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circular RnA (circRnA) is endogenous non-coding RnA (ncRnA) with a covalently closed circular 
structure. it is mainly generated through RnA alternative splicing or back-splicing. circRnA is 
known in the majority of eukaryotes and very stable. However, knowledge of the circRnA involved 
in regulating cashmere fineness is limited. Skin samples were collected from Liaoning cashmere 
goats (LCG) and Inner Mongolia cashmere goats (MCG) during the anagen period. For differentially 
expressed circRNAs, RNA sequencing was performed, and the analysis led to an identification 
of 17 up-regulated circRNAs and 15 down-regulated circRNAs in LCG compared with MCG skin 
samples. In order to find the differentially expressed circRNAs in LCG, we carried out qPCRs on 10 
candidate circRNAs in coarse type skin of LCG (CT-LCG) and fine type skin of LCG (FT-LCG). Four 
circRNAs: ciRNA128, circRNA6854, circRNA4154 and circRNA3620 were confirmed to be significantly 
differential expression in LCG. Also, a regulatory network of circRNAs-miRNAs was bioinformatically 
deduced and may help to understand molecular mechanisms of potential circRnA involvement in 
regulating cashmere fineness.

The goat (Capra hircus), is economically important livestock, used in the production of cashmere, meat, 
and milk. The Liaoning cashmere goat breed (LCG) is famous for high fiber production1, whereas Inner 
Mongolia cashmere goats (MCG) produce high-quality cashmere fiber compared with other cashmere goat 
breeds2. In recent years, the characteristics of cashmere fiber have received special attention in that they 
play an obvious role in cashmere quality. Several studies indicated that coding and noncoding genes were 
associated with the regulation of cashmere growth3–5. In addition, several important pathways have been 
demonstrated to be related to the formation of cashmere fiber6–8, for instance, Wnt, NF-κB, Shh, Notch 
and other signaling pathways9–13. However, there are no systematic studies on the molecular regulation of 
cashmere fineness in the skin.

Circular RNAs (CircRNAs), a new class in the eukaryotic transcriptome, are characterized by the 3′ and 
5′ ends of which are covalently linked in a covalently closed loop without free ends14,15. CircRNAs, with the 
unique circular structure, are more stable and have longer half-lives than mRNAs16,17. More recently, many 
studies have demonstrated that circRNAs contribute to the generation of cancer18,19, regulate gene expres-
sion in many biological processes, and participate in the occurrence and development of various diseases20. 
In a study by Li et al. identified 6,113 circRNAs from muscles of sheep by RNA-seq21, and a total of 10,226 
circRNAs were detected from pituitary glands of sheep by RNA-seq22. Zheng et al. revealed that circRNAs 
can act as a microRNA sponge to isolate microRNA by competing with targeted mRNA23. Another inves-
tigation determined that 151 circRNAs were differently expressed in ORFV-infected goat skin fibroblast 
cells and uninfected cells24. The mechanism of potential involvement of circRNAs in cashmere formation 
remains unclear.

1College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China. 
2Liaoning Modern Agricultural Production Base Construction Engineering Center, Liaoyang, 111000, China. 
3Prosperous Community, Changshun Town, Huade, 013350, China. *email: wangzeying2012@syau.edu.cn; 
baiwenlin@syau.edu.cn

open

https://doi.org/10.1038/s41598-019-57404-9
mailto:wangzeying2012@syau.edu.cn
mailto:baiwenlin@syau.edu.cn


2Scientific RepoRtS |          (2020) 10:516  | https://doi.org/10.1038/s41598-019-57404-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

In the present study, we aim to find differentially expressed circRNAs in cashmere goat skin. We used RNA-seq 
to identify the circRNAs in LCG and MCG skin samples, and hundreds of circRNAs were obtained in goat skins. 
To further explore the relationship between circRNAs with cashmere fineness and its potential role, we also 
generated a regulatory network that took into account interactions between these circRNAs and miRNAs. Our 
findings may offer a new insight into cashmere goat circRNAs and their potential involvement in regulation of 
cashmere fineness.

Figure 1. Information on circRNAs from RNA-seq in Liaoning cashmere goats (LCG) and Inner Mongolia 
cashmere goats (MCG) skin tissue. (a) The types of circRNAs. (b) Distribution of exons, introns, and intergenic 
circRNAs. (c) The number of exons in circRNAs. (d) The lengths of circRNAs.
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Results
Identification of circRNAs in cashmere goat skin. In order to understand the differentially expressed 
circular RNAs in goat skin, we performed RNA-seq analysis processes in LCG and MCG skin. Total clean reads 
were obtained after deleting the low-quality raw reads, the mapping ratios of clean reads were 91.27% and 84.93% 

Figure 2. Differentially expressed circRNAs in LCG and MCG. (a) Volcano map of differentially expressed 
circRNAs. Red dots indicate up-regulation and blue dots indicate down-regulation. (b) Cluster heatmap of 
differentially expressed circRNAs. The sample is represented by the abscissa and the log value of circRNA 
expression is regarded by the ordinate, which means that the heatmap is drawn from log10 of circRNA 
expression. The highly expressed circRNA is indicated by red, meanwhile, the lowly expressed circRNA is 
presented by blue.
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in LCG and MCG. A total of 13,320 circRNAs were identified from the RNA-seq data, including 610 circular 
intronic RNAs (ciRNAs) (Fig. 1a). There are 7,531 and 8,943 circRNAs detected in LCG and MCG libraries, 
respectively. The MCG samples (49.43%) were compared with the LCG samples (58.31%), and the percentage of 
mapped sequence reads that could be aligned with the exon region were significantly lower (Fig. 1b). The lengths 
of circRNAs ranged from 200 to 400 bp in LCG and MCG (Fig. 1c), and the majority of circRNAs contained 2–7 
exons (Fig. 1d). We found that the genomic loci, from which the circRNAs were derived, were over 29 autosomes 
and X chromosomes in the two types of samples.

Differentially expressed circRNAs in LCG and MCG. A total of 32 circRNAs were identified as dif-
ferentially expressed when we compared the data between LCG and MCG skin tissues (Fig. 2a), of which 
17 circRNAs were significantly up-regulated and 15 circRNAs were significantly down-regulated in the LCG 
(Tables 1 and 2). Then, we used a cluster heat-map analysis of differentially expressed circRNAs to better 
understand their potential relationship (Fig. 2b). To assure the accuracy of RNA-seq strategy, six differentially 
expressed circRNAs were randomly selected and specific qPCR primers were designed within the circRNAs’ 
junction regions (Fig. 3a). The expression levels of circRNAs determined by qPCR and RNA-seq are highly 
consistent (Fig. 3b). This meaning the significant reliability of RNA-seq data acquisition and subsequent anal-
ysis procedures in this study.

circRNA ID host gene LCG (FPKM) MCG (FPKM) log2FC p-value

ciRNA128 TCHH 36.95 7.14 2.72 0.00012611

circRNA4154 HOMER3 5.05 2.04 1.65 0.02588325

ciRNA207 HCFC1R1 3.14 1.34 1.57 0.03802090

circRNA3620 CAMSAP1 2.86 1.02 1.83 0.01997006

circRNA5707 CREB5 1.97 0.64 1.94 0.02020643

circRNA5067 TMEM62 1.24 0.32 2.26 0.01961495

circRNA6242 SPTBN4 1.12 0.11 3.64 0.00281198

circRNA6348 ARID1A 1.12 0.16 3.09 0.00281198

circRNA6141 GSE1 1.12 0.38 1.90 0.04803681

circRNA652 CDC6 0.95 0.21 2.46 0.01825840

ciRNA326 PDLIM2 0.79 0.05 4.04 0.00547933

circRNA7191 PHLPP1 0.73 0.16 2.47 0.02220809

circRNA5813 ISPD 0.73 0.11 3.02 0.02220809

circRNA1912 RYK 0.73 0.21 2.07 0.04933581

circRNA4837 CASC4 0.51 0.05 3.40 0.03997049

circRNA4302 GFM2 0.51 0.05 3.40 0.03997049

ciRNA156 GRHL1 0.51 0.05 3.40 0.03997049

Table 1. Up-regulated circRNAs in LCG and MCG.

circRNA ID host gene LCG (FPKM) MCG (FPKM) log2FC p-value

circRNA6854 KCTD9 0.79 3.17 -1.66 0.03757668

circRNA2245 HEBP1 0.51 2.90 -2.16 0.01279541

circRNA4576 MED17 0.39 1.82 -1.85 0.03625281

circRNA6019 AXDND1 0.34 1.82 -2.07 0.02348295

circRNA3075 PRPF18 0.34 1.61 -1.89 0.04479169

circRNA1685 PHLDB2 0.28 1.61 -2.15 0.02812314

circRNA3516 UBXN2A 0.17 1.39 -2.66 0.01551409

circRNA3084 FAM188A 0.11 1.02 -2.77 0.02972176

circRNA1167 REV3L 0.06 0.80 -3.36 0.01414588

circRNA177 BMS1 0.06 0.80 −3.36 0.01414588

circRNA6691 PHLDB2 0.06 0.80 −3.36 0.01414588

circRNA815 ARL8B 0.06 0.80 −3.36 0.01414588

circRNA5184 AP3B1 0.06 0.59 −2.92 0.03997049

circRNA2664 VPS72 0.06 0.59 −2.92 0.03997049

circRNA6893 AGTPBP1 0.06 0.59 −2.92 0.03997049

Table 2. Down-regulated circRNAs in LCG and MCG.
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In our data, total 13,320 circRNAs detected in our study were derived from 4826 host genes. 45% of these host 
genes generated only one circRNA, and 20% of these host genes generated two circRNAs, whereas 8% of these 
host genes generated more than six circRNAs (Fig. 4a). We screened 10 candidate circRNAs and found these 
circRNAs consisted of three or four exons on average (Fig. 4b).

enrichment analysis of differentially expressed circRnA host genes. We performed GO and 
KEGG enrichment analysis for the host genes of differentially expressed circRNAs. A total of 22 host genes were 
enriched in 106 GO terms, and the top 25, top 15 and top 10 in biological processes, cellular components and 
molecular functions, respectively (Fig. 5a). In Fig. 5b, the top 20 significant GO terms were exhibited, and it can 
be seen that keratinization and intermediate filament organization were closely related to cashmere fiber growth. 
A total of 43 pathways were enriched using KEGG analysis, and the top 20 pathways were shown in Fig. 6. These 
include the sulfur relay system, sulfur metabolism, and glycosaminoglycan degradation pathways, suggesting that 
these pathways could also be involved in the regulation of cashmere fineness.

Analysis of interactions between circRnAs and miRnAs. It is generally accepted that circRNA is 
an adsorbed miRNA sponge and interacts with miRNA. We predicted the potential circRNAs-miRNAs inter-
actions for these differential circRNAs, and the results indicated that the co-expression networks included 32 
differentially expressed circRNAs, their host genes and 244 miRNAs (Fig. 7a). The results suggested that cir-
cRNA6854 may function as a sponge for these miRNAs, such as chi-miR-106a-5p, chi-miR-106b-5p, chi-miR-
17-5p, chi-miR-20a-5p, chi-miR-20b, chi-miR-338-3p, chi-miR-378-5p, and chi-miR-93-5p. CiRNA128 has an 
interaction with chi-miR-331-5p and chi-miR-877-3p. Moreover, the interactions between 10 identified differen-
tially expressed candidate circRNAs and their target miRNAs are presented in Fig. 7b.

Validation of differentially expressed circRNAs by qPCR. To investigate the expression of circRNAs 
and determine circRNAs may be vital for regulating cashmere fineness in LCG skin tissue, we used qPCR to 
confirm the differential expression of certain circRNAs in coarse type and fine type LCG skins. Ten differen-
tially expressed circRNAs were selected and specific qPCR primers were designed within the circRNAs’ junction 
regions. RNA-seq results showed that ciRNA128 had the highest expression level among the up-regulated cir-
cRNAs, while circRNA6854 had the highest expression level among the down-regulated circRNAs. The qPCR 
experiment results of CT-LCG and FT-LCG were shown in Fig. 8. It was proven that these circRNAs really existed 
and showed similar expression patterns in LCG skin, with the majority exhibiting a higher expression level in 
FT-LCG. The results of ciRNA128, circRNA6854, circRNA3620 and circRNA4154 are significantly differential 
expressed in RNA-seq and qPCR, which suggests that they might play a positive role in cashmere goats with 
different fiber diameters.

Figure 3. Quantitative real-time PCR (qPCR) result of circRNAs expression. (a) Divergent primers used in the 
amplification of circular junctions. (b) Validation of putative circRNAs by qPCR. Blue: LCG; Red: MCG. Error 
bars indicate mean ± SE for three individuals, “*”p < 0.05, “**”p < 0.01.
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Discussion
The cashmere goat is a great breed that produces large amounts of high-grade cashmere fiber. As one of the 
largest producers of cashmere in the world, China has made tremendous contributions to the world animal fiber 
industry and plays an indispensable role in global cashmere production25. CircRNAs can be classified into four 
categories: ecRNA, EIciRNA, ciRNA, and tricRNA26. CircRNAs located in the nucleus are mainly involved in 
transcriptional regulation. During the past few years, through high-throughput RNA sequencing and bioinfor-
matics analysis, a great number of circRNAs have been discovered in different species and tissues. For example, 
13,950 circRNAs were detected in pre-ovulatory ovarian follicles of goats, and 37 circRNAs were found to be 
differentially expressed27. Empirical Bayes sequencing analysis identified 11 down-regulated and 32 up-regulated 
circRNAs in embryos with black fur skin and white fur skin of mice, and these circRNAs may play a role in skin 
pigmentation28. The effects of mRNA and lncRNA have been reported on the skin and hair follicles29,30, but there 
are few studies on the effect of circRNAs on the fineness of cashmere and cashmere growth.

In recent years, numerous studies have found that circRNAs located in cytoplasm can compete with mRNAs 
for target binding sites of miRNAs to regulate the expression of mRNAs. The interaction between circRNA and 
miRNA has attracted more and more attention. In fact, a number of non-coding RNAs have been identified and 
reported in cashmere goat skin31–33. In the current study, we identified a total of 13,320 circRNAs in goat skins 
using RNA-seq analysis. Among these circRNAs, 32 circRNAs were differentially expressed between LCG and 
MCG skin, and then we randomly selected 6 circRNAs to verify the expression levels by qRT-PCR. The results of 
RNA-seq and qPCR were almost identical, thereby indicated the reliability of RNA-seq. Additionally we carried 
out validation on 10 circRNAs in CT- LCG and FT- LCG, interestingly, these circRNAs also had a high expression 
level in FT-LCG, which may play potential positive role in regulating fiber fineness formation.

We obtained 106 terms from GO enrichment analysis, including 69 biological processes, 17 molecular functions, 
and 20 cellular components. Keratinization, intermediate filament organization, spindle midzone, Wnt-protein 
binding, and Wnt-activated receptor activity negative regulation of stress fiber assembly were significant enriched, 

Figure 4. (a) Numbers of circRNAs produced by the same gene. (b) Exon distribution of candidate circRNAs. 
Different colors represent different exons.
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these pathways may participate in the regulation of cashmere fineness formation. Although there were only three 
pathways in which the sulfur relay system, sulfur metabolism, and glycosaminoglycan degradation were found to be 
significantly enriched, the host genes of circRNA6854 and circRNA815 were involved in all pathways. Studies have 
shown that intermediate filaments are probably the key factors involved in cashmere growth34. In addition, several 
important pathways that play a role in dominating hair follicle development were reported, such as the PPAR path-
way35, Wnt signaling pathway5,36,37, MAPK signaling pathway38, and NF-kappa B signaling pathway39. Our data also 
enriched these pathways, it further illustrates the importance of these circRNAs in goat skin.

Figure 5. Gene ontology (GO) analysis of differentially expressed circRNAs. (a) Top 25 biological processes, 
top 15 cell components, and top 10 molecular functions. (b) The top 20 GO terms. The color of the dot 
corresponds to different p-value ranges, and the size of the dot indicates the number of genes in the pathway. 
Rich factor denotes the number of differentially expressed circRNAs in the GO/ the total number of circRNAs 
in the GO.
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Previous studies have shown that circRNA can further influence the expression of target miRNA by acting as 
a miRNA sponge40–42, and the interactions between circRNA and miRNA have been investigated16,43. It is note-
worthy that some known miRNAs have been reported to be closely related to cashmere growth and development, 
while some miRNAs may play multiple roles in cashmere goat skin in the growth period. The expressions of 
mir-103-3p, miR-15b-5p, miR-17-5p, mir-30c-5p, mir-200b, mir-199a-3p, mir-199a-5p, mir-30a-5p, and mir-
29a-3p were significantly different between anagen and telogen skin in Liaoning Cashmere goats44, and these 
were found as the target miRNAs of circRNAs in our data. We hypothesized that a lot of circRNAs interact with 
many cashmere-related miRNAs (chi-miR-106a-5p, chi-miR-106b-5p, chi-miR-17-5p, let-7b-5p, chi-miR-20b, 
chi-miR-143). Previous research proved that oar-miR-103-3P, oar-miR-148b-3P, oar-miR-320-3P, oar-miR-31-5P, 
oar-novel-1-5P, and oar-novel-2-3P may play an important role in follicle growth of Tibetan Sheep45. Mir-200b as 
a target was involved in the regulation of hair follicle development46, while miR-1839, miR-374b, and miR-2284n 
have been reported as showing the highest relative expression levels at the anagen in Inner Mongolia cashmere 
goat skin tissue33. It was reported that let-7b-5p, mir-10a-5p, and mir-21-5p exhibited differences at various hair 
cycle stages in mouse skin47. Research showed that the gene families let-7, mir-17, mir-30, mir-15, and mir-8 were 
highly expressed in goat skin31. In Hu sheep lambskin hair follicles, 14 miRNAs including miR-143, miR-10a, 
and let-7 were screened as important candidate miRNAs48. MiR-143, miR-203, and let-7, let-7b, let-7b-5p, let-7f, 
and let-7c were found to be expressed in Liaoning Cashmere Goats and Fine-Wool Sheep skin49, and the let-7 
family was reported to be involved in the regulation of cell differentiation50.  It suggests that let-7b-5p may affect 
cashmere development as the target of circRNA1167. MiR-378, miR-378e, and miR-378d were only detected in 
Liaoning Cashmere Goats and promoted angiogenesis50,51. Five novel miRNAs (chi-miR-2284n, chi-miR-421*, 
chi-miR-421, chi-miR-1839, and chi-miR-374) play roles in the production of cashmere in Inner Mongolia cash-
mere goat skin33. Taken together, it can be inferred that ciRNA128-chi-miR-331-5p and circRNA6854-chi-miR-
17-5p may have certain roles in cashmere fineness and cashmere fiber morphogenesis.

The expression of circRNAs has been appropriately correlated with an abundance of host genes in different 
animal tissues52–55, such as oar_circ_0003451 and TTN, and oar_circ_0005250 and MYH7 may play important 
roles in muscle development and growth22; circRNA8077 and CRIM1, as well as circRNA3314 and TMEM159 
play vital roles in the development of the receptive endometrium56. The host genes of circRNAs are involved in 
regulating hair traits, and these circRNAs may be considered as a possible factor regulating cashmere fineness. 
The host gene TCHH of ciRNA128 has been confirmed to be involved in hair formation57. Studies based on 
GWAs found TCHH in Latin Americans of mixed European and Native American origin58. Among Europeans, 
the strongest link between straight hair and TCHH was found59, and DSC2, DSG3, CALML5, TCHH are related 

Figure 6. Top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of host genes of differentially 
expressed circRNAs. The color of the dot corresponds to different p-value ranges, and the size of the dot 
indicates the number of genes in the pathway. Rich factor denotes the number of differentially expressed 
circRNAs in the KEGG/the total number of circRNAs in the KEGG.
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to hair growth using iTRAQ-labeling in sheep and goats60. KCTD9 has been reported to be associated with can-
cer61, promoting cell growth and inhibiting cell activation62,63. Thus, it proved potential reference value for cash-
mere fiber fineness and the expression analysis of circRNAs in LCG.

In conclusion, we performed RNA-seq analysis that identified 13,320 circRNAs in cashmere goat skins, of 
which 32 circRNAs were found to be differential expression. The result of qRT-PCR confirmed that four cir-
cRNAs (ciRNA128, circRNA6854, circRNA4154 and circRNA3620) were differentially expressed in CT-LCG 
and FT-LCG. Host genes of differentially expressed circRNAs were mainly enriched in keratinization and 

Figure 7. The circRNAs-miRNAs network. (a) Network of 32 differentially expressed circRNAs. Red and green 
represent up- and down-regulation, and blue represents target-miRNA. (b) The circRNAs-miRNAs network of 
10 candidate circRNAs.
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intermediate filament organization. An integrated regulatory network of circRNAs and miRNAs was executed in 
anagen cashmere goat skin. This study may contribute to better understanding of circRNAs in goat skin.

Materials and Methods
ethics statement. All experiments in this study were approved and conducted according to the Animal 
Experimental Committee of Shenyang Agricultural University, Shenyang, China (201606005).

Sample preparation. Skin samples from three adult female Liaoning cashmere goats (d = 19.4 µm, 19.5 µm 
and 19.8 µm) and three adult female Inner Mongolia cashmere goats (d = 13.8 µm, 14.0 µm and 14.1 µm) were care-
fully collected. The animals we collected were based on all the same conditions, including sex, age, feeding and phys-
iological status and other factors. To reduce pain to experimental animals, we used local anesthesia with procaine. 
In the upper one-third of the right scapula along the mid-dorsal and mid-abdominal lines, about 1 cm2 lateral skin 
from the six cashmere goats were taken and disinfected with 75% ethanol. And then, the skin samples were washed 
three times with PBS and immediately stored in liquid nitrogen until RNA isolation. In addition, three coarse type 
(CT) skin (d = 19.5 µm, 19.7 µm and 20.2 µm) and three fine type (FT) skin (d = 15.3 µm, 15.4 µm and 15.6 µm) sam-
ples from Liaoning cashmere goats were obtained with the same method for qRT-PCR analysis.

total RnA isolation, library construction and sequencing. The total RNA amount and purity of each 
sample was quantified by Nano Drop ND-1000 (Nano Drop, Wilmington, DE, USA). Approximately 5 ug of total 
RNA was used to deplete ribosomal RNA according to the manufacturer’s instructions for the Ribo-Zero rRNA 
Removal Kit (Illumina, San Diego, USA). In order to construct the cDNA library of circRNAs, we used Rnase 
R to remove linear RNA. The average insert size for the final cDNA library was 300 bp (±50 bp), the library was 
purified and qualified by Agilent Bioanalyzer 2100 system.

Identification of circRNAs and analysis of differentially expressed circRNAs. The cDNA libraries 
were performed the paired-end sequencing on an Illumina Hiseq. 4000 (LC Bio, China) following the vendor’s 
recommended protocol. Firstly, low-quality reads and adapters were removed by Cutadapt v1.10, quality con-
trolled by FastQC v0.10.1, and then obtained the high-quality clean reads. TopHat v2.0.4 was utilized to map the 
clean reads to the reference genome from National Center for Biotechnology Information (NCBI) (https://www.
ncbi.nlm.nih.gov/genome/?term = Capra + hircus)64,65. Also, StringTie v1.3.0 was used to assemble and quantify 
expressed genes and transcripts (https://ccb.jhu.edu/software/stringtie/index.shtml)66. CIRCExplorer2 v2.2.6 
software and the following criteria were used to identify candidate circRNAs: mismatch ≤2, back-spliced junction 
reads ≥1, and distances of two splice sites of less than 100 kb in the genome67. Then, the back-spliced reads with at 
least two supporting reads were annotated as circRNAs. The differential expression of circRNAs between the two 
groups was assessed using the Ballgown package. A p-value < 0.05 and |log2 (fc)| > 1 were set as the threshold for 
differential expression68,69.

Gene ontology (Go) analysis and KeGG analysis of host genes. GO analysis (http://www.geneon-
tology.org) was applied to differentially expressed circRNA-hosting genes. Similarly, pathway analysis uncovered 
the significant pathways related to differentially expressed circRNAs according to the annotation of the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (http://www.kegg.jp/kegg)70. A threshold of p < 0.05 was used as a 
criterion for the determination of whether the enrichment analysis was significant71.

network construction of the circRnAs-miRnAs interaction. The interaction of circRNAs-miRNAs 
was predicted with miRNA target prediction software miRanda (http://www.microrna.org/microrna/home.do) 
and TargetScan (http://www.targetscan.org/)72, where the max free energy values of miRanda is <−10 and the 

Figure 8. Quantitative real-time PCR results of circRNAs expression. Blue: CT-LCG; Red: FT-LCG. Error 
bars represents standard deviations within the group, the “*”indicates the significant difference p < 0.05, 
“**”indicates p < 0.01.
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score percentiles of TargetScan is ≥50. The differential expression circRNAs-miRNAs interaction and the net-
work of circRNAs along with their target miRNAs were performed using cytoscape v3.5.1 software (https://cyto-
scape.org/, USA)73.

Quantitative real-time pcR validation. We randomly detected 6 differentially expressed circRNAs for 
qRT-PCR. To prove the resistance of circRNAs to RNase R digestion, we treated total RNAs with RNase R before 
cDNA synthesis. In order to validate the differentially expressed circRNAs, total RNAs were synthesized directly 
to cDNA synthesis by an RT-PCR kit. According to the manufacturer’s instructions, Real-time PCR was per-
formed using SYBR Green (TaKaRa Biotech, Dalian). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
gene was used as an internal control to normalize the expression level of circRNAs74. Three independent exper-
iments were carried out on LCG and MCG skin samples. Six pair primers were designed by primer 5 software 
(www.premierbiosoft.com) and listed in Supplemental Table S1, and all primers were spanning the distal ends 
of circRNAs. The relative expression levels of different circRNAs were analyzed by the 2−ΔΔCt method in qPCR 
data75. The data were indicated as the means ± SE (n = 3). All statistical analyses in the two groups were calcu-
lated using a t-test in SPSS statistical software (Version 22.0, Chicago, IL, USA), the difference was significant at 
p < 0.05. In addition, three CT-LCG and FT-LCG skin samples were verified by qPCR under the same experimen-
tal conditions to find the differential circRNAs in LCG.
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