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entanglement Detection via  
Direct-Sum Majorization 
Uncertainty Relations
Kun Wang  , nan Wu* & fangmin Song*

in this paper we investigate the relationship between direct-sum majorization formulation of 
uncertainty relations and entanglement, for the case of two observables. our primary results are 
entanglement detection methods based on direct-sum majorization uncertainty relations. these 
detectors provide a set of sufficient conditions for detecting entanglement whose number grows 
linearly with the dimension of the state being detected.

Uncertainty relations is an essential element of quantum mechanics. They characterize intrinsic limitation on our 
ability to predict the outcomes of noncommuting observables simultaneously. There are various approaches to 
quantify these relations. The original formulation by Heisenberg1 applied the standard deviation to measure the 
uncertainty for momentum and position operators. This result was then generalized to arbitrary observables2. 
Later the entropic uncertainty relations emerged3–9 and found applications in the security analysis of quantum 
cryptographic protocols. In this approach, uncertainty is measured by entropy functions like Shannon10 and 
Rényi11. We refer to12 for a comprehensive review on this topic. However, entropies are by no means the most 
adequate to use. With this motivation, majorization is used to study uncertainty relations13. This line of research 
is further investigated in14–16.

Entanglement is one of the most counterintuitive phenomena of quantum mechanics and has been extensively 
investigated in the past decades17–19. Entangled states are key ingredient in quantum information processing, such 
as quantum teleportation20 and dense coding21. It is therefore important to decide whether a given quantum state 
is entangled or not. However, this problem is known to be computationally intractable22. As so, computationally 
tractable necessary conditions for entanglement detection, which provide a partial solution, have been the subject 
of active research in recent years23.

References 24,25 present several methods for detecting entanglement via variance based uncertainty relations. 
Similar methods have been designed using entropy based uncertainty relations26,27. One may wonder whether 
there exists a relationship between the majorization based uncertainty relation and entanglement. The answer is 
affirmative. In28, the author applies the tensor-product majorization formulation of uncertainty13 to the problem 
of entanglement detection. In this paper we use the direct-sum majorization uncertainty relation, developed in16, 
to design an entanglement detection method. As the direct-sum majorization bound has analytical solution while 
the tensor-product majorization bound does not, our direct-sum majorization based detection method is more 
practical than the tensor-product majorization based method.

The rest of this paper is structured as follows. We first briefly review the direct-sum majorization formulation 
of uncertainty. Then, we present our main result — an entanglement detection method based on the direct-sum 
majorization uncertainty. Example is given to illustrate how our method works.

Direct-sum Majorization Uncertainty Relations
This section presents a basic review of the majorization theory and the formulation of direct-sum majorization 
approach to uncertainty relations.

Majorization. Let  = ∞+ [0, ) be the set of non-negative real numbers,  = … ∈+ +p p p{( , , ): }d
d i1  be the 

set of d-dimensional real vectors with non-negative components. We denote by ∈ +p d  a d-dimensional vector 
and by pi the i-th element of p. For any vector ∈ +p d , let p↓ be the vector obtained from p by arranging the com-
ponents of the latter in descending order. Given two vectors ∈ +p q, d , p is said to be majorized by q and written 
p q if
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Intuitively, p q means that the sum of largest k components of p is no larger than the sum of k largest com-
ponents of q. The majorization order is a partial order, i.e., not every two vectors are comparable under majoriza-
tion. When studying majorization among two vectors of different dimensions, we append 0(s) to the vector with 
smaller dimension so that two vectors have the same dimension.

A related concept is the supremum of a set of N vectors, defined as the vector that majorizes every element of 
the set and, is majorized by any vector that has the same property. We now briefly describe how to construct the 
supremum vector, more details can be found in13,29. Let = ∈ + =S p{ }n d

n
N( )

1 a set of N vectors. To construct the 
supremum for S, we define a (d + 1)-dimensional vector Ω with components Ω0 = 0, ∀k ∈ {1, …, d}
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The desired supremum ω ω ω= …: ( , , )d
sup

1
sup sup  is then given by

ω∀ ∈ … = Ω − Ω .−k d{1, , }, (3)k k k
sup

1

The construction given in Eq. (3) guarantees that ωsup majorizes every element of the set S, but ωsup does not 
necessarily appear in a descending order and may, therefore, fails to be majorized by other vectors with the same 
property. In such case, we must perform a “flattening” process. This process starts with ωsup obtained in Eq. (3), 
and for every pair of components violating the descending order, say, ω ω< +k k

sup
1

sup, replaces the pair by their mean 
such that the updated two elements are ω ω ω ω= = ++ +ˆ ˆ ( )/2k k k k

sup
1

sup sup
1

sup . This process continues until a descend-
ing vector corresponding to the supremum is obtained.

Direct-sum majorization uncertainty. We now briefly introduce the uncertainty relation characterized 
by direct-sum majorization relation. We remark that the results summarized here are originally presented in16.

Let H be a d-dimensional Hilbert space. Denote by D H( ) the set of quantum states in H. Let  and  be two 
nondegenerate and noncommuting observables, and ρ be a state on H. Assume the spectral decompositions of  
and  are given by

X Z∑ ∑α β= | 〉〈 | = | 〉〈 |
= =

x x z z, ,
(4)i

d

i i i
j

d

j j j
1 1

where {|xi〉} and {|zj〉} are the eigenstates of  and , respectively. These two set of eigenstates provide two ortho-
normal bases of H. We then define the probability distribution induced by the measurement of observable  for 
a system in state ρ in the usual manner

 ρ ρ| = … = 〈 | | 〉.p p p p x x( ) ( , , ), (5)d i i i1

Similarly, measurement of observable  for the system in state ρ induces a probability distribution given by

 ρ ρ| = … = 〈 | | 〉.q q q q z z( ) ( , , ), (6)d j j j1

We are interested in the uncertainty relation induced by these two observables. In16 the direct-sum majoriza-
tion approach is used to is to characterize the uncertainty about  ρ|p( ) and  ρ|q( ):

X Z X Zρ ρ ρ ω∀ ∈ | ⊕ | ⊕
D H p q( ), ( ) ( ) , (7)

where X Zω ⊕  is a 2d-dimensional vector independent of ρ which can be explicitly calculated from observables 
X Zand . Intuitively, X Zω ⊕  is the supremum vector of the following set

X Zρ ρ ρ= | ⊕ | ∈ .S Dp q H: { ( ) ( ) : ( )} (8)

Now we show how to compute X Zω ⊕  analytically. From the definitions of p and q, we see that only the eigen-
states of  and  matter. We define a d × d unitary operator U whose elements are given by = 〈 | 〉U x zij i j . U is 
known as the overlap matrix16 as it characterizes the overlap of the two orthonormal bases. For each ∈ …k d{1, , }, 
let SUB(U, k) be the set of submatrices of class k of U defined as

= + = + .U k M M U M M kSUB( , ) { : is a submatrix of satisfying#cols( ) #rows( ) 1} (9)

The symbols #cols(M) and #rows(M) denote the number of columns and rows of matrix M, respectively. Based 
on the concept of submatrices, we define the following set of coefficients, which is important in computing X Zω ⊕

:

= ∈s M M U kmax{ : SUB( , )}, (10)k
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where ||M|| is the operator norm equal to the maximum singular value of M, and the maximum is optimized over 
all submatrices of class k of U. By construction we have ≤ ≤ =s s 1d1 . In16 it is proved that

X Zω = ⊕ = − … − … .⊕
−s s s s s s s{1} , ( , , , , 0, , 0) (11)d d1 2 1 1

We append d − 1 0 s to s to make X Zω ⊕  a 2d-dimensional vector. We remark that the vector s is not necessarily 
sorted in descending order, but we can use the “flattening” process described in the first section to make it so. To 
summarize, the direct-sum majorization uncertainty relation is characterized in the following theorem, originally 
proved in16.

Theorem 1 Let  and  be two nondegenerate and noncommuting observables on H. For any state ρ ∈ D H( ), it 
holds that X Z X Zρ ρ ω| ⊕ | ⊕

p q( ) ( ) , where X Zω ⊕  is defined in Eq. (11).

entanglement Detection
An entanglement detector decides whether a given bipartite state is separable by providing a condition that is 
satisfied by all separable states, and if violated, witnesses entanglement. In this section, we design a detection 
method based on the direct-sum majorization bound described above. As majorization relations, our detector 
actually provides a set of conditions whose number will grow with the dimension of the state. We first describe a 
majorization bound for all separable states. Then we show how this bound serves as a detector.

Majorization bounds. If an observable  is degenerate, the definition of  ρ|p( ), given in Eq. (5), is not 
unique, since the spectral decomposition is not unique. By combining eigenstates with the same eigenvalue, how-
ever, there exists a unique spectral decomposition of the form  λ= ∑ Pi i i, with λ λ≠ ′i i  for ≠ ′i i  and Pi are 
orthogonal projectors of maximum rank30. Under this convention, we define for degenerate observable  the 
distribution pi = Tr[Piρ]. Our entanglement detection method relies on the degeneracy properties of the product 
observables on bipartite systems. It is possible that for two non-commuting observables A and B, their product 
 ⊗A B is degenerate. Consequently, it may happen that  ⊗A B and  ⊗A B have a common eigenstate, and 
this eigenstate is an entangled pure state. In such cases, the probabilities   ρ⊗ |p( )A B AB  and   ρ⊗ |p( )A B AB  will 
reflect the stated difference and may be capable of detecting entanglement. As an example, consider the Pauli Z 
operator σz on system A and B. The product observable on AB is given by σ σ⊗z z. The spectral decomposition of 
σ σ⊗z z is (under our convention)

σ σ⊗ = | 〉〈 | + | 〉〈 | − | 〉〈 | + | 〉〈 |( 00 00 11 11 ) ( 01 01 10 10 ), (12)z z

Similarly, we have σ σ⊗ = −+ −P Px x , where P = |++〉〈++ | + | −−〉〈−−|+  and P = |+−〉〈+− | +−
|−+〉〈−+|, | +〉 = | 〉+ | 〉( 0 1 / 2 , ( 0 1 / 2|−〉 = | 〉− | 〉 . There exists no state ρA that can result in certain out-
comes for both σx and σz, because they do not commute. But there do exist an entangled state |Ψ〉 that can give 
certain outcomes for both σ σ⊗x x and σ σ⊗z z , as they commute. By the Schmidt decomposition, they can be 
expressed in the same eigenbases which are possibly entangled.

Let  A and  B be two full rank observables on A and B, respectively. Assume their spectral decompositions 
are given by

 ∑ ∑α β= | 〉〈 | = | 〉〈 |.
= =

x x x x,
(13)A

i

d

i i
A

i
A

B
i

d

i i
B

i
B

1 1

Performing the product measurement  ⊗A B on a bipartite state ρAB, we obtain a joint distribution

ρ= 〈 | | 〉.p i j x x x x( , ) (14)i
A

j
B

AB i
A

j
B

As  ⊗A B might be degenerate, some elements p(i, j) are grouped together since they belong to the same 
eigenvalue. We denote by   ρ⊗ |p( )A B AB  the joint distribution after grouping. If we perform local measure-
ments, we obtain marginal distributions  ρ|p( )A A  and  ρ|p( )B B . It is proved in [30, Lemma 1] that the joint distri-
bution of a product state is majorized by the distribution of its marginal, which we restate here for completeness.

Lemma 2 Let ρ ρ ρ= ⊗AB A B be a product state and let A and B be two observables on systems HA and HB, respec-
tively. Then

  ρ ρ ρ⊗ | ⊗ |p p( ) ( ), (15)A B A B A A

  ρ ρ ρ⊗ | ⊗ | .p p( ) ( ) (16)A B A B B B

Intuitively, this is because for the product observable  ⊗A B, its eigenstates are possibly entangled, and thus 
product state gives uncertain outcomes, however it is possible that the reduced state gives certain outcome for the 
corresponding local measurements.

Now we consider the effect of several product observables. Let A and A be two observables on A, B and B 
be two observables on B, respectively. For arbitrary product state ρ ρ ρ= ⊗AB A B, we obtain from Lemma 2 that
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X X X Z Z Zρ ρ ρ ρ ρ ρ⊗ | ⊗ | ⊗ | ⊗ | . p p p p( ) ( ), ( ) ( ) (17)A B A B A A A B A B A A

As the direct-sum operation preserves the majorization order31, we have

X X Z Z X Zρ ρ ρ ρ ρ ρ⊗ | ⊗ ⊕ ⊗ | ⊗ | ⊕ | .p p p p( ) ( ) ( ) ( ) (18)A B A B A B A B A A A A

The RHS. of Eq. (18) is the direct-sum of two distributions. By the virtue of Theorem 1, it holds that

X Z X Zρ ρ ρ ω∀ ∈ | ⊕ | .⊕
D H p p( ), ( ) ( ) (19)A A A A A A

A A

Combining Eqs. (18) and (19), we reach the following statement for arbitrary product states ρ ρ⊗A B, one has

X X Z Z X Zρ ρ ρ ρ ω⊗ | ⊗ ⊕ ⊗ | ⊗ .⊕
p p( ) ( ) (20)A B A B A B A B

A A

The majorization relation derived in Eq. (20) holds for product states. Now we show that this relation actually 
holds for arbitrary separable states. We are actually interested in the optimal state that majorizes all possible prob-
ability distributions X X Z Zρ ρ⊗ | ⊕ ⊗ |p p( ) ( )A B AB A B AB  induced by performing the measurements  ⊗A B and 
 ⊗A B on separable states ρAB. Such a state can be defined as

X X Z ZX X Z Zω ρ ρ ρ= ⊗ | ⊕ ⊗ | ∈⊕ p p H H: sup{ ( ) ( ) : SEP( : )}, (21)A B AB A B AB AB A BSEP
( ) ( )A B A B

where SEP(HA: HB) is the set of separable states of the bipartite space ⊗H HA B. Let ΩSEP be the (d + 1)-dimensional 
vector for constructing the supremum X X Z Zω ⊕

SEP
( ) ( )A B A B  before the flattening process. That is, X X Z Zω ⊕

SEP
( ) ( )A B A B  is 

obtained from ΩSEP using Eq. (3) after the flattening process. We now show by contradiction that each element of 
ΩSEP is achieved by some pure product state. Let μl be the l-th component of ΩSEP, where l ≤ d + 1. By Eq. (2), we 
can assume without loss of generality that μl is achieved by some separable state ρ λ φ ϕ φ φ= ∑ | 〉〈 | ⊗ | 〉〈 |ÂB k k k

A
k
A

k
B

k
B , 

where φ| 〉{ }k
A  and φ| 〉{ }k

B  are orthonormal bases of A and B, respectively. Denote by I (J) be subsets of distinct 
index pairs from … × …d d{1, , } {1, , }, and by |I| (|J|) the size (number of elements) of I (J). We assume the two 
probability sequences achieving μl are given by I and J satisfying |I| + |J| = l. That is,

∑ ∑μ = +
∈ ∈

p i j q m n( , ) ( , ),
(22)

l
i j I m n J( , ) ( , )

where p and q are the joint distributions given by product measurements  ⊗A B and  ⊗A B, respectively. 
From the linearity of the trace function, we have

p i j x x x x x x( , ) ,
(23)i

A
j
B

AB i
A

j
B

k
k i

A
j
B

k
A

k
B 2ˆ ∑ρ λ φ φ= 〈 | | 〉 = |〈 | 〉|

q m n z z z z z z( , )
(24)m

A
n
B

AB m
A

n
B

k
k m

A
n
B

k
A

k
B 2∑ρ λ φ φ= 〈 | | 〉 = |〈 | 〉| .ˆ

Thus

∑ ∑ ∑ ∑ ∑μ λ φ φ φ φ= + =





|〈 | 〉| + |〈 | 〉|
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x x z zmax
(26)i j I

i
A

j
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k
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m n J
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n
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( , )

2

( , )

2

k
A

k
B ∑ ∑φ φ φ φ≤ |〈 | 〉| + |〈 | 〉| .

φ φ| 〉 ∈ ∈

That is to say, if ρ̂AB achieves μl, then ρ̂AB must be a pure product state, otherwise we can find a pure state which 
gives larger μl by simply choosing the eigenstate of ρ̂AB with the largest eigenvalue. To summarize, we reduce the 
optimization over all separable states required in Eq. (21) to the optimization over all pure product states:

ω φ φ φ φ φ φ φ= ⊗ | ⊕ ⊗ | = | 〉〈 | ⊗ | 〉〈 | .⊕ X X Z ZX X Z Z p psup{ ( ) ( ) : } (27)A B AB A B AB A A B BSEP
( ) ( )A B A B

For an arbitrary separable state (be it pure or not) ρAB, it then holds that

X X Z Z X X Z Z X Zρ ρ ω ω⊗ | ⊕ ⊗ | ⊕ ⊕
 p p( ) ( ) , (28)A B AB A B AB SEP

( ) ( )A B A B A A

where the first relation follows from the definition of ωSEP , and the second relation follows from Eqs. (27) and 
(20). We have the following theorem.

Theorem 3 Let  ⊗A B and  ⊗A B be two product observables. For arbitrary separable state ρ ∈ ⊗D H H( )AB A B , 
it holds that

X X Z Z X Zρ ρ ω⊗ | ⊕ ⊗ | ⊕
p p( ) ( ) , (29)A B AB A B AB

A A
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where X Zω ⊕A A is defined in Eq. (11). Similarly, one has

X X Z Z X Zρ ρ ω⊗ | ⊕ ⊗ | .⊕
p p( ) ( ) (30)A B AB A B AB

B B

the detection framework. Theorem 3 states that majorization of X X Z Zρ ρ⊗ | ⊕ ⊗ |p p( ) ( )A B AB A B AB  by 
X Zω ⊕A A is a necessary condition for the separability of ρAB and its violation signals the existence of entanglement. 

This statement provides an operational method of entanglement detection. Given a bipartite state 
ρ ∈ ⊗D H H( )AB A B , we first calculate the direct-sum probability distribution X X Z Zρ ρ⊗ | ⊕ ⊗ |p p( ) ( )A B AB A B AB  
induced by the product measurements  ⊗A B and  ⊗A B by sampling from the source multiple times and 
gathering statistics. Then we investigate the majorization relation between this quantity and X Zω ⊕A A. If X Zω ⊕A A 
does not majorize the direct-sum distribution, then we conclude that ρAB is entangled. However, if X Zω ⊕A A major-
izes the distribution, we can say nothing about ρAB: it can be separable, it can also be entangled.

The proposed method is a collection of detectors. Indeed, Theorem 3 states the following fact. For arbitrary 
separable state ρAB and arbitrary ∈ …k d{1, , 2 }, it holds that

X X Z Z X Z∑ ∑ρ ρ ω⊗ | ⊕ ⊗ | ≤ .
=

↓

=

⊕ ↓p p[ ( ) ( )] [ ]
(31)i

k

A B AB A B AB i
i

k

i
1 1

B B

As the first and the last d inequalities are trivial, we have d − 1 effective inequalities in total, thus d − 1 detec-
tors. Violation of any of these inequalities is sufficient to detect entanglement in a given state.

example. Here we give an example illustrating how to use our proposed method to detect the entanglement 
of Werner states with Pauli σx and σz observables. First, using the construction method discussed around Eq. (11),  
we obtain

ω = − .σ σ⊕ (1, 1/ 2 , 1 1/ 2 , 0) (32)x z

The Werner family of two-qubit states32 is of the form:

ρ = |Φ〉〈Φ| + −p p p( ) : (1 )1
4

, (33)
w

where p ∈ [0, 1], |Φ〉 = | 〉 + | 〉( 00 11 )/ 2  and 1 is the identity operator. It is known that ρw(p) is entangled if and 
only if p > 1/3. If we perform the measurements of the product observables σ σ⊗x x and σ σ⊗z z on a system in 
state ρw(p), we obtain the same probability distribution by Eq. (12), i.e.,

σ σ ρ σ σ ρ⊗ | = ⊗ | =




+ − 

.p p p p p p( ( )) ( ( )) 1

2
, 1

2 (34)x x
w

z z
w

As so, the direct-sum of these two probability distributions is

σ σ ρ σ σ ρ⊗ | ⊕ ⊗ | =




+ + − − 

.p p p p p p p p( ( )) ( ( )) 1

2
, 1

2
, 1

2
, 1

2 (35)x x
w

x x
w

According to Theorem 3, ρw(p) violates the separability condition of Eq. (29) if ωσ σ⊕x z fails to majorize the 
direct-sum quantity in Eq. (35), which occurs when

+
+

+
> +

p p1
2

1
2

1 1
2

,
(36)

resulting >p 1/ 2. That is to say, our method can detect the entanglement of ρw(p) for >p 1/ 2. Obviously, our 
obtained bound is not tight for the Werner states. However, by optimizing over all possible observables, we can 
possibly improve the bound for Werner states. Our main point of this example is show that our framework can 
detect entanglement, say for the Werner states when p is large enough. It remains as an interesting problem to 
figure out for what states our detection framework has good performance.

conclusions
In this paper, we have studied the relationship between direct-sum majorization formulation of uncertainty rela-
tions and entanglement. We have designed entanglement detection methods based on such a formulation. Our 
detectors provide a set of sufficient conditions for detecting entanglement whose number grows linearly with the 
dimension of the state being detected. The proposed entanglement detection methods are of practical importance, 
as they are experimental friendly and relatively easy to implement.

Several interesting problems remain open. What’s the relation between our entanglement detection method 
based on direct-sum majorization and that based on tensor-product majorization28? Can we obtain stronger 
detection method by considering a tomographically complete set of observables? We hope the results pre-
sented here can stimulate further investigations on the relations among uncertainty relations, majorization, and 
entanglement.
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