
1Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreports

fQSqueezer: k-mer-based
compression of sequencing data
Sebastian Deorowicz

the amount of data produced by modern sequencing instruments that needs to be stored is huge.
Therefore it is not surprising that a lot of work has been done in the field of specialized data compression
of FASTQ files. The existing algorithms are, however, still imperfect and the best tools produce quite
large archives. We present FQSqueezer, a novel compression algorithm for sequencing data able to
process single- and paired-end reads of variable lengths. It is based on the ideas from the famous
prediction by partial matching and dynamic Markov coder algorithms known from the general-purpose-
compressors world. The compression ratios are often tens of percent better than offered by the state-of-
the-art tools. the drawbacks of the proposed method are large memory and time requirements.

In the recent years, genome sequencing has became a mature technology with numerous applications in the
medicine. The instruments by Illumina (encountered to the 2nd generation of sequencers) produce majority of
available data for little money (e.g., about one thousand of U.S. dollars for whole human genome sequencing).
The sequenced reads are relatively short (up to a few hundreds of bases) but are of high quality. The 3rd genera-
tion instruments by PacBio or Oxford Nanopore can deliver much longer reads but unfortunately of much worse
quality and at much lower throughput.

The estimations of the amount of genomic data and the related costs can be found in the studies like1,2. The
presented huge numbers directly lead to the conclusion that in the near future just a storage and transfer of
sequenced (and mapped) reads will consume a lot of money and could be a dominant factor in total costs related
to sequencing. Therefore, it is not surprising that a lot of research was made to overcome this problem. The
obvious first step was application of gzip, a general-purpose compressor. The about 3-fold reduction of files was
remarkable, but the data deluge asked for more. The main problem of gzip is that it was designed mainly for tex-
tual data, or more precisely, for data with textual-like redundancy types. Unfortunately things like repetitions of
parts of data at short distances are uncommon in read collections.

The next step was an invention of specialized algorithms taking into account types of redundancies specific
for FASTQ files3. Some of the most important early results were presented in4–7. The details of the proposed
algorithms were different, but in general the authors tried (with some exceptions) to compress the reads locally,
i.e., not looking for the large-scale relations between the reads. The reason was rather simple and practical: the
amounts of memory necessary to construct a dictionary data structure allowing to find overlaps between reads
could be a few times larger than the input file size, e.g., hundreds of GB for human genomes. The improvement
over gzip was, however, limited. For example, the best algorithms were able to reduce the space necessary for DNA
bases about 5 times. This value should be compared to 4-fold reduction by simple spending 2 bits to distinguish
among 4 valid bases. Moreover, it appeared that the compression of quality values was even more problematic.

This situation motivated researchers to look for alternatives. At the beginning, they focused just on the com-
pression of bases. The key idea was to reorder the data to gather reads originating from close regions of genomes.
This could seem as a loss of information, but as the original ordering of reads in a FASTQ file is usually more or
less random one can argue that it is hard to say which of two random orderings is better (and even how we can
define what “better” means here). The first notable attempt into this direction was described in8. The authors
introduced a variant of the Burrows–Wheeler transform to find overlaps between reads. For human reads with
40-fold coverage they were able to spend about 0.5 bits per base, which was a significant improvement.

In the following years, other researchers explored the concept of using minimizers9, i.e., short, lexicograph-
ically smallest, substrings of sequences, to find reads from close regions. The key observation was that if two
reads originate from the close regions of a genome their minimizers are usually the same. Thus, the reads can
be grouped by their minimizers. In the first work following this idea10, for the mentioned human dataset it was
sufficient to use about 0.3 bits per base. A similar result was obtained later in11. The possible gains were, however,

Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16,
44-100, Gliwice, Poland. email: sebastian.deorowicz@polsl.pl

open
Corrected: Author Correction

https://doi.org/10.1038/s41598-020-57452-6
http://orcid.org/0000-0002-9496-733X
mailto:sebastian.deorowicz@polsl.pl
https://doi.org/10.1038/s41598-020-60472-x

2Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

limited by the fact that the reads identified to originate from the same genome region could span no more than
two read lengths.

In12, it was shown how to group reads from a bit larger genome regions. Significantly better results were, how-
ever, obtained in three recent articles presenting HARC13, Spring14, and Minicom15. The attempts differ in details,
but are based on similar ideas. The overlaps are found for much larger genome regions (in theory up to chromo-
some size) thanks to dictionary structures storing minimizers of parts of reads. What is also worth to mention,
FaStore12 and Spring14 do not focus just on DNA bases and they can compress also the complete FASTQ files.

Together with improving the compression ratio for DNA symbols, the quality scores became responsible for
a dominant part of the compressed archives. Therefore a number of works focused on this problem. One of the
simplest strategies was to reduce the resolution of quality scores. Illumina in their HiSeq sequencers restricted the
quality scores to eight values, and then in the NovaSeq instruments to just four values. The rational for these deci-
sions was that the quality of sequencing is currently very good and the prices of sequencing are low. Therefore, if
necessary, it is easier (and cheaper) to perform sequencing with a bit larger coverage than store high-resolution
quality scores. The recent experiments suggest that reduction of quality score resolution has very little (if any)
impact on the quality of variant calling. For example, in12 it was shown that even more aggressive reduction to just
two quality values can be justified, at least in some situations. Moreover, there are several algorithms like QVZ16,17
and Crumble18 that perform advanced analysis of quality scores to preserve only the most important information.

In this article, we propose a novel compression algorithm for FASTQ files. The main novelty is in the compres-
sion of DNA bases, as for quality scores and read identifiers we follow similar strategies as in the state-of-the-art
tools. Our algorithm, FQSqueezer, make use of the ideas from the prediction by partial matching (PPM)19,20
and dynamic Markov coder (DMC)21 general-purpose methods. A direct adaptation of the PPM-like strategy
to sequencing reads would be, however, very hard and likely unsuccessful. There are at least four main reasons
for that. First, in the ideal case, the PPM algorithm should construct a dictionary of all already seen strings of
length up to some threshold, significantly larger than log4 (genome_size), which for human genomes seems to be
unimplementable on workstations and even medium-sized servers. Second, the PPM algorithms often need many
accesses to the main memory to compress a single symbol. For huge dictionaries this could result in a very slow
processing (due to cache-misses). Third, sequenced data contain errors that should be corrected to refrain from
expansion of the dictionary structures. Fourth, the PPM algorithms usually learn slowly, which is a good strategy
for texts, but seems to be bad for genomic data.

To overcome these problems we designed a few fixed-k dictionaries for k-mers (k-symbol long substrings)
found in the reads. Moreover, the dictionaries are organized in a way reducing the number of cache misses. We
also estimate the probability of symbols occurrence much more aggressively, which results in significantly better
compression (compared to classical PPM-like estimation). Finally, for the storage of k-mers in the dictionaries we
perform some kind of error correction.

The proposed ideas has some similarity to earlier works. For example, some correction of bases was employed
in AssembleTrie22. The authors used it, however, just to “synchronize” reads from both strands (forward and
reverse). Formerly, in GeCo23 a similar correction was used to improve context determination in the field of
genomic (complete genomes, chromosomes, contigs) data compression. The estimation of the probability of
appearance of the current symbol based on k-mers of some size (much smaller than in our solution due to huge
memory requirements of the picked dictionary implementation) was used in Fqzcomp4. Modeling the genomic
data (genomes, chromosomes, contigs) as a Markov source was studied by Pinho et al.24,25. It is, however, worth to
emphasis the differences between compression of sequencing reads and collections of longer genomic fragments,
e.g., contigs, chromosomes, genomes. The longer (assembled) fragments are of much better quality than reads, so
small differences between very similar fragments are usually due to variations between organisms and they are
expected. In sequencing datasets, we usually work with reads originating from a single genome and the differ-
ences between very similar fragments are in majority due to sequencing errors. Some of them (minority) are also
due to diploid structure of some genomes. Even in case of metagenomic studies, when the reads are from many
genomes, a significant part of the differences are due to sequencing errors. Therefore, a compressor of sequencing
data should be designed in a different way than a compressor of assembled genomes or its parts. They also should
not be compared directly in practice as they were designed for solving different tasks.

In the present article, we significantly improved the mentioned ideas, as well as, proposed other techniques.
The most important ones are: the organization of the huge dictionaries, design of the PPM-like estimation of
probabilities, use of a custom DMC as the stage following the PPM, the technique for prediction and correction
of sequencing errors, technique of ordering the reads and making use of shared prefixes. What is also important,
we developed the complete FASTQ compressors.

The main asset of FQSqueezer is its compression ratio, usually much better than of the state-of-the-art com-
petitors, i.e., FaStore12, Spring14, and Minicom15. Our tool has, however, also some drawbacks in terms of speed
and memory usage. Namely, it is a few times slower than the mentioned competitors in compression and much
slower in decompression.

Results
tools and datasets. For the evaluation we used the state-of-the-art competitors, i.e., FaStore12, Spring14, and
Minicom15. We resigned from testing some other good compressors like BEETL8, Orcom10, AssembleTrie22, and
HARC13 as the previous works demonstrated that they perform worse than the picked tools. The older utilities are
not competitive in terms of compression ratio, as was demonstrated in the recent papers12,14 (see also Table 1 for
experiments with one of our datasets). Some of them are very fast, e.g., DSRC 27. Nevertheless, in this article we
focus mainly on the compression ratio.

The datasets for experiments were taken from the previous studies. They are characterized in Supplementary
Table 1. In the main part of the article, we used 9 datasets but more results can be found in the Supplementary

https://doi.org/10.1038/s41598-020-57452-6

3Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Worksheet. Unfortunately, some compressors do not support all the examined modes, which is a reason of lack
of their results in some tables.

All experiments were run at workstation equipped with two Intel Xeon E5-2670 v3 CPUs (2 × 12
double-threaded 2.3 GHz cores), 256 GB of RAM, and six 1 TB HDDs in RAID-5. If not stated explicitly the
programs were run with 12 threads.

compression of the bases. The most important part of the present work is the compression of bases.
Therefore, in the first experiment we evaluated the tools in this scenario. The results for the single-end (SE) reads
are given in Table 2. The ratios are in output bits per input base. As it is easy to observe, in the majority of cases
FQSqueezer outperforms the competitors. For some datasets the gain is large. Nevertheless, for two datasets
FQSqueezer loses to Minicom in the original-order-preserving (OO) mode. We investigated this situation a bit
closer by checking whether the compression ratio will depend on the initial ordering of the reads. When we
shuffled the reads prior to compression, the compression ratios for SRR1265495_1 and SRR1265496_1 changed
significantly for all the examined compressors, i.e., 0.632 → 0.531 and 0.646 → 0.527 (Spring), 0.448 → 0.539 and
0.484 → 0.568 (Minicom), 0.506 → 0.472 and 0.517 → 0.487 (FQSqueezer). This shows that the initial ordering
of the reads in these datasets is far from random and Minicom can benefit from this. In the mode allowing reor-
dering of the reads (REO), FQSqueezer always wins. Moreover, the compression ratios are roughly twice better
than in the OO mode for all the examined methods.

The results for the paired-end (PE) reads can be found in Table 3. In the OO mode, FQSqueezer usually
outperforms Spring significantly. Nevertheless, for the largest dataset it loses slightly. It is hard to say what is the
reason. The situation for the REO mode is similar, but the gains are usually even larger than in the OO mode.

The most important drawbacks of FQSqueezer are, however, its time and space requirements (Table 4 and
Supplementary Worksheet). In the compression, it is a few times slower than the competitors, but in the decom-
pression the difference is larger. The reason is simple. FaStore, Spring, and Minicom need time to find overlapping
reads that likely origin ate from close genome positions. Nevertheless, decoding of the matches between the over-
lapping reads is very fast. FQSqueezer can be classified as a PPM algorithm. In the decompression, the algorithms
from this family essentially mimic the same work made in the compression, so the differences in compression and
decompression times are negligible.

The case of memory usage is similar. The same dictionaries must be maintained by FQSqueezer in the decom-
pression that are necessary in the compression. Moreover, to predict the successive symbols a lot of statistics must

Compressor
Comp.
size [MB]

Comp.
time [s]

RAM in
comp. [MB]

Decomp.
time [s]

RAM in
decomp.
[MB]

pigz 3,392 128 10 54 2

7z 2,710 2,438 5,592 220 71

zstd 3,335 828 48 35 4

brotli 3,186 6,214 100 78 4

DSRC 2 2,273 55 3,997 56 2,739

FQZcomp 1,990 287 283 385 581

NAF27 2,173 12,885 4,620 60 3,799

Spring 1,650 159 1,735 24 975

FQSqueezer 1,511 1,409 19,489 1,501 19,467

Table 1. Comparison of compression ratios and running times of selected general-purpose compressors and
FASTQ-specialized compressors. The dataset ERR532393_1 (complete FASTQ file) of size 9.64GB was used. The
original ordering of reads were preserved.

Dataset
Size
[Gbp]

Original ordering Reordered

Spring Minicom FQSqueezer Gain FaStore Spring Minicom FQSqueezer Gain

ERR174310_1 20.97 0.696 0.857 0.649 7.4 0.593 0.408 0.589 0.396 3.1

ERR532393_1 3.58 0.667 0.647 0.528 22.5 0.482 0.433 0.410 0.294 39.3

SRR327342_1 0.95 0.524 0.538 0.488 7.4 0.267 0.158 0.166 0.142 11.3

SRR554369_1 0.17 0.441 0.509 0.414 6.6 0.494 0.240 0.307 0.227 5.6

SRR635193_1 1.47 0.697 0.702 0.633 10.0 0.333 0.267 0.289 0.216 23.9

SRR689233_1 1.48 0.449 0.442 0.400 10.6 0.248 0.193 0.187 0.149 25.5

SRR870667_1 7.48 1.460 1.364 0.721 89.3 0.722 1.292 1.212 0.506 42.6

SRR1265495_1 1.70 0.632 0.448 0.506 −11.4 0.368 0.500 0.319 0.246 29.7

SRR1265496_1 1.48 0.646 0.484 0.517 −6.4 0.391 0.507 0.352 0.264 33.4

Table 2. Compression ratios for single-end reads. Compression ratios are in output bits per base [bpb]. Best
results are in bold. ‘Gain’ (expressed in %) is defined as: best competitor ratio divided by FQSqueezer ratio
subtracted by 1. FaStore does not offer original ordering preserving.

https://doi.org/10.1038/s41598-020-57452-6

4Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

be collected. Nevertheless, without the applied correction mechanisms the occupied memory would likely be
doubled.

The dictionaries are updated only at the synchronization points, i.e., after processing each FASTQ block of
size 16 MB, so the number of threads has some impact on the compression ratio. The results in Table 5 show that
reducing the number of threads from 12 to 1 we can gain 1–2% in ratio, but the processing would be significantly
slower.

One of the parameters of FQSqueezer is the assumed genome size, which should be comparable to the true
genome size in the sequencing experiment. The genome size is used to set the lengths of the k-mers stored in the
dictionaries. In the last experiment in this part, we checked the impact of this parameter. The results presented in
Table 6 show that declaring improper genome size deteriorates the compression ratio, but the differences are not
large (In Supplementary Section 1.1 one can find some suggestion how to set this parameter).

full fAStQ compressors. FQSqueezer is a FASTQ compressor, so we ran it for a few datasets to verify its
performance in such scenario. There were only two competitors: FaStore and Spring as Minicom was designed
just for bases. The results in Table 7 are for three modes. In the lossless mode, all data were preserved. In the
reduced mode, the IDs were truncated to just the instrument name and the quality values were down-sampled to
8 levels (i.e., Illumina 8-level binning). In the bases only mode, only the bases are stored. The table presents only
the sizes of the compressed archives, but the timings and memory occupation can be found in Supplementary
Worksheet.

The experiment confirmed the advantage of FQSqueezer in terms of compression ratio. Nevertheless, our
compressor is slower and needs more memory than the competitors. It is interesting to note that in the lossless
modes both Spring and FQSqueezer give smaller archives when they do not permute the reads. This is caused
by the large cost of compression of IDs that are not so similar for subsequent reordered reads. In the remaining
modes, the cost of ID storage is negligible, so the reordering modes win.

Discussion
In the article, we presented a novel compression algorithm for FASTQ files. Its architecture was motivated by the
PPM and DMC general-purpose compressors. Nevertheless, significant amount of work was necessary to make
it possible to adapt these two approaches for genomic data. First, it was crucial to prepare specialized data struc-
tures for statistics gathering, with care of fast memory accesses (i.e., reduction of cache misses). Second, some
dedicated correction of bases was implemented for better prediction and reduction of memory usage. Third, a
special approach was necessary to efficiently store paired reads. Fourth, the DMC-like mechanism for aggressive
estimation of symbol occurrence probabilities was proposed.

The experiments show advantage of FQSqueezer in terms of compression ratio for the majority of datasets.
The differences between our tool and the state-of-the-art competitors were sometimes quite large. Nevertheless,
for the largest paired-end dataset we perform slightly worse than Spring. This phenomenon deserves further
investigation.

The most important drawbacks of FQSqueezer are slow processing and large memory consumption. These
features are typical for PPM-based algorithms. Nevertheless, some work to reduce these drawbacks is proba-
bly possible. For example, the two most important components responsible for slow processing are looking for
approximate matches and queries for incomplete k-mers. In the future work, it should be possible to attack at
least these two problems, e.g., try to minimize the number of queries to the dictionary data structures without
deterioration of the compression ratios.

For those, who would find the memory and time requirements prohibitive for application of the proposed
tool in real pipelines, FQSqueezer could be seen as an attempt into better estimation of the entropy present in
sequencing data. It should also be possible to implement some of the concepts present in FQSqueezer in the more
practical FASTQ compressors to improve their compression ratios.

Dataset
Size
[Gbp]

Orginal ordering Reordered

Spring FQSqueezer Gain FaStore Spring Minicom FQSqueezer Gain

ERR174310 41.93 0.463 0.474 −2.3 0.844 0.317 0.481 0.346 −8.3

ERR532393 7.15 0.623 0.462 34.7 0.694 0.505 0.471 0.347 35.8

SRR327342 2.08 0.490 0.355 38.0 — 0.307 — 0.197 55.7

SRR554369 0.33 0.322 0.299 7.7 0.652 0.222 0.293 0.205 8.4

SRR635193 2.94 0.562 0.501 12.2 0.500 0.339 0.419 0.292 16.0

SRR689233 2.96 0.367 0.309 18.8 0.350 0.239 0.257 0.184 30.2

SRR870667 12.60 1.070 0.553 93.3 — 0.928 — 0.424 119.0

SRR1265495 3.40 0.484 0.373 29.7 0.437 0.436 0.316 0.228 38.2

SRR1265496 2.96 0.500 0.389 28.4 0.479 0.449 0.344 0.247 39.0

Table 3. Compression ratios for paired-end reads. Compression ratios are in output bits per base [bpb]. Best
results are in bold. ‘Gain’ (expressed in %) is defined as: best competitor ratio divided by FQSqueezer ratio
subtracted by 1. FaStore and Minicom do not support original ordering preserving. For two datasets (REO
mode) we were unable to run FaStore and Minicom.

https://doi.org/10.1038/s41598-020-57452-6

5Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Methods
Basic definitions. For clarity of description of the algorithm let us assume that DNA sequences x x x xr1 2= …
contain symbols from alphabet {A,C,G,T,N}. The length (size) of a sequence is the number of elements it is com-
posed of. A substring can be obtained from a sequence by removing (possibly 0) symbols from the beginning and
the end. The notation xi,j means a substring …+x x xi i j1 . A k-mer is a sequence of length k. A canonical k-mer is
lexicographically smaller of a k-mer and its reverse complement.

Basic description of the algorithm. FQSqueezer is a multi-threaded algorithm, but for simplicity of pres-
entation we will start from a single-threaded variant. Our tool accepts both single-end (SE) and paired-end (PE)
reads. The reads can be stored in the original ordering (OO) or can be reordered (REO). In the reordering mode,
the reads are initially sorted according to the DNA sequence (first read of a pair in the PE mode).

The input FASTQ files (or sorted files in the REO mode) are loaded in blocks of size 16 MB. The reads from a
single block (pair of blocks in the PE mode) are compressed one by one (or pair by pair). The read ID and quality
values are compressed using rather standard means (similarly like in the top existing FASTQ compressors). The
details are described at the end of this section. Below, we will focus just on the DNA symbols.

Dataset
Size
[Gbp]

FaStore Spring Minicom FQSqueezer

c-t d-t c-m d-m c-t d-t c-m d-m c-t d-t c-m d-m c-t d-t c-m d-m

ERR174310_1 20.97 4,595 109 6.4 4.2 1,815 103 11.0 4.7 19,417 105 67.7 4.0 12,728 13,100 91.6 90.6

ERR532393_1 3.58 379 18 5.9 0.9 150 18 3.0 1.9 609 17 10.1 0.7 1,344 1,452 16.4 16.4

SRR327342_1 0.95 192 5 4.4 0.3 35 5 1.4 0.6 67 3 4.6 0.7 144 145 6.7 6.6

SRR554369_1 0.17 93 1 0.9 0.1 7 1 0.8 0.3 30 1 1.7 0.0 68 70 6.2 6.2

SRR635193_1 1.47 291 12 5.9 0.9 77 10 11.2 0.8 347 11 5.4 0.3 456 462 12.1 12.1

SRR689233_1 1.48 196 7 5.5 0.7 64 9 1.6 0.8 127 5 4.5 0.3 406 413 11.7 11.6

SRR870667_1 7.48 2,185 64 5.8 3.0 757 81 7.3 3.0 3,030 70 27.1 3.9 4,127 4,432 36.4 36.1

SRR1265495_1 1.70 483 7 5.7 0.6 82 12 1.9 1.6 203 7 5.1 0.2 658 685 13.2 13.1

SRR1265496_1 1.48 170 6 5.1 0.6 81 11 1.8 1.6 194 7 4.6 0.2 609 652 13.0 13.0

Table 4. Time and memory requirements for compression of SE reads in the reordering mode. Column
abbreviations: ‘c-t’ — compression time (in seconds), ‘c-m’ — RAM usage in compression (in GB), ‘d-t’ —
decompression time (in seconds), ‘d-m’— RAM usage in decompression (in GB). Best results are in bold.

No.
threads

Original ordering Reordered

Compression
time [s]

Ratio
[bpb]

Compression
time [s]

Ratio
[bpb]

1 1034.76 0.484 547.72 0.139

2 619.97 0.485 378.87 0.140

3 453.10 0.485 315.44 0.140

4 356.98 0.486 263.28 0.141

6 265.40 0.487 202.04 0.141

8 221.37 0.487 168.96 0.142

12 169.56 0.488 140.31 0.142

16 143.78 0.489 131.10 0.143

24 116.33 0.490 122.69 0.144

Table 5. Multithreding scalability of FQSqueezer for SRR327342_1 dataset.

Declared
genome
size

Original ordering Reordered

Time
[s]

RAM
[GB]

Ratio
[bpb]

Time
[s]

RAM
[GB]

Ratio
[bpb]

2 3,130 23.4 0.761 2,815 23.4 0,548

10 3,124 23.8 0.744 2,847 23.8 0.533

50 3,203 25.1 0.730 3,172 25.0 0.515

200 3,717 30.0 0.725 3,647 29.9 0.507

500 4,569 36.6 0.721 4,090 36.4 0.502

2000 4,867 68.0 0.722 4,958 67.8 0.500

Table 6. Impact of FQSqueezer declared genome size for SRR870667_1 dataset. Reference genome for this
organism is of size 430 Mbp.

https://doi.org/10.1038/s41598-020-57452-6

6Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

compression of bases. In the compression of a SE read (or first read of a pair), we process the bases from
the beginning of a read position by position. For each base we determine the statistics of occurrences of k-mers
ending at this base in the already processed part of the input data. To this end, we maintain a few dictionaries: De,
Dp, Ds, and Db that store numbers of occurrences of: e-mers, p-mers, s-mers, and b-mers, respectively, where

< < <e p s b. The details of the organization of the dictionaries are given in Supplementary Section 1.1.
At the beginning we will discuss the OO-SE mode. In general, the longest possible, but no longer than b–1

symbols, context (substring preceding the current symbol in a read) is taken to predict the current symbol. Then,
the symbol is encoded using these predictions (as well as some other properties of a read and the current position)
with a use of a range coder.

Let us follow the example given in Fig. 1 assuming the sizes of k-mers: e = 4, p = 6, s = 9, b = 12. The subfigures
(a)–(c) show how the probabilities of appearance of each symbol from the alphabet {A,C,G,T,N} are estimated
for some symbols of a read. In Fig. 1a, the 6th symbol (orange cell in the figure) is encoded. We consult the Dp
dictionary (as there are too few already-processed-read symbols to use Ds or Db) for statistics of appearance of
all p-mers ATACC*, where “*” represents any symbol. The answer (blue font in the figure) is that: ATACCA
appeared 31 times, ATACCC—10 times, ATACCG—454 times, ATACCT—5 times. Then, we reorder the alpha-
bet symbols according to this statistics (for simplicity let us assume that for equal counters the symbols are
ordered lexicographically): G (rank 0), A (rank 1), C (rank 2), T (rank 3), N (rank 4). In the next step, we check
in the Model dictionary how many times for such ordered counters, at the 6th position, when the statistics are
from the Dp dictionary the current symbol was the one with rank 0, 1,…. (In fact we use more items that define
the query to the Model dictionary, but for simplicity of presentation we omit them here. More details are given in
Supplementary Section 1.2.) The answer is that 1204 times the symbol of rank 0 was encoded, 15 times the sym-
bol of rank 1, and so on. The frequencies 1204, 15, 8, 8, 2 are then used by the range coder to encode the current
symbol.

The situation presented in Fig. 1b is a bit different. Here we are at the 8th position in a read so we are able to
look for statistics in Ds dictionary. Nevertheless, this dictionary stores statistics for 9-mers and we can construct
only 8-mers from the already processed symbols. Therefore, the dictionary is asked for *ATACCGT* 9-mers,
where “*” represents any symbol. The answer is that: *ATACCGTA appeared 2 times, *ATACCGTC—155 times,
*ATACCGTG—54 times, *ATACCGTT—12 times. Then, we ask the Model dictionary and obtain estimates: 350
for rank-0 symbol (C in this situation), 100 for rank-1 symbol (G), 14 for rank-2 symbol (T), 4 for rank-3 symbol
(A), 3 for rank-4 symbol (N). These estimates are used for encoding the current symbol using the range coder.

In Fig. 1c, we show the processing of the 14th symbol. Now, the number of processed symbols is sufficient to
use Db dictionary for statistics of occurrence of 12-mers ACCGTCAGGTA*. Unfortunately, the answer is that no
such 12-mer has been seen so far. Therefore, we use the Ds dictionary for GTCAGGTA* and obtain statistics: 15
for A, 0 for C, 15 for G, 0 for T. Then we use the Model dictionary and see that the estimates for the current symbol
are: 102 for rank-0 symbol (A), 104 for rank-1 symbol (G), 7 for rank-2 symbol (C), 5 for rank-3 symbol (T), 1
for rank-4 symbol (N). As previously, these values can be used to encode the current symbol by the range coder.

Dataset Input

Original ordering Reordered

Spring FQSqueezer FaStore Spring FQSqueezer

Lossless

ERR532393_1 9,642 1,649.6 1,510.8 1,840.4 1,738.9 1,634.9

SRR327342_1 2,813 435.4 428.2 504.1 471.5 468.0

SRR870667_1 18,555 3,913.6 3,091.2 3,683.6 4,067.2 3,342.5

ERR532393 19,284 3,200.6 2,903.6 3,602.1 3,299.3 3,032.0

SRR327342 5,986 954.6 904.1 — 987.2 944.3

SRR870667 32,402 6,060.6 5,093.6 — 6,201.6 5,345.0

Reduced

ERR532393_1 9,642 917.5 827.8 978.4 814.4 723.5

SRR327342_1 2,813 178.7 172.1 208.2 135.5 131.2

SRR870667_1 18,555 2,583.7 1,824.0 2,151.7 2,444.0 1,620.3

ERR532393 19,284 1,814.9 1,616.5 2,058.3 1,729.8 1,515.9

SRR327342 5,986 413.4 368.9 — 366.6 328.4

SRR870667 32,402 3,914.7 2,994.2 — 3,698.5 2,790.2

Bases only

ERR532393_1 9,642 298.0 236.7 215.5 193.3 132.1

SRR327342_1 2,813 62.1 59.2 31.6 18.8 17.0

SRR870667_1 18,555 1,364.2 673.6 674.8 1,207.5 473.2

ERR532393 19,284 556.6 416.5 620.6 451.5 313.5

SRR327342 5,986 127.1 97.8 — 79.7 52.7

SRR870667 32,402 1,684.5 871.6 — 1,461.0 667.2

Table 7. Compression of complete FASTQ files. The dataset names suffixed “_1” denote SE data. The remaining
are PE files. All numbers are sizes in MBs. The best results are in bold.

https://doi.org/10.1038/s41598-020-57452-6

7Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

When a symbol is encoded, it is checked whether it looks like a sequencing error. Let us assume that the statis-
tics from the Db dictionary are C [0 , 5 , 0 , 0]A C G T= and the current symbol is A. The dominance of C symbols
suggests that A is a sequencing error. Therefore, we encode A at this position but replace A by C in the read, which
has impact on the processing of the next symbols in the read. To assume that we have a sequencing error the most
frequent symbol should have counter at least 3 and the current symbol should have counter 0.

In the REO mode, the prefix of size p of a SE read (or first read of a pair in the PE mode) is encoded in a differ-
ent way. Roughly speaking, we treat it as a 2p-bit unsigned integer and encode the difference between it and the
integer representing the prefix of the previous read. Using the same read as in the above example, we pick the
6-mer ATACCG and convert it to 12-bit integer using mapping: 002 for A, 012 for C, 102 for G, 112 for T. Therefore
the read prefix is represented as 001100010110 7902 10= . Let us also assume the previous read prefix was
ATACAT, which translates to =001100010011 7872 10. Therefore the current read prefix is encoded as a difference

− =790 787 3. The differences are usually small numbers which can be encoded efficiently using a range coder.
The suffix is compressed in the same way as in the OO mode.

In the PE modes, the first read of a pair is compressed exactly in the same way as in the SE mode. The pro-
cessing of the second read is a bit more complex, but it is the same in the OO and REO modes. Initially we try to
predict some b-mer of the second read. To this end, we use a dictionary Mb that stores pairs of minimizers of read
pairs seen so far. Quite often this allows to encode the b-mer of the second read in an efficient way. Then, we store
the substrings of the read following and preceding this b-mer. If we were unable to predict the minimizer of the
second read, we store the read in the same way as a SE read in the OO mode.

Figure 2 shows an example how the pair of minimizers are used to predict some of the second read b-mer. At
the beginning a minimizer, =m ACCGAGGTAG1 , in the first read is found (green cells). Then, we look in the Mb
dictionary which minimizers in the second read appeared together with m1 in the past. We obtain four candidates
ordered by the number of appearances. Then for each of the candidates we check whether it appears in the second
read. In our example, we found AAGATGTCCAGT (orange cells). Thus, we encode just the rank of the candidate
in the ordered list of candidates, i.e., 2 (we count from 0) and the position of the candidate in the second read, i.e.,
10.

After processing a read the dictionaries De, Dp, Ds, Db, and Mb for a case of PE reads, are updated.

Figure 1. Illustration of compression of a single read in a single-end, original ordering mode. The subfigures
(a–c) show how the estimation of probabilities for entropy coding is performed for some symbols.

https://doi.org/10.1038/s41598-020-57452-6

8Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

For clarity of presentation, the above description of bases compression is a bit simplified. For example, in
practice we work on canonical k-mers, a second correction mechanism (rarely used) is also employed, more than
a single pair of minimizers is stored in Mb dictionary, the Model dictionary is indexed with a use of some function
of the mentioned (and other) properties of the current position in a read, a dynamic Markov coder-like mecha-
nism is used in the Model dictionary to provide estimated probabilities. A discussion of all of this can be found in
Supplementary Section 1.2.

compression of iDs. In the lossless mode, IDs are compressed similarly as in the state-of-the-art compres-
sors, like Spring or FaStore. The ID of each read is tokenized (the separators are non-alphanumerical characters).
Then the tokens are compared with the tokens of the previous read. If the tokens at corresponding positions con-
tain numerical values, the difference between the integers is calculated and stored. Otherwise the corresponding
tokens are compared as strings. If they are equal we just store a flag. In the opposite case, we store a mismatch flag
and compare the tokens character by character storing the result of comparison and (if necessary) the letter from
the current read. It can also happen that the list of tokens differ significantly, i.e., they are of different length or the
corresponding tokens are of different type. In this situation, the ID is stored character by character.

FQSqueezer offers also two lossy modes. In the first one, it preserves just the instrument name (first part of the
ID). These names are organized in a move-to-front list26 and the position of the current ID at the list is encoded.
If the current instrument name is absent form the list, it is encoded explicitly. In the last possible mode, IDs are
discarded.

compression of quality scores. The quality scores can be compressed in five modes allowing different
number of values: 96, 8, 4, 2, none. If the input FASTQ file has already reduced resolution of quality scores (e.g.,
4 for Illumina NovaSeq sequencers), no conversion is necessary. Otherwise, in the lossy mode the necessary res-
olution reduction is made by the compressor. The encoding is made using contexts containing the position in a
read and 2 (96-value alphabet), 6 (8-value alphabet), 9 (4-value alphabet), or 10 (binary alphabet) previous scores.

implementation details. The implementation is in the C++14 programming language. Most of the dic-
tionaries are implemented as hash tables with linear probing for collision handling. To reduce delays caused by
cache misses we make use of software prefetching. The multithreading is implemented using the native C++
threads. The FASTQ blocks of size 16 MB are split into as many parts as the number of threads. Each thread pro-
cesses its part independently and the global dictionaries are available only for querying. At the synchronization
points the threads update the global dictionaries. Nevertheless, the threads update different parts of the diction-
aries so they can operate in parallel.

Data availability
The source code of the application is available at https://github.com/refresh-bio/fqsqueezer.

Received: 7 June 2019; Accepted: 19 December 2019;
Published online: 17 January 2020

References
 1. Deorowicz, S. & Grabowski, S. Data compression for sequencing data. Algorithms for Molecular Biology 8, 25 (2013).
 2. Stephens, Z. D. et al. Big Data: astronomical or genomical. PLoS Biol. 13, e1002195 (2015).
 3. Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38, 1767–1771 (2010).
 4. Bonfield, J. K. & Mahoney, M. V. Compression of FASTQ and SAM format sequencing data. PLoS One 8, e59190 (2013).
 5. Deorowicz, S. & Grabowski, S. Compression of DNA sequence reads in FASTQ format. Bioinformatics 27, 860–862 (2011).
 6. Hach, F., Numanagić, I., Alkan, C. & Sahinalp, S. C. SCALCE: boosting sequence compression algorithms using locally consistent

encoding. Bioinformatics 28, 3051–3057 (2012).
 7. Roguski, L. & Deorowicz, S. DSRC 2—Industry-oriented compression of FASTQ files. Bioinformatics 30, 2213–2215 (2014).
 8. Cox, A. J., Bauer, M. J., Jakobi, T. & Rosone, G. Large-scale compression of genomic sequence databases with the Burrows–Wheeler

transform. Bioinformatics 28, 1415–1419 (2012).
 9. Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M. & Yorke, J. A. Reducing storage requirements for biological sequence comparison.

Bioinformatics 20, 3363–3369 (2004).
 10. Grabowski, S., Deorowicz, S. & Roguski, L. Disk-based compression of data from genome sequencing. Bioinformatics 31, 1389–1395

(2015).
 11. Patro, R. & Kingsford, C. Data-dependent bucketing improves reference-free compression of sequencing reads. Bioinformatics 31,

2770–2777 (2015).

Figure 2. Example of prediction of some b-mer of the paired read from the statistics of occurrences of pairs of
minimizers in PE reads.

https://doi.org/10.1038/s41598-020-57452-6
https://github.com/refresh-bio/fqsqueezer

9Scientific RepoRtS | (2020) 10:578 | https://doi.org/10.1038/s41598-020-57452-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

 12. Roguski, L., Ochoa, I., Hernaez, M. & Deorowicz, S. FaStore: a space-saving solution for raw sequencing data. Bioinformatics 34,
2748–2756 (2018).

 13. Chandak, S., Tatwawadi, K. & Weissman, T. Compression of genomic sequencing reads via hash-based reordering: algorithm and
analysis. Bioinformatics 34, 558–567 (2018).

 14. Chandak, S., Tatwawadi, K., Ochoa, I., Hernaez, M. & Weissman, T. SPRING: A next-generation compressor for FASTQ data.
Bioinformatics 35, 2674–2676 (2019).

 15. Liu, Y., Yu., Z., Dinger, M. E. & Li, J. Index suffix-prefix overlaps by (w; k)-minimizer to generate long contigs for reads compression.
Bioinformatics 35, 2066–2074 (2018).

 16. Hernaez, M., Ochoa, I. & Weissman, T. A cluster-based approach to compression of quality scores. In: Bilgin, A. et al. (ed.), Proc. of
Data Compression Conference. IEEE Computer Society, Los Alamitos, CA, pp. 261–270 (2016).

 17. Malysa, G. et al. QVZ: lossy compression of quality scores. Bioinformatics 31, 3122–3129 (2015).
 18. Bonfield, J. K., McCarthy, S. A. & Durbin, R. Crumble: reference free lossy compression of sequence quality values. Bioinformatics

35, 337–339 (2019).
 19. Cleary, J. G. & Witten, I. H. Data compression using adaptive coding and partial string matching. IEEE Trans. on Communications

COM-32, 396–402 (1984).
 20. Moffat, A. Implementing the PPM data compression scheme. IEEE Trans. on Communications COM-38, 1917–1921 (1990).
 21. Cormack, G. V. & Horspool, R. N. S. Data compression using dynamic Markov modelling. The Computer Journal 30, 541–550

(1987).
 22. Ginart, A. A. et al. Optimal compressed representation of high throughput sequence data via light assembly. Nat. Commun. 9, 566

(2018).
 23. Pratas, D., Pinho, A. J. & Ferreira, P. J. S. G. Efficient compression of genomic sequences. Proc. of Data Compression Conference.

IEEE Computer Society, Los Alamitos, CA, pp. 231–240 (2016).
 24. Pinho, A. J. & Pratas, D. MFCompress: a compression tool for FASTA and multi-FASTA data. Bioinformatics 30, 117–118 (2014).
 25. Pinho, A. J., Ferreira, P. J. S. G., Neves, A. J. R. & Bastos, C. A. C. On the Representability of Complete Genomes by Multiple

Competing Finite-Context (Markov) Models. PLoS ONE 6, e21588 (2011).
 26. McCabe, J. On serial files with relocatable records. Operations Res. 12, 609–618 (1965).
 27. Kryukov, K., Ueda, M. T. & Imanishi, T. Nucleotide Archival Format (NAF) enables efficient lossless reference-free compression of

DNA sequences. Bioinformatics 35, 3826–3828 (2019).

Acknowledgements
This work was supported by National Science Centre, Poland under projects DEC-2015/17/B/
ST6/01890 and DEC-2017/25/B/ST6/01525. The infrastructure was supported by POIG.02.03.01-24-099/13
grant: “GeCONiI—Upper Silesian Center for Computational Science and Engineering”.

Author contributions
All the work was made by S.D.

competing interests
The author declares no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-57452-6.
Correspondence and requests for materials should be addressed to S.D.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-57452-6
https://doi.org/10.1038/s41598-020-57452-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	FQSqueezer: k-mer-based compression of sequencing data
	Results
	Tools and datasets.
	Compression of the bases.
	Full FASTQ compressors.

	Discussion
	Methods
	Basic definitions.
	Basic description of the algorithm.
	Compression of bases.
	Compression of IDs.
	Compression of quality scores.
	Implementation details.

	Acknowledgements
	Figure 1 Illustration of compression of a single read in a single-end, original ordering mode.
	Figure 2 Example of prediction of some b-mer of the paired read from the statistics of occurrences of pairs of minimizers in PE reads.
	Table 1 Comparison of compression ratios and running times of selected general-purpose compressors and FASTQ-specialized compressors.
	Table 2 Compression ratios for single-end reads.
	Table 3 Compression ratios for paired-end reads.
	Table 4 Time and memory requirements for compression of SE reads in the reordering mode.
	Table 5 Multithreding scalability of FQSqueezer for SRR327342_1 dataset.
	Table 6 Impact of FQSqueezer declared genome size for SRR870667_1 dataset.
	Table 7 Compression of complete FASTQ files.

