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TAK-242 ameliorates contact 
dermatitis exacerbated by IL-36 
receptor antagonist deficiency
Hidehiko Fukushima1, Yohei Iwata1, Soichiro Watanabe1, Kenta Saito1, Yoshihito Tanaka1, 
Yurie Hasegawa1, Masashi Akiyama2 & Kazumitsu Sugiura1*

Loss-of-function mutations in IL36RN cause generalized pustular psoriasis (GPP), which is characterized 
by neutrophil-infiltrated lesions. Neutrophils are important during contact hypersensitivity in mice. 
However, it has never been determined whether interleukin-36 receptor antagonist (IL-36Ra) deficiency 
is an exacerbating factor in contact dermatitis. We examined whether a loss-of-function IL36RN 
mutation exacerbates contact dermatitis and evaluated the changes in contact dermatitis-related 
cytokines. Wild-type and Il36rn−/− mice were treated with 1-fluoro-2,4-dinitorobenzene (DNFB) 
and evaluated for ear thickness, histopathological features, numbers of infiltrated neutrophils, and 
numbers of CD4 + and CD8 + T cells. Furthermore, mRNA levels of contact dermatitis-related cytokines 
were measured by real-time polymerase chain reaction, and effects of TAK-242, a toll-like receptor 4 
(TLR4) inhibitor, on the contact hypersensitivity (CHS) response were evaluated. We found that the 
ear thickness, cytokine expression, and neutrophil infiltration significantly increased in Il36rn−/− mice 
compared with that in wild-type mice. TAK-242 alleviated CHS and prevented neutrophil infiltration, 
cytokine expression, and ear thickening in Il36rn−/− mice. These data indicate that Il36rn−/− mutations 
are an exacerbating factor for CHS and that TAK-242 can reduce the inflammatory responses that are 
associated with the CHS response.

Homozygous or compound heterozygous IL36RN gene mutations underlie the pathogenesis of psoriasis-related 
pustular eruptions, including generalised pustular psoriasis, palmoplantar pustular psoriasis, acrodermatitis 
continua of Hallopeau, and acute generalised exanthematous pustular eruptions1. Loss-of-function mutations 
in IL36RN define a recessively inherited autoinflammatory disease called “deficiency of interleukin-36 receptor 
antagonist (IL-36Ra)” (DITRA), which is a type of autoinflammatory keratinization disease2–7. Previously, we 
generated Il36rn−/− mice and established a DITRA murine model8. The IL36RN gene encodes IL-36Ra, a protein 
in the IL-1 cytokine family responsible for the tight regulation of IL-36 signalling. The IL-36 pathway is activated 
when one of the three IL-36 agonists (IL-36α, β, and γ) binds to their common but specific receptor interleukin 1 
receptor-related protein 2 (IL-1Rrp2), which recruits the co-receptor, IL-1 receptor accessory protein (IL-1RacP), 
and triggers downstream activation of NF-κB and MAPK kinase signalling pathways to ultimately enhance tran-
scription and release of pro-inflammatory cytokines9,10 that initiate the recruitment of inflammatory cells, includ-
ing neutrophils, T cells, and myeloid dendric cells, in the skin. Abnormal IL-36 receptor (IL-36R) signalling 
results in transient skin inflammation characterised by acanthosis, hyperkeratosis, and neutrophil-dominant 
mixed-cell infiltration11–13.

According to the Human Genetic Variation Database, two IL36RN founder mutations (c.28 C > T (p.Arg10X) 
and c.115 + 6 T > C (p.ArgfsX1)) are found in just under 2% of the Japanese population14. Thus, many Japanese 
have IL36RN mutations that could be the pathogenic factor for many diseases, including generalised pustular 
psoriasis. Recent studies have found that neutrophils play an important role in the pathogenesis of contact der-
matitis15–17. In murine contact hypersensitivity (CHS), neutrophils are important in the elicitation phase, when 
neutrophil recruitment to the hapten-challenged site leads to infiltration of hapten-specific CD8 + T cells and 
development of a CHS response18–20. Furthermore, more recent studies described a requirement of neutrophils 
for both the sensitisation and elicitation phases of CHS21–23. However, the detailed role of neutrophils in the CHS 
model remains unknown. Since loss-of-function IL36RN mutations cause significant neutrophil infiltration in 
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skin lesions, we hypothesised that Il36rn mutations could be one of the exacerbating factors in CHS. Therefore, to 
clarify these questions, we examined the CHS response in Il36rn−/− mice.

Results
Estimation of ear thickness and histological characteristics of Il36rn−/− mice after DNFB challenge.  
Ear thickness was evaluated 24 h and 48 h after 1-fluoro-2,4-dinitorobenzene (DNFB) challenge in wild-type and 
Il36rn−/− mice to test if a deficiency in IL-36Ra affects the CHS response. Interestingly, the Il36rn−/− mice showed 
a significant increase in ear thickness compared with the wild-type mice at both 24 h (212%; **p < 0.01) and 48 h 
(323%; **p < 0.01) after DNFB challenge (Fig. 1A). Histopathologically, Il36rn−/− mice presented prominent 
oedema and infiltration of inflammatory cells as compared with wild-type mice (Fig. 1B). We assessed the infil-
tration of neutrophils (161.5 ± 14.02 (WT) and 344.3 ± 20.71 (Il36rn−/−) cells/field, **p < 0.01), CD4 + T-cells 
(12.83 ± 1.58 (WT) and 33.42 ± 4.978 (Il36rn−/−) cells/field, **p < 0.01), and CD8 + T-cells (19.08 ± 2.098 (WT) 
and 41 ± 4.723 (Il36rn−/−) cells/field, **p < 0.01) (Fig. 1C). Our results suggested a significant increase in the 
inflammatory cells in Il36rn−/− mice as compared to that in wild type mice. Thus, an IL-36Ra deficiency increases 
infiltration of inflammatory cells during the CHS response.

Cytokine and chemokine expression in ear tissue of Il36rn−/− mice.  Expression of IL-1β, IL-4, IL-6, 
IL-10, interferon (IFN)-γ, IL-17A, tumor necrosis factor (TNF)-α, C-X-C motif chemokine ligand (CXCL)1, 
CC chemokine ligand (CCL)4, IL-36α, IL-36β, IL-36γ, IL-23p19, and Epstein-Barr virus induced gene 3 (EBI3) 
in ear tissue at 24 h after a DNFB challenge was examined by real-time polymerase chain reaction (RT-PCR) in 
Il36rn−/− and wild-type mice (Fig. 2). Il36rn−/− mice had increased expression levels of IL-1β, IL-17A, TNF-α, 
CXCL1, CCL4, IL-36γ, IL-23p19, and EBI3 relative to their expression in wild-type mice. Although levels of 
IL-4 in Il36rn−/− mice tended to be higher than those in wild-type mice, these differences were not statistically 
significant. By contrast, mRNA levels of IL-36α decreased in Il36rn−/− mice and the loss of IL-36Ra did not affect 
IL-6, IL-10, IFN-γ, and IL-36β mRNA expression in comparison to wild-type expression levels. Thus, IL-36Ra 
deficiency alters the expression of different cytokines, contributing to the CHS response observed in the loss of 
function mutants.

Effect of TAK-242 on CHS response.  The wild-type mice showed an increase in neutrophil infiltration 
more than the Il36rn−/− mice, indicating that, acquired immunity plays a central role in the CHS response, but 
we speculated that the innate immune system plays a key role in enhancing the contact dermatitis response in 
Il36rn−/− mice. A previous study reported that TAK-242 administration suppressed neutrophil infiltration in an 
imiquimod-induced psoriasis model8, so we considered that suppressing the innate immune system and infil-
tration of neutrophils by suppressing downstream of TLR4 could suppress this CHS response even in the CHS 
model. Thus, we performed a treatment experiment using TAK-242, which, selectively inhibits TLR4.

We examined the effect of the TLR4 inhibitor, TAK-242, on the elevated CHS response observed in Il36rn−/− 
mice. TAK-242 (0.5, 5.0, or 10 mg/kg/day) or the same amount of vehicle was intraperitoneally administered for 
6 days (day 0–5) before DNFB challenge and CHS response was assessed in the different mice lines (Fig. 3A).

CHS response at 24 and 48 h in Il36rn−/− mice (24 h; 15.48% decrease; *p < 0.05, 48 h; 31.17% decrease; 
**p < 0.01) was reduced by administration of TAK-242 (0.5 mg/kg/day) as compared to the vehicle control 
(Fig. 3B). CHS response at 24 and 48 h in wild-type mice was not significantly different between TAK-242 admin-
istration (0.5 mg/kg/day) and the vehicle control. CHS response at 24 and 48 h in Il36rn−/− mice (24 h; 63.34% 
decrease; **p < 0.01, 48 h; 69.73% decrease; **p < 0.01) and wild-type mice (24 h; 45.32% decrease; **p < 0.01, 
48 h; 30.48% decrease; **p < 0.01) was reduced by TAK-242 administration (5.0 mg/kg/day) as compared to the 
vehicle control (Fig. 3B,C). Moreover, CHS response at 24 and 48 h in Il36rn−/− and wild-type mice was not sig-
nificantly different between 10 mg/kg/day TAK-242 and 5.0 mg/kg/day TAK-242. In addition, administration of 
TAK-242 (5.0 mg/kg/day) after DNFB challenge (days 5 and 6) showed only focal inhibitory CHS responses in 
wild-type and Il36rn−/− mice (data not shown).

Thus, administration of TAK-242 before DNFB challenge diminishes CHS responses in mice with or without 
IL-36Ra deficiency. Furthermore, TAK-242 showed a dose-dependent effect up to 5.0 mg/kg/day. However, there 
was no significant difference in the effect between TAK-242 doses of 5.0 mg/kg/day and 10 mg/kg/day.

Effect of TAK-242 on inflammatory cell recruitment.  Given that TAK-242 (5.0 mg/kg/day) had 
an effect on the CHS response in the mouse model, we assessed its effect on inflammatory cell recruitment. 
Inflammatory cell recruitment was decreased by TAK-242 (5.0 mg/kg/day) administration in both wild-type 
and Il36rn−/− mice. In our histological analysis, the numbers of neutrophils were decreased in both wild-type 
(133.3 ± 25.36 (Vehicle) vs. 20.92 ± 2.781 (TAK) cells/field, **p < 0.01) and Il36rn−/− mice (293 ± 38.9 (Vehicle) 
vs. 24.67 ± 2.993 (TAK) cells/field, **p < 0.01) (Fig. 4A,B). In our immunohistological analysis, the num-
bers of CD4 + and CD8 + T cells were significantly decreased by TAK-242 (5.0 mg/kg/day) in both wild-type 
and Il36rn−/− mice (Fig. 4A). The number of CD4 + T cells were decreased in both wild-type (13.67 ± 1.662 
(Vehicle) vs. 2.667 ± 0.4323 (TAK) cells/field, **p < 0.01) and Il36rn−/− mice (34.58 ± 4.853 (Vehicle) vs. 
2.917 ± 0.5833 (TAK) cells/field, **p < 0.01) (Fig. 4B). In addition, the numbers of CD8 + T cells were decreased 
in both wild-type (20.25 ± 1.903 (Vehicle) vs. 3.833 ± 0.5882 (TAK) cells/field, **p < 0.01) and Il36rn−/− mice 
(39.08 ± 4.188 (Vehicle) vs. 4.167 ± 0.747 (TAK) cells/field, **p < 0.01) (Fig. 4B).

CHS response and the number of inflammatory cells were similar in TAK-242-treated wild-type and Il36rn−/− 
mice. Thus, increased CHS response and inflammatory cell recruitment was completely inhibited by TAK-242 
treatment, regardless of the genetic background.

TAK-242 treatment changes cytokine and chemokine mRNA expression in mouse ear tissue.  
To assess how TAK-242 inhibits CHS responses and inflammation, we analysed cytokine and chemokine mRNA 
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levels in ear tissue in wild-type and Il36rn−/− mice, with and without TAK-242 treatment. In wild-type mice, the 
mRNA expression levels of IL-1β, IL-4, IL-6, IL-10, IFN-γ, IL-17A, IL-12p40, CXCL1, and CXCL2 were signif-
icantly reduced by TAK-242 treatment (Fig. 5A). In contrast, IL-36β mRNA expression significantly increased 
after TAK-242 treatment (Fig. 5A). There were no significant differences in the mRNA expression levels of 
TNF-α, IL-36α, and IL-36γ between the TAK-242 treatment and untreated groups (Fig. 5A). In Il36rn−/− mice, 
mRNA expression levels of IL-1β, IL-4, IL-6, IL-10, IFN-γ, IL-17A, IL-12p40, TNF-α, CXCL1, CXCL2, IL-23p19, 
and EBI3 were significantly reduced by TAK-242 treatment, while IL-36β expression significantly increased 

Figure 1.  Il36rn−/− mice have increased contact hypersensitivity. (A) Left: Quantification of ear thickness in 
wild-type and Il36rn−/− mice 24 h and 48 h after DNFB challenge (n = 26 mice; **p < 0.01 versus wild-type 
mice). Right: Representative images of wild-type and Il36rn−/− mice ears shown at 48 h after DNFB challenge 
(WT: wild-type mice, KO: Il36rn−/− mice). (B) Representative histological and immunohistochemical images of 
ear skin sections from wild-type and Il36rn−/− mice 48 h after challenge with DNFB. Scale bars, 100 µm. Positive 
CD4 + T cells and CD8 + T cells are indicated by black arrows. (C) Cell counts of neutrophils, CD4 + , and 
CD8 + T cells/high power field (HPF) in ear cross-sections from wild-type and Il36rn−/− mice. Cell counts were 
performed at 100x magnification in 12 sections per mouse (n = 26 mice; **p < 0.01 versus wild-type mice).
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(Fig. 5B). There were no significant differences in the expression levels of IL-36α and IL-36γ in the TAK-242 
treatment and control groups (Fig. 5B). Thus, TAK-242 treatment decreased mRNA expression levels of Th1, Th2, 
Th17 cytokines, proinflammatory cytokines, and chemokines, while IL-36β mRNA levels increased. In addition, 
IL-23p19 and EBI3 mRNA levels were also decreased by TAK-242 treatment in Il36rn−/− mice.

Figure 2.  Cytokine expression is increased by IL36RN deficiency. Expression of IL-1β, IL-4, IL-6, IL-10, IFN-
γ, IL-17A, TNF-α, CXCL1, IL-36α, IL-36β, IL-36γ, IL-23p19, and EBI3 mRNA. There was increased IL-1β, 
IL-17A, TNF-α, CXCL1, IL-36α, IL-36γ, IL-23p19, and EBI3 mRNA expression in Il36rn−/− mice compared 
with that in wild-type (n = 26 mice; **p < 0.01 versus wild-type mice). GAPDH mRNA was used as an internal 
control.
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Discussion
The results of our study demonstrate that the CHS response is enhanced in Il36rn−/− mice.

The results of histopathological examination showed that the number of neutrophils and lymphocytes in 
the CHS lesion sites significantly increased in Il36rn−/− mice compared to that in wild-type mice. Moreover, 
expression of cytokines and chemokines in the CHS lesions revealed that IL-1β, IL-17A, TNF-α, CXCL1, CCL4, 
IL-36γ, IL-23p19, and EBI3 significantly increased in Il36rn−/− mice compared with that in wild-type mice. The 
treatment experiments with TAK-242, which has proven safe for human use8,24, showed a decrease in the CHS 
response in both wild-type and Il36rn−/− mice. Furthermore, it was revealed that in treated CHS lesion, the 
expression of cytokines and chemokines such as IL-1β, IL-4, IL-6, IL-10, IFN-α IL-17A, IL-12p40, CXCL1, and 
CXCL2 decreased in both wild-type and Il36rn−/− mice compared with levels in the vehicle control. However, 
there were no significant differences in the expression levels of IL-36α between vehicle control and treated group 
in both wild-type and Il36rn−/− mice, consistent with a previous report that IL-36α is not essential for induction 
of local inflammation during DNFB-induced CHS25. Collectively, the results of this study suggest that muta-
tions in Il36rn enhance the CHS response by acting on various cytokines and chemokines involved in neutrophil 
migration, and that inhibiting TLR4 is likely to affect the production of these cytokines and chemokines.

The CHS response was enhanced in Il36rn−/− mice, and we considered that this is attributable to the increase 
in neutrophils. Actually, several recent studies have reported that neutrophils play an important role in both the 
sensitization and elicitation phases of contact dermatitis21–23. When there is a deficiency in IL-36Ra function, the 
signal transduction continues via IL-36R. Because IL-36R induces the production of inflammatory cytokines 
by activating NF-κB and MAPK9,10, IL-1β, TNF-α, and IL-36γ are increased in the CHS lesion and result in the 
sustained activation of the receptor. The increase in TNF-α upregulates the production of IL-17A from Th17 
cells, which subsequently increases chemokines such as CXCL1 and CXCL226–29. In fact, it has been reported 
that IL-17A regulates epidermal keratinocytes to produce chemokines such as CXCL1 and CXCL2 to induce 
neutrophils. In addition, it has also been reported that IL-39, which is a hetero dimer of IL-23p19 and EBI3, is 
downstream of IL-36γ and involved in the induction of neutrophils30. When IL-36Ra is lost, neutrophil-induced 
pathways, triggered by increased chemokines and IL-39, are further amplified through a positive feedback loop, 
which is consistent with the increase in neutrophils which we observed in our histopathological investigations.

We considered that TAK-242 regulated both the sensitisation and elicitation phases of contact dermatitis by 
inhibiting the CHS response. In the sensitisation phase, the CHS response can be suppressed by inhibiting the 
activation of the innate immune system31. In this study, the gene expression of cytokines such as IL-6, IFN-γ, 

Figure 3.  Intraperitoneal administration of TAK-242 decreases contact hypersensitivity in both wild-type and 
Il36rn−/− mice. (A) Protocols for the development of DNFB-induced contact hypersensitivity. For the prevention 
experiments, both wild-type and Il36rn−/− mice were treated with intraperitoneal (i.p.) injection of TAK-242 (0.5, 
5.0, and 10 mg/kg) on days 0–5. (B) Top: Quantification of ear thickness in Il36rn−/− mice administered TAK-242 
(0.5, 5.0, or 10 mg/kg) or vehicle 24 h and 48 h after DNFB challenge (n = 26 mice; *p < 0.05, **p < 0.01). Bottom: 
Quantification of ear thickness in wild-type mice administered TAK-242 (0.5, 5.0, or 10 mg/kg) or vehicle 24 h 
and 48 h after DNFB challenge (n = 26 mice; **p < 0.01). (TAK: TAK-242). (C) Representative images of wild-
type and Il36rn−/− mouse ears administered TAK-242 (5.0 mg/kg) or vehicle 48 h after DNFB challenge.
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IL-4, IL-17, and IL-10 was reduced in the CHS lesions of both wild-type and Il36rn−/− mice after TAK-242 treat-
ment. Other studies have shown that these cytokines are produced by macrophages and effector T cells32,33, and 
that TLR4 increases the sensitivity of contact dermatitis. TLR4 is expressed in several non-immune cells such as 
keratinocytes and sebocytes, and antigen-presenting cells such as macrophages and dendritic cells (DCs)33–35, 
and is required for the activation of the innate immune system, which is necessary for the sensitization of aller-
gens34,36–38. When the innate immune system is activated, the migration of dermal DCs to regional lymph nodes, 
which is the sensitisation phase of contact dermatitis, is initiated. Thus, if the sensitisation phase is inhibited by 
TAK-242, CHS is reduced in both wild-type and Il36rn−/− mice.

Figure 4.  Intraperitoneally administered TAK-242 suppresses inflammatory cell infiltration. (A) Representative 
histology and immunohistochemical sections of ear skin from Il36rn−/− and wild-type mice administered TAK-
242 (5.0 mg/kg) or vehicle 48 h after DNFB challenge. Scale bars, 100 µm. (B) Top: Cell counts of neutrophils 
and CD4 + and CD8 + T cells/high power field (HPF) in ear cross-sections of Il36rn−/− mice administered 
TAK-242 (5.0 mg/kg) or vehicle (n = 26 mice; **p < 0.01 versus vehicle control). Bottom: Cell counts of 
neutrophils and CD4 + and CD8 + T cells/high power field (HPF) in ear cross-sections of wild-type mice 
administered TAK-242 (5.0 mg/kg) or vehicle (n = 26 mice; **p < 0.01 versus vehicle control). Cell counts were 
performed at 100x magnification in 12 sections per mouse. (TAK: TAK-242).
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In the induction phase of contact dermatitis, the CHS response can be inhibited primarily by suppressing the 
activation of both effector T cells and TNF and iNOS-producing DCs (Tip-DC)31. By suppressing the activation 
of effector T cells, the production of IL-17A in Th17 cells decreases, followed by a decrease in the production of 

Figure 5.  Cytokine expression in wild-type and Il36rn−/− mice administered TAK-242. (A) There was a 
decrease in IL-1β, IL-4, IL-6, IL-10, IFN-γ, IL-17A, IL-12p40, CXCL1, and CXCL2 mRNA levels, but an 
increase in IL-36β mRNA in wild-type mice treated with TAK-242 as compared with vehicle control (n = 26 
mice; **p < 0.01, versus vehicle control). (TAK: TAK-242). (B) There was a decrease in IL-1β, IL-4, IL-6, IL-
10, IFN-γ, IL-17A, IL-12p40, TNF-α, CXCL1, CXCL2, IL-23p19, and EBI3 mRNA, but an increase in IL-36β 
mRNA in Il36rn−/− mice treated with TAK-242 as compared with vehicle control (n = 26 mice; **p < 0.01 
versus the vehicle control).
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CXCL1 and CXCL2 chemokines. In fact, the mRNA expression of IL-17A, CXCL1, and CXCL2 decreased in CHS 
lesions of both wild-type and Il36rn−/− mice in this experiment. Histopathologically, the number of neutrophils 
in tissues reduced, reflecting a decrease in the expression of CXCL1 and CXCL2.

Dysfunction of IL-36Ra upregulates inflammatory cytokines such as TNF-α. Subsequently, these cytokines reg-
ulate Tip-DCs and promote IL-17A infiltration. The decrease in IL-36R signalling can be explained by the decrease 
in the expression of IL-39 downstream of IL-36γ. We found that the expression of TNF-α in the CHS lesions of 
Il36rn−/− mice increased. Furthermore, the present study showed that a decrease, in TNF-α expression levels was 
observed only in Il36rn−/− mice treated with TAK-242. Moreover, it has been reported that overexpression of IL-36 
cytokines in allergic contact dermatitis patients can induce Th17 cytokines39. From these reasons, we considered 
this to be one of the characteristics of Il36rn deficiency. Thus, we concluded that TAK-242 blocks TNF-α induction 
by inhibiting TLR4 expression on the cell surface of Tip-DCs and it suppresses effector T cell activation.

In summary, this study demonstrates that the activation and intensity of CHS response depend on the defi-
ciency of IL-36Ra. Furthermore, we demonstrated that blocking TLR4 function with TAK-242 inhibits the CHS 
response in both Il36rn−/− and wild-type mice. The Il36rn mutation increased the CHS response by eliciting 
excessive infiltration of neutrophils into the skin, which was due to the activation of IL-36 receptor-mediated 
sustained inflammatory signalling. These results suggest that a deficiency in IL-36Ra intensifies the CHS response 
and that blocking TLR4 signals by TAK-242 is a promising therapeutic strategy for treating contact dermatitis.

Materials and Methods
Ethics statement.  The mice were handled ethically according to the Regulations for the Management of 
Laboratory Animals at Fujita Health University. The experimental protocol for the ethical use of these animals 
was approved by the Animal Care and Use Committee at Fujita Health University (Permit No.: AP16079).

Mice.  Gender matched female wild-type (C57BL/6NCr1) and Il36rn−/− mice (Aged 6-12w) were used for all 
experiments. Il36rn−/− mice were generated as previously reported8 and genotypically confirmed by allele-specific 
PCR. Control C57BL/6NCr1 animals were obtained from Charles River Laboratories (Charles River Laboratories, 
Inc., Wilmington, Massachusetts, USA). All experiments were repeated thrice using healthy and fertile mice that 
did not display any evidence of infection or disease. All mice were housed in a specific pathogen-free barrier 
facility and screened regularly for pathogens.

Induction of contact hypersensitivity.  The CHS mouse model was induced with DNFB (Wako Pure 
Chemicals, Tokyo, Japan) as previously reported40. Briefly, age-matched mice were sensitised with 25 µl 0.5% 
DNFB in acetone/olive oil (4:1) on a shaved back on day 0. On day 5, sensitised mice were topically challenged 
with 15 µl 0.2% DNFB in acetone/olive oil (4:1) on each side of both ears. Ear thickness was measured with dial 
thickness gauges (Peacock, Ozaki MFG. CO., Ltd, Chiba, Japan) before DNFB challenge and 24 h and 48 h after 
DNFB challenge. Each ear lobe was measured three times and the mean of those values was used for analysis.

Histological analysis of ear sections.  Mice ears were harvested 48 h after DNFB challenge; central strips 
of the ears were fixed in 3.5% paraformaldehyde and embedded in paraffin. From these preparations, 6-µm par-
affin sections were stained with haematoxylin and eosin (H&E) for conventional histological evaluation. Dermal 
neutrophil infiltration was evaluated by counting the number of neutrophils present in 12 high-power fields (0.07 
mm2). Each section was examined independently by two investigators in a blind study and the mean of their 
measurements was used for analysis.

Immunohistochemical staining.  Paraffin-embedded tissues were cut into 6-µm sections, deparaffinised in 
xylene, and rehydrated in phosphate buffered saline (PBS). Deparaffinised sections were treated with endogenous 
peroxidase blocking solution (horse serum diluted 1:1 in buffer: PBS + bovine serum albumin 1%) for 15 min at 
room temperature. Sections were then incubated overnight at 4 °C in rat monoclonal antibodies (mAb) specific 
for CD4 (clone: D7D2Z; catalogue number: #25229; Cell Signalling Technology, Tokyo, Japan; dilution 1:300) 
and CD8 (clone: D4W2Z; catalogue number: #98941; Cell Signalling Technology, Tokyo, Japan; dilution 1:1000). 
Sections were then washed in PBS buffer and biotin-conjugated secondary antibodies were then applied followed 
by incubation with avidin-biotin complex (Vector Laboratories: VECTASTAIN Elite ABC Kit #PK-6101) for 
30 min at room temperature followed by three washes with PBS for 15 min each. Peroxidase activity was observed 
using an ImmPACT DAB Substrate Kit (Vector Laboratories: #SK-4105) and samples were counterstained with 
haematoxylin. For negative control, primary antibody was not added to the sections.

RNA isolation and RT-PCR.  Total RNA was extracted from ear tissue samples using Qiagen RNeasy 
spin columns (QIAGEN, Crawley, UK) and subsequently reverse transcribed to cDNA using the Prime Script 
RT Reagent Kit (Takara Bio INC, Shiga, Japan). Expression levels of IL-1β (Mm.PT.58.41616450), IL-4 (Mm.
PT.58.32703659), IL-6 (Mm.PT.58.10005566), IL-10 (Mm.PT.58.13531087), IL-17A (Mm.PT.58.6531092), 
IL-12p40 (Mm.PT.58.1240997), IL-36α (Mm.PT.58.12651602), IL-36β (Mm.PT.58.11528127), IL-36γ (Mm.
PT.58.30810984), CXCL1 (Mm.PT.58.42076891), CCL4 (Mm.PT.58.5219433), CXCL2 (Mm.PT.58.1045839), 
IFN-γ (Mm.PT.58.41769240), TNF-α (Mm.PT.58.12575861), IL-23p19 (Mm.PT.58.41340226), and EBI3 (Mm.
PT.58.45979145) were measured by RT-PCR using the Light Cycler System (F. Hoffmann-La Roche, Ltd, Basel, 
Switzerland). The PCR samples were set up in microcapillary tubes as a 20 µl reaction consisting of 2.0 µl diluted 
cDNA solution, and the PCR program was set according to the manufacturer’s instructions. Glyceraldehyde-
3-phosphate (GAPDH; Mm.PT.39a.1) was used as an internal control. Relative mRNA expression levels of differ-
ent target genes normalised to GAPDH expression were calculated using the 2-∆∆Ct method. Primer sequences 
used for each gene were selected from pre-validated PrimeTime qPCR Assays (Integrated DNA Technologies, 
Coralville, Iowa, USA).
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TLR4 inhibition with TAK-242.  Wild-type and Il36rn−/− mice were treated with an intraperitoneal injec-
tion of TAK-242 (0.5, 5.0, or 10 mg/kg) (catalogue number: CS-0408; Chemscene, Monmouth Junction, NJ, USA) 
or vehicle (DMSO solution) on days 5–6 or days 0–5. Ear thickness was measured with dial thickness gauges 
before DNFB challenge (day 5), 24 h (day 6), and 48 h (day7) after DNFB challenge. In addition, ear tissue samples 
were collected for RT-PCR and histopathological analysis.

Statistical analysis.  Data were analysed with GRAPHPAD PRISM software (version 7; GraphPad Software, 
La Jolla, CA, USA) and presented as means ± SD. Mann-Whitney U test or one-way analysis of variance 
(ANOVA) was used to determine the statistical significance of differences. Values of p < 0.05 were defined as 
significant.

Received: 2 August 2019; Accepted: 3 January 2020;
Published: xx xx xxxx

References
	 1.	 Tauber, M. et al. IL36RN Mutations Affect Protein Expression and Function: A Basis for Genotype-Phenotype Correlation in 

Pustular Diseases. J. Invest. Dermatol. 136, 1811–1819 (2016).
	 2.	 Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 

(2011).
	 3.	 Onoufriadis, A. S. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as 

generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).
	 4.	 Debets, R. T. et al. Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa 

B activation through the orphan IL-1 receptor-related protein 2. J. Immunol. 167, 1440–1446 (2001).
	 5.	 Sugiura, K. et al. The majority of generalized pustular psoriasis without psoriasis vulgaris is caused by deficiency of interleukin-36 

receptor antagonist. J. Invest. Dermatol. 133, 2514–2521 (2013).
	 6.	 Akiyama, M., Takeichi, T., McGrath, J. A. & Sugiura, K. Autoinflammatory keratinization diseases: An emerging concept 

encompassing various inflammatory keratinization disorders of the skin. J. Dermatol. Sci. 90, 105–111 (2018).
	 7.	 Akiyama, M., Takeichi, T., McGrath, J. A. & Sugiura, K. Autoinflammatory keratinization diseases. J. Allergy Clin. Immunol. 140, 

1545–1547 (2017).
	 8.	 Shibata, A. et al. Toll-like receptor 4 antagonist TAK-242 inhibits autoinflammatory symptoms in DITRA. J. Autoimmun. 80, 28–38 

(2017).
	 9.	 Towne, J. E., Garka, K. E., Renshaw, B. R., Virca, G. D. & Sims, J. E. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 

and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J. Biol. Chem. 279, 13677–13688 (2004).
	10.	 Dinarello, C. A. et al. IL-1 family nomenclature. Nat. Immunol. 11, 973 (2010).
	11.	 Zaba, L. C. et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic 

cells. J. Invest. Dermatol. 129, 79–88 (2009).
	12.	 Nestle, F. O., Di Meglio, P., Qin, J. Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 

(2009).
	13.	 Blumberg, H. et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J. Exp. Med. 204, 

2603–2614 (2007).
	14.	 Sugiura, K. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants. J. 

Dermatol. Sci. 74, 187–192 (2014).
	15.	 Moniaga, C. S., Watanabe, S., Honda, T., Nielsen, S. & Hara-Chikuma, M. Aquaporin-9-expressing neutrophils are required for the 

establishment of contact hypersensitivity. Sci. Rep. 5, 15319 (2015).
	16.	 Christensen, A. D., Skov, S. & Haase, C. The role of neutrophils and G-CSF in DNFB-induced contact hypersensitivity in mice. 

Immun. Inflamm. Dis. 2, 21–34 (2014).
	17.	 Goebeler, M. et al. Differential and sequential expression of multiple chemokines during elicitation of allergic contact 

hypersensitivity. Am. J. Pathol. 158, 431–440 (2001).
	18.	 Martin, S. F. Contact dermatitis: from pathomechanisms to immunotoxicology. Exp. Dermatol. 21, 382–389 (2012).
	19.	 Dudeck, A. et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity. 34, 973–984 

(2011).
	20.	 Martin, S. F. et al. Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J. Exp. Med. 205, 2151–2162 

(2008).
	21.	 Martin, S. F. Rustemeyer, T. & Thyssen, J. P. Recent advances in understanding and managing contact dermatitis. F1000Res, 7 (2018).
	22.	 Jiang, X. et al. Dermal gammadelta T cells do not freely re-circulate out of skin and produce IL-17 to promote neutrophil infiltration 

during primary contact Hypersensitivity. PLoS One. 12, e0169397 (2017).
	23.	 Weber, F. C. et al. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J. Exp. Med. 

212, 15–22 (2015).
	24.	 Rice, T. W. et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med. 

38, 1685–1694 (2010).
	25.	 Numata, T. et al. IL-36α is involved in hapten-specific T-cell induction, but not local inflammation, during contact hypersensitivity. 

Biochem Biophys Res Commun. 30, 429–436 (2018).
	26.	 Peters, J. H. et al. Co-culture of healthy human keratinocytes and T-cells promotes keratinocyte chemokine production and 

RORgammat-positive IL-17 producing T-cell populations. J. Dermatol. Sci. 69, 44–53 (2013).
	27.	 Krueger, J. G. et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J. Allergy Clin. 

Immunol. 130, 145–154 e149 (2012).
	28.	 Lin, A. M. et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187, 490–500 

(2011).
	29.	 Nograles, K. E. et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response 

pathways. Br. J. Dermatol. 159, 1092–1102 (2008).
	30.	 Scholz, G. M., Heath, J. E., Walsh, K. A. & Reynolds, E. C. MEK-ERK signaling diametrically controls the stimulation of IL-23p19 

and EBI3 expression in epithelial cells by IL-36γ. Immunol. Cell. Biol. 96, 646–655 (2018).
	31.	 Christensen, A. D. et al. Immunological mechanisms of contact hypersensitivity in mice. APMIS. 120, 1–27 (2012).
	32.	 Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol. 22, 347–352 (2010).
	33.	 Honda, T., Egawa, G., Grabbe, S. & Kabashima, K. Update of immune events in the murine contact hypersensitivity model: toward 

the understanding of allergic contact dermatitis. J. Invest. Dermatol. 133, 303–315 (2013).
	34.	 Silvestre, M. C., Sato, M. N. & Reis, V. Innate immunity and effector and regulatory mechanisms involved in allergic contact 

dermatitis. An. Bras. Dermatol. 93, 242–250 (2018).

https://doi.org/10.1038/s41598-020-57550-5


1 0Scientific Reports |          (2020) 10:734  | https://doi.org/10.1038/s41598-020-57550-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

	35.	 Hacini-Rachinel, F. et al. Intestinal dendritic cell licensing through Toll-like receptor 4 is required for oral tolerance in allergic 
contact dermatitis. J. Allergy Clin. Immunol. 141, 163–170 (2018).

	36.	 Panzer, R., Blobel, C., Fölster-Holst, R. & Proksch, E. TLR2 and TLR4 expression in atopic dermatitis, contact dermatitis and 
psoriasis. Exp. Dermatol. 23, 364–366 (2014).

	37.	 Martin, S. F. The role of the innate immune system in allergic contact dermatitis. Allergol. Select. 1, 39–43 (2017).
	38.	 Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 

353–389 (2006).
	39.	 Mattii, M. et al. The balance between pro- and anti-inflammatory cytokines is crucial in human allergic contact dermatitis 

pathogensis: the role of IL-1 family members. Exp Dermatol. 22, 813–819 (2013).
	40.	 Kish, D. D., Gorbachev, A. V. & Fairchild, R. L. IL-1 receptor signaling is required at multiple stages of sensitization and elicitation 

of the contact hypersensitivity response. J. Immunol. 188, 1761–1771 (2012).

Acknowledgements
This research was supported by AMED under Grant Number 18ek0109295H0002 and JSPS KAKENHI under 
Grant Numbers 15H04886, and 18K08281 to K.S. In addition, this research was supported by grants from the Lydia 
O’Leary Memorial Pias Dermatological Foundation and the Maruho Takagi Dermatology Foundation to K.S.

Author contributions
H.F., Y.I. and K.S. wrote the manuscript. H.F., Y.I., K.S. and S.W. collected data and performed experiments. H.F., 
Y.I., M.A. and K.S. designed the study. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-57550-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	TAK-242 ameliorates contact dermatitis exacerbated by IL-36 receptor antagonist deficiency

	Results

	Estimation of ear thickness and histological characteristics of Il36rn−/− mice after DNFB challenge. 
	Cytokine and chemokine expression in ear tissue of Il36rn−/− mice. 
	Effect of TAK-242 on CHS response. 
	Effect of TAK-242 on inflammatory cell recruitment. 
	TAK-242 treatment changes cytokine and chemokine mRNA expression in mouse ear tissue. 

	Discussion

	Materials and Methods

	Ethics statement. 
	Mice. 
	Induction of contact hypersensitivity. 
	Histological analysis of ear sections. 
	Immunohistochemical staining. 
	RNA isolation and RT-PCR. 
	TLR4 inhibition with TAK-242. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Il36rn−/− mice have increased contact hypersensitivity.
	Figure 2 Cytokine expression is increased by IL36RN deficiency.
	Figure 3 Intraperitoneal administration of TAK-242 decreases contact hypersensitivity in both wild-type and Il36rn−/− mice.
	Figure 4 Intraperitoneally administered TAK-242 suppresses inflammatory cell infiltration.
	Figure 5 Cytokine expression in wild-type and Il36rn−/− mice administered TAK-242.




