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Spatial Variability of Soil properties 
and portable X-Ray fluorescence-
quantified Elements of typical Golf 
courses Soils
Yujian Yang1,4*, Xueqin tong2 & Yingpeng Zhang3,4

Understanding and quantitative delineation of Portable X-Ray Fluorescence (PXRF) -quantified 
elements and soil properties spatial variability are important for healthy turf development for golf 
courses. In this study, PXRF-quantified elements and soil properties (except soil acidity and alkalinity 
(pH), electric conductivity (EC), and textures) of 200 soil samples were measured by PXRF analyzer 
at different golf courses in Lubbock, Amarillo, and Midland in Texas, and Hobbs in New Mexico. 
Furthermore, principal component analysis (PCA), empirical bayesian kriging (EBK) and the ordinary 
least square model (OLSM) were used in the study. Two kinds of components were extracted and 
interpreted by PCA, the results showed Zn, Ti, Fe, Rb, V, Mn and Zr were associated with the component 
1, while Sr was associated with the component 2, the preliminary classification of PXRF-quantified 
elements was formed by PCA. The EBK approach was used to evaluate the spatial patterns of PXRF-
quantified elements and soil properties. The OLSM model quantitatively related pH to EC, silt texture 
and the PXRF-quantified K, Ca and Sr. The integration of PCA, EBK and OLSM revealed quantitative 
links between soil pedogenesis and causes, spatial variability and couple relationships of PXRF-
quantified elements and soil properties over golf courses.

Currently, proximal soil sensing presents the characteristics of interdisciplinary with pedometrics, pedology and 
morphology. Proximal and remote sensing, along with miniaturized sensor technology, have advanced the useful 
non-destructive monitoring technologies for rapidly quantifying heavy metal concentrations. The Portable X-ray 
Fluorescence (PXRF) spectrometry is a proximal scanning technology and has a long history of being used in 
characterizing the elemental compositions in many matrices1,2. The PXRF technology can be implemented in 
soil geochemical analysis for fast and efficient testing of heavy metals3, and used to answer the questions of direct 
soil provenance based on the understanding that both soil pedogenesis with climate, parent material, topography 
and other factors4. Applications of PXRF included environmental assessment and identification of heavy metal 
concentrations of soils, compost, or solid waste5–7. PXRF applications to pedology were rapidly increasing given 
the relative ease of data acquisition8. The PXRF’s ability to predict soil textural attributes was demonstrated, which 
is of interest in texture related to mineral composition7. PXRF was valid as well to rapidly screen Cr and Ni levels 
in serpentine soils3. Laiho and Perämäki (2005) found that soil moisture and particle size were the main factors 
influencing on PXRF measurement accuracy from contaminated site soils9. The response of X-ray fluorescence 
(XRF) intensity to soil moisture content depended on soil texture and mineralogy10, however, it is generally stable 
in measuring soil elements when moisture content is <15%8,11.

Over the past 10 years, PXRF has been much more used in soil science. Among many contemporary meth-
ods which sanction the use of PXRF for soil analysis, the US Environmental Protection Agency’s (EPA) Method 
6200:“Determination of Elemental Concentrations in Soil and Sediment”12 is one of the most widely cited. 
Additionally, using PXRF has also been found in the Soil Survey Field and Laboratory Methods Manual by the 
US Department of Agriculture, Natural Resources Conservation Service13. The advantages of PXRF for rapid 
assessment of soil heavy metals were demonstrated by Kalnicky and Singhvi14. 17 soil samples using PXRF 
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from abandoned mining sites were evaluated by Radu and Diamond2 in Ireland. An on-the-go spectrometer for  
in situ measurement and prediction of various soil properties were developed by Christy15. The PXRF suitability  
to extract paleo-geochemical information from lacquer-peel soil sections that have been taken to document ped-
ological information at archaeological sites was demonstrated by Arnoldussen and Vanos16. Lithogenic and pedo-
logical evolution processes were reflected by the values for Si, K, Al, Fe, Ti, Sr, Zr, and Rb in the lacquer peels, while 
the contents of Ca, S, and P were used as a proxy for anthropogenic influence. Similarly, Weindorf et al. (2012) 
examined lithogenic discontinuities in soils using PXRF5. Many previous applications of PXRF have focused 
on heavy metal concentrations for screening, monitoring, mitigation, and environmental assessment2,17–21.  
Few studies have performed spatial variability of soil properties and PXRF-quantified elements in semi-arid soils 
for golf courses. In many instances, PXRF applications replaced traditional laboratory analysis showing great 
promise given its portability, low cost, fast speed, and minimal requirements for sample preparation8,22,23. It is 
apparently useful to couple PXRF with spatial analysis techniques to assess spatial variability of PXRF-quantified 
elements and soil properties.

Evidently, spatial analysis has been progressing to increase prediction accuracy of soil properties and 
PXRF-quantified elements. Recently, model-based geostatistics, Sequential Gaussian Simulation (SGS) and 
Sequential Indicator Simulation (SIS) have also been used to predict and map soil contamination, and alternative 
approaches are to use the bayesian maximum entropy (BME)24 (D.J.Bus et al., 2008), spatial copula method, and 
robust geostatistics. However, empirical bayesian kriging (EBK) works fine, and gives good results. It is a geosta-
tistical interpolation approach, and differs from other kriging methods used by many semivariaogram models 
which examine the spatial autocorrelation between the measured sample points from the different directions 
and distances rather than a single semivariogram25. Then, semivariogram weight is calculated using the Bayes’ 
rule, which shows the likelihood of measured data generated25,26. EBK automates the model parameters through 
simulation and, and generates simulation results based on data non-stationary characteristics. Though EBK cal-
culation is slower than other kriging methods, it is more accurate for small datasets (for instance, the EBK maps 
of PXRF-quantified elements and soil properties in the study) in practice27. Samsonova et al. (2017) developed a 
comparison study of organic carbon content using ordinary kriging and EBK, showed that EBK had good perfor-
mance by revealing the heterogeneities of soil properties and PXRF-quantified elements28. Therefore, we chose 
EBK approach to generate prediction maps of soil properties and PXRF-quantified elements in golf course soils.

Golf is associated with several benefits, e.g. it provides recreational value for the many people who play 
the game, enhances local biodiversity through extensively managed roughs in areas. A set of study about soil 
pedogenesis and causes, spatial variability and couple relationships of the PXRF-quantified elements and soil 
properties over golf courses is more beneficial to improve intensively turfgrass management. As such, the 
specific objectives and aims of this research were to: (1) sample and scan soils from golf courses, and develop 
spatial variability of them via EBK; (2) Moreover, perform coupled relationships between soil properties and 
PXRF-quantified elements based on OLSM, and reveal the quantitative relationship between lab measured varia-
bles and PXRF-quantified elements from the soils sampled in golf courses.

Results
Data statistical and OLSM analysis. Descriptive statistics of the 200 soil samples are presented in 
Table 1. Soil pH values ranged from slightly acid (6.97) to moderately alkaline (8.35) with a slightly alkaline 
mean (7.72). Soil EC and PXRF-quantified elements (Ca, Zn, V, Mn, Fe and Sr) featured larger ranges. Generally, 
there are three classes concerning coefficient of variation (CV): weak variation (CV < 0.1), medium variation 
(0.1 <  = CV <  = 1.0), and strong variation (CV > 1.0). According to variation classification, the results revealed 
weak to moderate variability in pH, EC and PXRF-quantified elements. The CV of pH was weak (0.050), EC 
was medium (0.783), and PXRF-quantified elements displayed medium variation with Ca (0.936), K (0.404),  
Zn (0.778), Ti (0.457), Fe (0.549), Rb (0.444), V (0.523), Mn (0.608), Zr (0.398) and Sr (0.662). The aforementioned  
elemental variation cannot illustrate the spatial structural characteristics and the random variation of soil 

Variable Range Min. Max. Mean
Std. 
Deviation Variance Skewness Kurtosis CV

pH 1.38 6.97 8.35 7.72 0.39 0.15 −0.39 −1.15 0.050

EC 3692.00 198.00 3890.00 1313.18 1027.96 1056700.39 1.07 −0.48 0.783

Zn 314.00 7.00 321.00 58.09 45.17 2040.29 1.66 5.57 0.778

K 1.59 0.37 1.96 1.12 0.45 0.20 0.02 −1.38 0.404

Ca 14.75 0.20 14.95 3.10 2.90 8.43 1.41 1.86 0.936

Ti 0.28 0.05 0.33 0.17 0.08 0.01 0.23 −1.16 0.457

V 70.00 8.00 78.00 36.33 18.99 360.46 0.25 −1.21 0.523

Mn 471.00 26.00 497.00 188.40 114.48 13106.49 0.43 −0.63 0.608

Fe 2.34 0.24 2.58 1.05 0.58 0.33 0.45 −0.68 0.549

Rb 81.70 17.30 99.00 50.32 22.32 497.97 0.20 −1.18 0.444

Sr 536.70 22.300 559.00 198.54 131.44 17277.32 0.63 0.02 0.662

Zr 543.00 127.00 670.00 339.95 135.34 18316.96 0.62 −0.68 0.398

Table 1. Descriptive statistics of soil properties and PXRF-quantified elements in Amarillo, Hobbs, Lubbock 
and Midland (N = 200). N: Sample numbers. Unit of every variable: EC (dS m−1), Zn (mg kg−1), K (%), Ca (%), 
Ti (%),V (mg kg−1), Mn (mg kg−1), Fe (%), Rb (mg kg−1), Sr (mg kg−1), Zr (mg kg−1).
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properties and PXRF-quantified elements. Consequently, it is necessary to apply geostatistical methods to 
uncover a detailed structural and random characteristics.

The data for all the 200 samples in Amarillo, Lubbock, Midland and Hobbs were used to evaluate soil prop-
erties and PXRF-quantified elements’ interaction on basis of Pearson’s correlation matrix. We studied with 11 
interval-level variables to estimate the relationships among all of them. The result was illustrated in Table 2. 
Specifically, there was a strongly positive correlations between K and Ti (0.96), K and V (0.96), K and Mn (0.93), 
K and Fe (0.96), K and Rb (0.97), all with R values > 0.90. The strongest positive correlation was between Fe and 
Rb (0.99).

A descriptive statistical analysis of pH, K, Fe and Sr was performed with the data measured from Amarillo, 
Hobbs, Lubbock and Midland, respectively. The mean value statistics indicated that PXRF-quantified K content 
was 1.58 (%) in Amarillo, 1.43 (%) in Lubbock, 0.90 (%) in Midland, and 0.56 (%) in Hobbs. The biggest mean 
value was from Amarillo which was almost as three times as the smallest mean value from Lubbock. The highest 
standard deviation (SD) of Fe concentration was 0.46 (%) in Lubbock, indicating that the sampling data points 
were spread out over a wider range of the values, while the smallest SD of Fe concentration was 0.09 (%) in Hobbs. 
There was a similar mean of 200.92 (mg kg−1) in Amarillo and 206.76 (mg kg−1) in Lubbock for Sr concentration, 
but their ranges varied markedly from 134.00 (mg kg−1) to 274.00 (mg kg−1) in Amarillo, from 105.00 (mg kg−1) 
to 548.00 (mg kg−1) in Lubbock, and from 66.40 (mg kg−1) to 559.00 (mg kg−1) in Midland (Table 3).

Particularly, we further focused on soil textures (sand, silt, clay) and PXRF-quantified elements to improve the 
turf located in Lubbock. The descriptive statistical results of the 50 collected soil samples in Lubbock showed that 
sand ranged from 18.5 to 79.2% with a mean of 54.2%, silt ranged from 4.0 to 36.3% with a mean of 16.3%, and 
clay ranged from 11.8 to 52.4% with a mean of 29.4% and EC, sand, silt, clay, Zn, K, Ca, Ti, V, Mn, Fe, Rb and Sr 
all presented medium variations with EC (0.299), sand (0.303), silt (0.475), clay (0.396), Zn (0.282), K (0.217), Ca 

pH EC K Ca Zn Ti V Mn Fe Rb Sr

EC −0.62b

K −0.13 −0.15a

Ca −0.06 0.17a 0.44b

Zn −0.13 −0.15a 0.77b 0.31b

Ti −0.08 −0.18a 0.96b 0.36b 0.79b

V −0.05 −0.17a 0.96b 0.45b 0.80b 0.98b

Mn −0.22 b −0.11 0.93b 0.21b 0.80b 0.93b 0.91b

Fe −0.12 −0.17a 0.96b 0.29b 0.78b 0.97b 0.95b 0.96b

Rb −0.12 −0.14a 0.97b 0.37b 0.80b 0.98b 0.97b 0.95b 0.99b

Sr −0.54b 0.74b 0.32b 0.49b 0.26b 0.25b 0.28b 0.33b 0.27b 0.33b

Zr 0.09 −0.20b 0.76b 0.53b 0.68b 0.83b 0.83b 0.65b 0.71b 0.77b 0.17a

Table 2. Pearson correlation coefficients for soil properties and PXRF-quantified elements in Amarillo, 
Lubbock, Midland, and Hobbs (N = 200). aSignificant at α = 0.05 level; bSignificant at α = 0.01. N: Sample 
numbers. Unit of every variable: EC (dS m−1), K (%), Ca (%), Zn (mg kg−1), Ti (%), V (mg kg−1), Mn (mg kg−1), 
Fe (%), Rb (mg kg−1), Sr (mg kg−1), Zr (mg kg−1).

Items Parameters Amarillo Hobbs Lubbock Midland

pH

Mean 7.95 8.07 7.53 7.35

Minimum 7.69 7.71 6.97 7.08

Maximum 8.31 8.35 8.30 7.70

Std. Deviation 0.14 0.15 0.45 0.16

K

Mean 1.58 0.56 1.43 0.90

Minimum 1.28 0.37 0.87 0.58

Maximum 1.96 0.80 1.96 1.32

Std. Deviation 0.10 0.10 0.31 0.20

Fe

Mean 1.59 0.38 1.49 0.75

Minimum 1.08 0.24 0.75 0.42

Maximum 2.35 0.62 2.58 1.04

Std. Deviation 0.27 0.09 0.46 0.15

Sr

Mean 200.92 36.89 206.76 349.59

Minimum 134.00 22.300 105.00 66.40

Maximum 279.00 71.40 548.00 559.00

Std. Deviation 32.73 10.13 80.01 112.13

Table 3. Comparative study of typical parameters located in Amarillo, Hobbs, Lubbock and Midland. N: 
Sample numbers. Unit of every variable: K (%), Fe (%), Sr (mg kg−1).
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(0.627), Ti (0.205), V (0.244), Mn (0.323), Fe (0.306), Rb (0.250), and Sr (0.387). Generally, PCA generates a new 
set of variables called principal components, each principal component is a linear combination of the original 
variables, and all the principal components are orthogonal to each other and no redundant information. PCA 
loading plots of 8 elements are presented in Fig. 1. Elements grouped into a two-component model accounted 
for ~89.84% of the total variability, with 75.43% and 14.39% linked to components 1 and 2, respectively. Results 
showed that Zn, Ti, Fe, Rb, V, Mn and Zr were loaded in principal component 1 and Sr were loaded in principal 
component 2. The PCA is a method commonly used in geochemical applications to mostly define natural and 
anthropogenic pollutant sources (T. K. Udeigwe, et al.; Eze et al.)29,30. Evidently, anthropogenic disturbance easily 
affected spatial variability of soil properties and PXRF-quantified elements, especially at surface 0–10 cm soil. Sr 
is one of the most abundant elements in the earth crust, Sr concentration was profoundly influenced by anthropo-
genic activities in golf course soils. Though the two associations of PCA indicated two different possible pollutant 
sources, whether Zn, Ti, Fe, Rb, V, Mn and Zr could be originated from the similar lithology origin, or Sr element 
concentration was more likely linked to the contaminants from anthropogenic activities (e.g., traffic, management 
practices), needs further verification by additional evidence, or measured data.

This preference for OLSM stems from its simplicity and ease of use, computational efficiency, and straight-
forward interpretation, which involved the dependent and explanatory variables selected as well as the spa-
tial weights to perform the model computerization31,32. To clarify the relationship between soil properties and 
PXRF-quantified elements, we performed OLSM which was constructed between pH (dependent variable) 
and soil elements (explanatory variables). Concretely speaking, pH was dependent variable, EC, silt texture, 
PXRF-quantified K, PXRF-quantified Ca and PXRF-quantified Sr were the explanatory variables with their sta-
tistical significances. The following relationship was found between the dependent variable and the explanatory 
variables:

pH 0 00063EC 0 01169silt 0 00022K 0 00003Ca 0 00316Sr 8 4576 (1)= − . − . − . − . + . + .

with adjusted R2 = 0.56 (more technically, the model is explaining 56 percent of the variation in the pH content 
dependent variable), AIC (Akaike Information Criterion) = 30.71 and a significance p < 0.00132,33. the lower AIC 
the measure, the better the fit. A standard residual map may give an indication of systematic over- or under- pre-
diction in particular regions, it clearly illustrated patterns of over- or under-prediction. As illustrated in Fig. 2, 
the standard residual map of pH variable was generated by the OLSM based on data observed from different soil 
samples in Lubbock, Texas. Moreover, the mean absolute percentage error (MAPE) was calculated per Eq.(2) to 
conduct model error statistics:

n
observed estimated

observed
MAPE 1 100

(2)
∑=






| − |
| |






×

Figure 1. Principal component analysis of PXRF-quantified elements at 4 golf courses in Amarillo, Hobbs, 
Lubbock and Midland.

https://doi.org/10.1038/s41598-020-57430-y


5Scientific RepoRtS |          (2020) 10:519  | https://doi.org/10.1038/s41598-020-57430-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

MAPE of pH was equal to 0.237, which showed estimated pH from OLSM which revealed the quantified- 
elements and soil properties had better accuracy and practical significance.

Empirical bayesian kriging. To verify the prediction, we generated several physicochemical soil properties 
scatterplots of measured values versus predicted values. These were example scatterplots of the measured values 
(PXRF-quantified K, PXRF-quantified Fe and measured pH) versus the predicted values across the golf courses. 
In these scatterplots, the fitted line through the scatter points was given in dark blue, as shown in Fig. 3. (A) to (D),  
the X-coordinate and Y-coordinate values denoted predicted value and actual values (PXRF-quantified-K content 
in Lubbock, pH content in Midland, PXRF-quantified-Fe concentration in Amarillo, PXRF-quantified-K content 
in Hobbs). However, the slope was usually less than 1 because kriging tends to under-predict large values and 
over-predict small values. The “goodness of fit” accuracy and EBK parameters of quantified-elements and soil 
properties are given in Table 4.

Combined with remote sensing image (30 cm resolution), spatial variability maps of soil properties and 
PXRF-quantified elements were rendered based on EBK with 30% transparency. Figures 4–7 were examples of 
the variation of physicochemical soil properties and PXRF-quantified elements, were produced by EBK approach. 
These maps explicitly revealed the spatial patterns which provided more details of the studied elements, and illus-
trated the low content and high content areas across the golf courses located in Amarillo, Lubbock, and Midland 
in Texas and Hobbs in New Mexico. From the Fig. 4, PXRF-quantified-Fe concentration was presented from the 
southeast to the north-west of the golf course. Specifically, the highest concentration of PXRF-quantified Fe was 
created in the northeast of the Amarillo golf course, and the lowest concentration was created in the southeast 
of the golf course. Basically, the spatial pattern of the semi-concentric zone was presented from the low concen-
tration to the high concentration of PXRF-quantified Fe, and the variation coefficient of PXRF-quantified Fe 
concentrations is 0.306 with medium variation from statistical results. The characteristics of PXRF-quantified Fe 
concentrations was in detail delineated by statistics combined with a geostatistical EBK approach.

Discussion. A wide range of natural and anthropogenic types and spatial variation of soil contaminants mak-
ing potentially very high costs31, while PXRF spectroscopy is a better method for soil heavy metal remediation 
providing real-time measurements of quantified-elements (e.g., Zn, Ti, Fe, Rb, V, Mn, Zr and Sr) to support an 
on-the-go assessment. PXRF applications have the potential to decrease costs. Nevertheless, the detection limit 
of the PXRF-measured soil elements is an important topic. Quality assurance of PXRF in the study scan data was 
accomplished via scanning two (NIST: National Institute of Standards and Technology, USA) NIST-certified 
reference soils (2710a and 2711a)., the NIST values are followed by PXRF-determined values, with all values in 
mg kg−1: 2710a (Mn, 2,140, 2,182; Fe, 43,200, 45,450;Cu, 3,420, 3,258; Zn, 4,180, 4,114;As, 1,540,1,468; Ca, 9,640, 
7,850; Pb, 5,520, 5,371; K, 21,700, 24,750; Ti,3,110, 3,514; Sb, 53, 57; Sr, 255, 262) and 2711a (Ti, 3,170, 2,904; As, 
107, 73; Ca, 24,200, 23,550; Cu, 140, 112; Fe, 28,200, 21,950; Pb, 1,400, 1,302; Mn, 675, 572; K, 25,300, 23,650; 
Zn, 414, 342; Sb, 24, 37; Sr, 242, 222) (Samantha Swanhart, et al.)23. The majority of the elements, reasonably 
good correlation was found between PXRF and ICP data (As, Co, Cu, Fe, Mn, Pb and Zn), but concluded that 
ICP analysis provided better detection of elements at low levels (<5 mg kg−1) which was related to the detection 
limit of the PXRF device (Weindorf et al.)5,34. In practice, some regulatory limits of the metals may not fall above 
the detection limit of the PXRF device. However, numerous factors have an effect on the detection limits and the 
precision of the measurements, soil moisture and particle size are the main factors influencing the accuracy of the 
results (Laiho and Perämäki)9. ICP-MS and ICP-OES were used to determine patterns of soil elemental compo-
sition for their high level of accuracy (Horta, A. et al.)31. The comparative study of future work between ICP-MS 

Figure 2. Standard residual map of pH variable based on OLSM in Lubbock.
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and PXRF-quantified elements is interesting for golf courses, which can also validate and calibrate heavy metals 
spectrum accuracy each other for different approaches.

Golf course soils were disturbed by anthropogenic activities including mowing, irrigation and fertilization,  
aeration, topdressing, particularly on fairways (Pernilla Tidåkera, et al.)35. X-ray fluorescence spectra was 
used and explained the lamellae formation in the clay fractions of golf course samples (Glen R. Obear, et al.)36. 
Additionally, some commercial activities and industry activities also have influence on the golf course. Extremely 
high values of the pollutants such as Pb, Zn, Cu and As using PXRF approach were found during the investiga-
tion of urban soils in Galway City, Ireland37. Golf course located in Amarillo, some commercial activities and 

Figure 3. Scatterplots of predicted values and actual values of PXRF-quantified K content in Lubbock (A), pH 
content in Midland (B), PXRF-quantified Fe content in Amarillo (C), PXRF-quantified K content in Hobbs (D).

https://doi.org/10.1038/s41598-020-57430-y


7Scientific RepoRtS |          (2020) 10:519  | https://doi.org/10.1038/s41598-020-57430-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

traffic have influences on soil heavy metal accumulation, and resulted into the uneven spatial distribution of 
Sr concentration in the golf course. These high concentration areas of PXRF-elements indicated the dominant 
role of anthropogenic activities as the major sources of heavy metals in soils (MengYang, et al.)38. The case study 
also showed that anthropogenic activities on golf course profoundly affected Sr concentration and variation, 

Items
Semiviariogram 
model

Model Parameters

ME RMSE ASE MSE RMSSE

pH(Lubbock) Power 0.010 0.373 0.398 0.022 0.956

EC(Lubbock) Power −0.073 256.082 263.106 −0.001 0.973

Sand(Lubbock) Linear 0.046 13.866 14.596 0.005 0.963

Silt(Lubbock) Linear 0.124 7.989 8.048 0.0156 0.993

Clay(Lubbock) Linear 0.057 9.593 10.089 0.002 0.963

Zn(Lubbock) Thin plate spline −0.072 18.029 19.091 -0.006 0.954

K(Lubbock) Power −16.158 2041.92 2213.895 −0.0075 0.951

Ca(Lubbock) Linear 52.057 7781.003 8083.221 0.001 0.970

Sr(Lubbock) Power 4.139 76.959 79.736 0.0495 0.969

Fe (Amarillo) Power −54.395 2137.838 2261.37 −0.014 0.957

pH (Midland) Power 0.0025 0.127 0.129 0.013 0.985

K (Hobbs) Power −22.424 908.079 914.503 −0.023 0.995

Table 4. EBK parameters of soil properties and PXRF-quantified elements in Amarillo, Hobbs, Lubbock and 
Midland. Unit of every variable: EC (dS m−1), Sand (%), Silt (%), Clay (%), Zn (mg kg−1), K (%), Ca (%), Sr (mg kg−1), 
Fe (%).

Figure 4. EBK prediction of surface of PXRF-quantified Fe element at a golf course facility in Amarillo, TX, U.S.A.
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turfgrass in the golf courses were frequent with anthropogenic activities, which increased the spatial variability 
of PXRF-quantified Sr element39.

There were very high Fe and Mn concentrations available around pH values of 3.5 located in mining soils, but 
the underlying spatial couple relationship between pH, Fe and Mn wasn’t revealed40. In particular, the contrib-
uting factors on the PXRF spectrum of Fe concentration were explored to increase the accuracy of field PXRF 
measurements41. Only limited on certain linear relationship, there was few spatial distribution models relevant to 
the PXRF-quantified elements and soil properties. In monitoring metal pollution in soils using the PXRF method, 
satisfactory correlations were obtained between the AR (Aqua Regia) and the PXRF-quantified concentrations of 
Ca, Cu, Cr, Ni, Pb and Zn42. Strong linear correlations were found between As, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, P, 
Pb, Si, Ti and Zn43. Although the above studies explored more or less the correlations between heavy metals using 
PXRF quantification, or other methods, the spatial regression model was not established between soil properties 
and PXRF-quantified elements. While in this study, a new OLSM model was constructed between pH and EC, 
silt, PXRF quantified elements (K, Ca and Sr), which provided the beneficial enlightenment for the contributing 
factors to clarify the influence of soil properties on the PXRF spectrum. OLSM was used to evaluate relationships 
between two or more feature attributes or variables, a set of diagnostics that examines some checks improves the 
prediction accuracy of the model. The OLSM calculates a coefficient and performs a statistical test to determine 
whether that variable is helping model or not. Generally, some checks were verified and done for model perfor-
mance. Such as, some of regression explanatory variables are statistically significance, model basis affects the pre-
dicted results, the adjusted R2 value and R2 value are also an important measure. If the OLSM has gone through 
the above checks and met all the necessary criteria of verification parameters, we think that how well the model 
explains the relationship between explanatory and dependent variables. Actually, in the study, we analyzed all of 
the variables from lab measured variables and PXRF-quantified elements, only pH = −0.00063EC − 0.01169silt 
− 0.00022K − 0.00003Ca + 0.00316 Sr + 8.4576 has gone through the checks of model parameters and statistical 
significance, met the all the necessary criteria of parameters. Therefore, the quantitative relationship is revealed 
between lab measured variables (pH, EC and silt) and PXRF-quantified elements (K, Ca and Sr).

Geostatistics, which is a well-estimated scientific discipline that provides flexible spatial analysis methods to 
quantify uncertainties about the contaminant concentrations of PXRF-elements in this context (D’Or et al.)44, 
but geostatistics practice easily triggers smoothing effects (Yujian, Yang, et al.)45, raises overestimated value and 
underestimated value of PXRF-quantified elements. While the EBK avoids smoothing effects, it provided a more 
practical spatial statistical tool with being automated, intelligence and better accuracy. Detailed maps from PXRF 
quantification integrated with EBK should be useful in detecting parts of fields with particularly high or low risk 

Figure 5. EBK prediction of surface of soil pH at a golf course facility in Midland, TX, U.S.A.
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of PXRF-quantified elements in golf course soils. Previous studies also showed that more quantitative delineation 
of soil mapping prediction accuracy and uncertainty was the key challenge remaining according to qualitative 
criteria and renders maps46. Additionally, agricultural and recreational practices greatly altered the distribution 
balances of soil properties, responses and feedbacks47. Evidently, spatial analysis has become an important tool of 
quantitative delineation of soil properties, while PXRF quantitatively better responded to heavy metals concen-
trations in soil, spatial mapping of soil properties and PXRF quantified-elements by EBK is a better way to help 
precisely and well understand the spatial variability over the golf courses, and optimize turfgrass decision support 
and improve golf course management. Therefore, spatial analysis integrated with PXRF will play an increasingly 
key role of soil mapping uncertainty, responses and feedbacks, which also offers a unique opportunity to address 
soil pollution and remediation48.

In summary, sampling, scanning, predicting, mapping and spatial regression model were completed and 
extended the application of PXRF spectrometry combined with spatial analysis to the rapid probing soil elements. 
The integration of PCA, EBK and OLSM also provided better perception of the series of studies for the pedogen-
esis causes, spatial variability and spatial relationships of the PXRF-quantified elements and soil properties in golf 
courses soils. The preliminary classification of PXRF-quantified elements was formed by PCA, the spatial variability 
characteristics of PXRF-quantified elements and soil properties was in detail delineated by statistics combined with 
EBK, the loosely couple model between lab variable (pH, soil textures) and PXRF-quantified elements (Sr, K, Ca) 
was constructed in the study. However, study results are still lack of sufficient proofs supporting the tightly couple 
model between soil properties and PXRF-quantified elements in golf courses soils. Therefore, future work is to 
develop the further study via the investigation of golf course soil and turfgrass with different soil textures, different 
climate, and different irrigation management practices, etc. In addition, one possible future extension of whether 
the principal component of Zn, Ti, Fe, Rb, V, Mn and Zr could be originated from the similar lithology origin, or the 
principal component of Sr element concentration was more likely linked to the contaminants from anthropogenic 
activities (e.g., traffic, management practices), needs further verification by additional evidence, or measured data.

Figure 6. EBK prediction of surface of PXRF-quantified K element at a golf course facility in Hobbs, NM, 
U.S.A.
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Materials and Methods
Experimental sites and soil sampling. The soil sampling study was conducted in 4 golf courses. Three 
of them are in the Southern High Plains of western Texas, respectively at Lubbock, Amarillo and Midland, and 
another one at Hobbs in eastern New Mexico. Totally 200 samples were collected in 4 golf courses, 50 of which 
were collected in each golf course, in 2016. The sampling points are mapped in Fig. 8 using ArcGIS 10.3 platform 
(ArcGIS 10.3 (ESRI, The Redlands, CA)) provided by Texas Tech University. The total area of 4 golf courses is 
approximately 130000 km2 and characterized by semi-arid climatic conditions, having hot summers and mild 
winters with occasional strong cold fronts and a gentle west-to-east gradient of increasing precipitation. Mean 
annual precipitation ranges from about 300 to 500 mm along this gradient, and there is significant inter-annual 
variability. Amarillo lies on the north-eastern edge of the southern high plains, while Midland lies on the south-
eastern edge of it. Hobbs lies on the west of Midland, and Lubbock lies in the middle of the high plains. For exam-
ple, the golf course contains 10 to 12 ha of irrigated fairways in the Lubbock golf course, which were planted with 
hybrid bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy)49.

Field and laboratory methods. A total of 200 surface soil samples (0–15 cm) were collected using a simple 
handheld trowel50. Vegetation was gently scraped aside and ~150 g of soil was placed in a sealed plastic bag for 
transport to the laboratory. Each collection location was geo-located with an E-trex(Garmin, Olathe, KS) global 
positioning system (GPS) receiver. Importantly, randomized or equidistant sampling schemes were not possible 
given the layout of the golf course. Soil samples were obtained from fairways only, resulting into somewhat linear 
sampling across the property. The courses followed a tortuous path between homes, streets, and businesses, which 
were identical to the practical situations. Soil analyses were conducted in the Texas Tech University Pedology 
Laboratory in Lubbock, Texas. In the lab, samples were air dried and lightly grounded to pass to a 2 mm sieve 
prior to all other analyses. Soil electrical conductivity (EC) was measured in a 1:2 solid (soil) to water suspension51 
using a traceable digital salinity meter. Soil pH was determined on saturated paste per Soil Survey Staff52. Pastes 
were allowed to equilibrate for 24 hours, and then quantified using an Orion 2 Star pH meter (Thermo Scientific, 

Figure 7. EBK prediction of surface of PXRF-quantified K element at a golf course facility in Lubbock, TX, U.S.A.
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Waltham, MA). Mehlich III extractable elements were obtained53. Particle size analysis was accomplished using a 
model 152-h hydrometer54. Clay determination was made at 1440 min and sands were sieved using a 53 µm sieve.

pXRf analysis. All collected soil samples were scanned with a DP-6000 model PXRF (Olympus, Waltham, 
MA) with deference to PXRF-quantified K, Ca, Zn, Ti, Fe, Rb, V, Mn, Zr and Sr in each sample. The instrument 
was equipped with a Rh-X-ray tube energized at 10–40 kV with integrated silicon drift detector (165 eV) for opti-
mized measurement of light elements. The instrument was operated in Soil Mode whereby each of three beams 
scan the soil sample sequentially for 30 sec each. Thus, the total scan time was 90 sec per sample. The beams ensure 
full coverage of elemental detection, with each beam or combination of beams are detected different groups of 

Figure 8. Sample sketch map of 4 golf courses in Amarillo, Hobbs, Lubbock and Midland, U.S.A.
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elements. Calibration of the instrument was conducted using a 316 alloy clip tightly fitted over the aperture. Each 
soil sample was scanned in triplicate, with the PXRF unit physically repositioned between scans such that an aver-
age value was reported55. The PXRF instrument was operated in “Soil Mode” capable of detecting the following 
suite of elements: Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ti, Ba, Cr, Mn, Fe, Co, Ni, Cu, Zn, Hg, As, Se, Pb, Rb, P, S, Cl, K, Ca, 
and V.

Statistical and geostatistical methods. All statistical analyses including descriptive procedure, Pearson’s 
correlation matrix and principal component analysis (PCA) were conducted using SPSS Statistics v23 (IBM, 
Armonk, NY). In general, dimensionality reduction loses information, but PCA-based dimensionality reduction 
tends to minimize that information loss, which results from the following concrete calculation steps, inputting 
the covariance matrix of variables, calculating the eigenvectors and eigenvalues of the covariance matrix, sorting 
the corresponding eigenvectors in descending order, and deriving the new predictors. PCA is used to obtain 
the initial factor solution, PCA-based calculation presents the first component which has maximum variance, 
and successive components explain progressively smaller portions of the variance and are all uncorrelated with 
each other. We performed two separate principal components analyses (PCA), thus, PXRF-quantified elements 
including Zn, Ti, Fe, Rb, V, Mn, Zr and Sr were grouped into a two-component model by PCA dimensionality 
reduction in golf courses soils56. The descriptive procedure displays univariate summary statistics for some var-
iables in a single table. The calculation of soil variables was performed to include arithmetic means, standard 
deviation, coefficient of variation, minimum and maximum, and skewness and kurtosis. Pearson’s correlation 
matrix is a 2D array with numbers that describes the degree of relationship between any two variables. The matrix 
is one of the most commonly used statistics to describe the degree of relationship between soil properties and 
PXRF-quantified elements.

OLSM was used to evaluate the spatial relationship between soil properties and PXRF-quantified elements. 
OLSM not only provided an optimal model between the variables you were trying to understand, but also created 
a single regression equation to represent the process the variables drive. More importantly, OLSM generates pre-
dictions according to a dependent variable in terms of its relationship to a set of explanatory variables. In order 
to further understand and quantify the coupled relationship between typical soil properties and PXRF-quantified 
elements, we performed OLSM linear regression to model a dependent variable in terms of its relationships to a 
set of explanatory variables.

Spatial variability of soil properties and PXRF-quantified elements was analyzed and OLSM modeling was 
performed using ArcGIS 10.3 (ESRI, The Redlands, CA). EBK was employed as an appropriate technique for 
modeling the spatial distribution of soil properties and PXRF-quantified elements. Generally, some important 
parameters were used to evaluate prediction accuracy and uncertainty, including mean error (ME), mean stand-
ard error (MSE), average standard error (ASE), root mean square error (RMSE), mean standard error (MSE),and 
root mean square standardized error (RMSSE). ME of the model is equal to 0, ASE is equal to RMSE, MSE is 
equal to 0, and RMSSE is equal to 157, which indicates the perfect “goodness of fit” accuracy of the EBK approach.

Data availability
All data included in this study are available upon request by contact with the corresponding author.
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