 
limitations. First, nothing prevents an incorrect model to have a low LLKfree by chance - however as is shown in 
Fig. 2 with 1000 generated solutions, it is statistically improbable. Second, LLKfree is not an absolute figure of 

Figure 3. Combination of ten solutions: (a) the first eigen-solution obtained by computing an eigenvalue 
decomposition (76% weight), (b) average of the solutions (c) line cut (indicated in orange in (b)), with the first 
eigen-solution in red, the average solution in black, the best individual solution in blue, and in gray the first 
eigen-solution when combining only the 4 best solutions (weighting 99% of the 4 solutions). (d) 2nd and (e) 3rd 
eigen-solutions in the ten mode decomposition. (f) phase retrieval transfer function computed for the different 
types of solutions. The solution obtained through eigen-decomposition of the 10 solutions yields a higher 
correlation at high frequencies, and presents lower background noise levels compared to the average solution. 
Combining only the 4 best solutions yields a higher PRTF.
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merit, and a single value cannot indicate the validity of the solution, as it is dependent on the counting statistics 
(e.g. a dataset with many zero-valued points will generate both a low LLK  and a low LLKfree). Finding an optimal 
solution relies on (i) generating a number (typically at least 20) of solutions and then (ii) the lowest LLKfree, for the 
same set of free pixels. A more complete validation requires a statistical analysis of the best solutions, as will now 
be explained.

Eigen- and average solutions. Once a set of solutions has been produced, usually a selection of the 
best solutions are averaged and then compared against the diffraction data, e.g. by plotting the Phase Retrieval 
Transfer Function (PRTF)14,15,24, which is the ratio of the average calculated amplitude to the observed amplitude, 
as a function of the resolution ring (a fraction of the sampling frequency of the dataset). The relative frequency at 
which the PRTF falls below 50% can be used as an indication of the correlation between the chosen solutions, and 
of the resolution of the reconstruction.

An alternative approach to averaging consists in computing eigenvectors for the selected solutions. This is 
done by arranging all solutions in a matrix (by flattening each solution as a one-dimensional row of the matrix), 
and then computing the singular value decomposition (SVD) of this matrix, which yields a set of orthonormal 
‘eigen-solutions’42. One property of this decomposition is that it conserves the total squared amplitude of the 
solutions.

An example of application on the ESRF logo dataset is shown in Fig. 3. This method presents a few advantages 
compared to averaging: first, it is less sensitive to outlier solutions than averaging (a single outlier would con-
tribute to secondary modes in the eigenvector decomposition), and second, it yields a weight (its overall squared 
amplitude) for each eigen-solution that can also be used as an indicator of the correlation between solutions, 
ideally the relative weight of the first (strongest) eigen-solution should be as close to 100% as possible.

Figure 3 shows the result of combining either the 10 or 4 best (lowest LLKfree) solutions from 50 optimisations, 
obtained with the same procedure as those in Fig. 2, and after sub-pixel alignment43 and phase matching of the 
solutions. Note that the 10 best selected solutions had up to 16300 points in the support and a LLKfree up to 255, 
while the 4 best had up to 5100 points with a LLKfree lower than 148. The purpose of keeping all 10 solutions is to 
evaluate the efficiency of combining imperfect solutions, which is often the case in CDI. The shown figures were 
tested against several generated set of solutions with similar results.

The most intense mode (Fig. 3a)) represents 76% of the 10 solutions, and is similar to the average (Fig. 3b)) but 
with slightly reduced background noise outside the main object (also see the line cut in Fig. 3c)). The secondary 
modes (e.g. Fig. 3d,e)) can be used as an indicator of where the computed solutions have more diversity. The 
PRTF (Fig. 3f)) shows that the first decomposed mode yields a higher resolution than the average solution, but 
remains inferior to the first mode of only the 4 best solutions (this mode then represents 99% of the selected 4). 
Note that when only a subset of close-to-optimal solutions are selected, there is little difference between the first 
mode and the average (identical PRTF).

Example application to single cyanobacteria cells. As the reconstruction relies heavily on the tight 
support, it is easily obtained for binary objects like the ESRF logo already presented. However in the case of 
biological specimens (e.g. cells)44–46 the support update often requires some careful optimisation, including 
hand-picking of the support area46, as it is difficult to choose a threshold value for the automatic update of the 
support region using a shrinkwrap-based algorithm5 or it will yield solutions with similar figures-of-merit which 
must then be sorted out e.g. using clustering analysis47.

To test the usefulness of free log-likelihood for biological samples, we used the Coherent X-ray imag-
ing Database48 dataset #1649, which includes the original diffraction data and the published experimental 
parameters47.

We used the following procedure, with the goal to test unsupervised support and object optimisation:

Figure 4. Example data analysis on coherent diffraction imaging of single cyanobacteria cells: (a) coherent 
diffraction pattern, (b) amplitude of the best individual reconstruction (with the lowest free log-likelihood) 
and (c) of the first eigen-mode obtained by decomposing the 10 best results among the 100 optimisations, 
representing 97% of the modes. This can be compared to Fig. 5 g and 6 in the original publication47, which uses 
the same linear colour scale.
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 1. Run 100 independent reconstructions with the following parameters: start from a large support 200 pixels 
in diameter, with a random object. First perform 2000 cycles of HIO with a positivity constraint and a 
detwinning procedure after 1000 cycles. Then proceed without the positivity constraint, with 2000 HIO 
cycles and then 2000 RAAR cycles. Finish with 200 ER cycles. The support was updated every 20 cycles, 
with a fixed relative threshold randomly chosen between 0.1 and 0.4.

 2. Select the best 10 reconstructions based on the free log-likelihood, and perform an eigen-solution analysis. 
Note that during this analysis, the mask of free pixels was kept fixed (contrary to what is shown in Fig. 2) 
for all optimisations, in order to ensure the consistency of the free log-likelihood figure of merit.

The result of this optimisation is shown in Fig. 4. The results can be compared to the original publication, 
where 400 optimisations where performed for each dataset, and clustering analysis was performed to detect out-
liers with similar figures of merit (Fig. 6 in47). Our results are similar but require a less intensive computational 
approach.

conclusion
In this article we have shown that using a free log-likelihood figure-of-merit allows one to evaluate solutions from 
CDI optimisations in a unbiased manner, despite the lack of a priori knowledge of the object support size and 
shape. Moreover using an orthonormal mode decomposition of the best solutions yields a better solution less 
prone to outlier results compared to the usual averaging approach.

The main advantage of this method is that it is completely generic, as it does not rely on any a priori knowl-
edge on the sample (complex-valued or real-valued object, homogeneity of density or phase, etc.), and can thus 
be used for unsupervised phasing. Moreover this approach has a very low computational cost and can easily be 
implemented. This should be particularly relevant for high data throughput approaches which are now being 
developed with X-ray free electron laser and brighter synchrotron sources.
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