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impact of contouring variability on 
oncological pet radiomics features 
in the lung
f. Yang  1*, G. Simpson2, L. Young3, J. ford  1, n. Dogan1 & L. Wang1

Radiomics features extracted from oncological pet images are currently under intense scrutiny within 
the context of risk stratification for a variety of cancers. However, the lack of robustness assessment 
poses problems for their application across institutions and for broader patient populations. the 
objective of the current study was to examine the extent to which radiomics parameters from 
oncological pet vary in response to manual contouring variability in lung cancer. imaging data 
employed in the study consisted of 26 PET scans with lesions in the lung being created through the 
use of an anthropomorphic phantom in conjunction with Monte carlo simulations. from each of the 
simulated lesions, 25 radiomics features related to the gray-level co-occurrence matrices (GLCOM), 
gray-level size zone matrices (GLSZM), and gray-level neighborhood difference matrices (GLNDM) were 
extracted from ground truth contour and from manual contours provided by 10 raters in regard to four 
intensity discretization schemes with number of gray levels of 32, 64, 128, and 256, respectively. The 
impact of interrater variability in tumor delineation upon the agreement between raters on radiomics 
features was examined via interclass correlation and leave-p-out assessment. Only weak and moderate 
correlations were found between segmentation accuracy as measured by the Dice coefficient and 
percent feature error from ground truth for the vast majority of the features being examined. GLNDM-
based texture parameters emerged as the top performing category of radiomcs features in terms of 
robustness against contouring variability for discretization schemes engaging number of gray levels 
of 32, 64, and 128 while GLCOM-based parameters stood out for discretization scheme engaging 256 
gray levels. How and to what extent interrater reliability of radiomics features vary in response to the 
number of raters were largely feature-dependent. It was concluded that impact of contouring variability 
on PET-based radiomics features is present to varying degrees and could be experienced as a barrier to 
convey PET-based radiomics research to clinical relevance.

Lung cancer has the highest mortality rate of all cancers for both men and women with a predicted 5-year survival 
rate of 8–13%1. To maximize positive outcomes, cancer treatment is evolving towards personalized care by eval-
uating predictive factors before treatment and disease response while treatment is occurring2,3. 18F-fluoro-deoxy-
2-glucose (18F-FDG) positron emission tomography (PET) is increasingly becoming the standard of care in 
baseline staging and restaging of lung cancer as well as treatment monitoring and tracking response to treatment 
in radiation therapy (RT)4,5. As a functional imaging modality, FDG-PET offers the unique ability to provide the 
metabolic characterization of tumoral microenvironment not afforded by other imaging modalities such as com-
puted tomography (CT) and conventional magnetic resonant imaging (MRI). Radiomics analysis of FDG-PET 
imaging data in RT seeks to quantify intratumoral heterogeneity under the assumption that radiotracer accu-
mulation pattern within the tumor is associated with the spatial phenotypic variation in metabolic traits of the 
cancer and thus potentially furnishes predictive information concerning disease recurrence and responsiveness 
to therapeutics.

Previous studies on PET radiomics for lung cancer have linked PET radiomics parameters to various clini-
cal end points including overall survival, disease specific survival, and locoregional control amongst others6–10. 
Successful translation of PET radiomics research into the clinic for lung cancer management in RT hinges largely 
on the robustness of radiomics parameters to various inter/intra-scanner image acquisition variability as well as 
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against an array of diverse uncertainties intrinsic to radiomics analysis. Concerns of reproducibility and reliability 
have been investigated by several studies with emphasis being put, respectively, on the impact onto PET radiomics 
features due to factors including PET scanner manufactures, acquisition and reconstruction algorithms, intensity 
discretization scheme, etc.11–14. As for the variability of contouring volume of interest (VOI) for inclusion to radi-
omics analysis, only a few existing studies investigated its impact on PET radiomics parameters15,16, even though 
contouring variability is commonly recognized as the largest source of error in the RT planning process17. These 
studies involving contouring were carried out using clinical PET imaging data with an inherent lack of knowledge 
about actual tumor volumes. Without this knowledge, variance of PET radiomics parameters with respect to con-
touring variability can be assessed to only a very limited degree while the extent to which radiomics parameters 
deviate from their true values due to contouring variability remains largely unaddressed. By aid of a realistic 3D 
digital phantom of the thorax in conjunction with a Monte Carlo (MC) based PET imaging simulation package, 
the purpose of this work was to examine the impact of contouring variability on PET radiomics parameters for 
lung cancer in a setting with complete knowledge of tumor location, morphology, and intensity distribution. By 
so doing, the present work furnished a set of methodological guides exploitable for design and implementation of 
future investigations endeavoring to translate PET radiomics into clinical relevance.

Materials and Methods
pet image simulation. A digital phantom was utilized for the generation of PET data. The rationale behind 
using a digital phantom was that the digital phantom provides image data with a known association to the ground 
truth and therefore offers an objective criterion for inclusion and exclusion of image content from radiomics 
analysis. For the simulation, the Zubal anthropomorphic phantom18 was used as the attenuation map and the 
Monte Carlo based Simulation System for Tomography software package (SimSET)19 was employed for PET 
event detection process. The PET system modeled was a Siemens Biograph scanner featuring a pixelated block 
BGO detector with a ring radius of 42.1 cm. The emission data produced from the simulations was re-binned into 
128 × 128 sinograms by single-slice re-binning, followed with reconstruction using an ordered subset expec-
tation maximization (OSEM) algorithm (8 iterations, 4 subsets). Attenuation correction was conducted using 
tissue-specific indices that correspond to attenuation coefficients defined in SimSET. The resulting image data 
was further convolved with a 5 mm full width at half maximum (FWHM) 3D Gaussian filter for noise suppres-
sion. The methodology along with the full details used for generating PET imaging data was previously published 
and validated by the demonstrated close agreement from comparison of the actually acquired and the simulated 
image data in terms of gray-level intensity histogram, intensity profile, and statistical textures20–23.

Volume contouring and evaluation. A total of 10 radiation oncology physicians (i.e., raters) with exten-
sive clinical experience on PET-based lung lesion delineation participated in the study. The software platform 
used for contouring was MIM Maestro v6.5.5 (MIM, Software, Cleveland, OH). Raters were given no specific 

Category Feature

Gray-level Co-occurrence Matrix (GLCOM) Energy

Contrast

Entropy

Homogeneity

Correlation

Variance

Dissimilarity

Gray-level Size Zone Matrix (GLSZM) Short Zones Emphasis (SZE)

Large Zones Emphasis (LZE)

Gray-level Non-uniformity (GLN)

Zone Size Non-Uniformity (ZSNU)

Zone Percentage (ZP)

Low Gray-level Zones Emphasis (LGZE)

High Gray-level Zones Emphasis (HGZE)

Short Zones Low Gray-level Emphasis (SZLGE)

Short Zones High Gray-level Emphasis (SZHGE)

Large Zones Low Gray-level Emphasis (LZLGE)

Large Zones High Gray-level Emphasis (LZHGE)

Gray-level Variance Emphasis (GLV)

Zone Size Variance Emphasis (ZSV)

Gray-level Neighborhood Difference Matrix (GLNDM) Coarseness

Contrast

Busyness

Complexity

Strength

Table 1. Radiomics feature classes and features being examined for dependency on contouring variability.
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directions regarding the display settings such as window/level, thresholding, and pixel representation amongst 
others. Allowed for use were only the fundamental contouring tools of the MIM Maestro program including 
brush, pen, interpolation, and smoothing, etc. Accuracy of manual contours relative to their respective ground 
truth was assessed through use of Dice coefficient (DICE)24 and symmetric mean absolute surface distance 
(SMASD)25. DICE can have a range between 0 and 1, with 0 indicating a manual contour does not overlap spa-
tially with its ground truth while 1 indicating that the two match identically. SMASD estimates the spatial distance 
between a manual contour and its ground truth through quantifying the average extent in terms of voxel size to 
which the surfaces of the two differ. Ethical approval was not applicable for the current study according to US 
Health and Human Services regulations (45 CFR part 46)26, because the contour data contributed by the raters 
was anonymized and no rater information might be individually identifiable.

Radiomics analysis. For each of the simulated lesions, radiomics analysis was performed using each rater’s 
VOI as well as the ground truth volume. Given the fact that it has not been established what discretization method 
is most suited for PET-based radiomics feature extractions27, the current study took into consideration four of 
the most frequently used discretization schemes with image intensity values inside the VOIs for radiomics anal-
ysis being rescaled to the range of integers [0, 31], [0, 63], [0, 127], and [0, 255], respectively. The radiomics 
parameters evaluated included an array of the most commonly referenced volumetric texture features related 
to the gray-level co-occurrence matrices (GLCOM) with voxel displacement of 1, gray-level size zone matrices 
(GLSZM), and gray-level neighborhood difference matrices (GLNDM) with neighborhood size of 3 × 3 × 328–30. 
GLCOM-based features quantify the frequency of a voxel intensity pattern relative to another at a given distance. 
For example, GLCOM-based feature contrast quantifies the frequency of co-occurring gray level intensities by 
summing over all gray level combinations and weighting the probability of each occurrence by their difference, 
i.e. larger differences between two voxels are weighted more heavily than similar gray level intensities. A higher 
value of contrast is indicative of a GLCOM which is associated with low probabilities of similarly occurring gray 
level intensities. GLSZM-based features either accentuate the size of isointense gray level regions or emphasize 
high or low gray level intensity regions. For example, small zone emphasis weights the smaller regions of isoin-
tense gray levels higher than larger zones. GLNDM-based features describe how the gray level intensities around a 
certain gray level differ. For example, the GLNDM-based feature contrast describes local neighborhood intensity 
differences, i.e., a VOI in which each voxel’s neighborhood has large grayscale intensity difference would have a 
higher GLNDM-based contrast value. In total, 25 radiomics features were included in the study and for a com-
plete list of these features please refer to Table 1.

Statistical analysis. Statistical analysis was performed using JMP Pro® Version 12 (SAS Institute Inc., Cary, 
NC) statistical software. Percent error between feature value derived from raters’ VOI and its ground truth value 
was calculated and examined for correlation with DICE to investigate the dependence of feature uncertainty on 

Figure 1. Axial cross-sections of two simulated PET images with the manual contours by the raters overlaid. 
Rater agreement for the lesion on the top is higher than that for the more complex lesion on the bottom.
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contouring accuracy through use of Spearman’s rank correlation coefficient (ρ). Correlations were considered 
weak if ρ| | < 0.400, moderate if 0.400 ≤  ρ| | < 0.600, relatively strong if 0.600 ≤  ρ| | < 0.800, and strong if 0.800 ≤  ρ| |
31. To measure the impact of contouring variability on PET radiomics parameters, the intraclass correlation coef-
ficient (ICC) was calculated using the two-way random effects model32. This model estimates the absolute agree-
ment of multiple raters per measurement. Higher agreement indicates a lower dependence of a given feature upon 
contouring variability. This analysis was performed for each of the 25 radiomics features being investigated. 
Selection of radiomics features least impacted by contouring variability was based on the lower confidence inter-
val of ICC (ICCLB) for all 10 raters and a threshold of ≥0.950 (i.e., an error of less than 5% for worst case scenario) 
was used as the cutoff value33. The impact of decreasing the number of raters for the top performing features was 
explored by employing a leave-p-out analysis34. This method calculated the mean lower confidence bound of the 
ICC coefficient (ICCLB) by excluding p number of raters ( ≤ ≤p1 7) and averaging the lower 95% confidence 
bound of all remaining rater combinations. For all statistical analyses, p-values of 0.050 or lower were considered 
statistically significant.

Results
A total of 26 lesions were simulated with wide variations in size, shape, and radiotracer uptake pattern as well as 
anatomical location, ranging from within the lungs to adjacent to the mediastinum or to the chest wall. The 
ground truth volumes of the simulated lesions ranged from 29.8 cm3 to 345.1 cm3 while the volumes defined by 
the raters ranged from 33.4 cm3 to 425.7 cm3. The volume error averaged over all raters ranged from 19.3 cm3 
smaller than the ground truth volume to 17.2 cm3 larger, with an average error over all tumors of 2.4 cm3 larger. 
Figure 1 illustrates the variability of the raters in delineations of two of the simulated lesions, and the overall var-
iations across the raters are reflected in the distribution of DICE and SMASD values as shown in Fig. 2, from 
which can be seen that most contoured volumes achieved DICE above 0.800 while SMASD less than 0.550 voxel. 
It demonstrates that, overall, manual contours by the raters attained substantial spatial overlap with their respec-
tive ground truth volumes while approximating their respective ground truth surface within subvoxel accuracy. 
In addition, contouring performance of the raters was lesion-dependent and did not appear to be associated with 
any clear and consistent trends allowing to distinguish the raters.

Fig. 3 shows the scatter plots between the percent error of the examined radiomics features from their corre-
sponding ground truth and DICE for discretization scheme with gray levels of 64. As can be readily observed, the 
patterns between percent feature error and DICE are largely feature-dependent and could vary widely, from per-

Figure 2. Histogram of DICE (top panel) and SMASD (bottom panel) for all 260 manually defined contours (26 
lesions contoured by 10 raters).
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cent feature error being relatively robust against contouring accuracy such as for features including GLCOM_
Entroy, GLSZM_SZE, GLSZM_ZSN, and GLSZM_ZP, to being very spread out such as for features including 
GLSZM_LGZE, GLSZM_SZLGE, GLSZM_LZLGE, etc., with the rest seen as being mild. Further, it is worth 
noting that similar tendencies were also observed for the rest of discretization schemes that resulted in intensity 
values being rescaled to have number of gray levels of 32, 128, and 256. The results of the Spearman’s ρ calculation 
of correlation between percent feature error and DICE revealed only weak and moderate correlations irrespective 
of the discretizaiton methods for almost all of the features being examined, except for GLCOM_Entropy extracted 
with discretizaiton levels of 128 and 256 and GLCOM_Energy with discretizaiton levels of 256. Percent feature 
error of these three and DICE were correlated relatively strongly with ρ of −0.6277, −0.6303, and 0.6177, respec-
tively. All calculated correlations between percent feature error and DICE for the studied discretization algo-
rithms are presented in Fig. 4.

The results of the ICC analysis performed for each of the features studied are shown in Fig. 5. For the four 
intensity discretization schemes engaging number of gray levels of 32, 64, 128, and 256, ICC of GLCOM-based 
features ranged from 0.893 to 0.982, 0.904 to 0.984, 0.904 to 0.985, and 0.904 to 0.985 with mean of 0.952, 0.954, 
0.955, and 0.963, respectively. ICC of the 13 GLSZM-based features attained an average of 0.897, 0.887, 0.919, and 
0.947 while with range extending from 0.404 to 0.991, 0.468 to 0.989, 0.557 to 0.988, and 0.848 to 0.977 for the 
four discretization schemes, respectively. As to the five GLNDM-based features, ICC spanned from 0.951 to 0.991, 
0.940 to 0.990, 0.910 to 0.990, and 0.871 to 0.991 while averaging 0.970, 0.968, 0.964, and 0.957 for the four dis-
cretization schemes, respectively. What was being observed furthermore is the dependence of ICC on the number 
of the discretization levels. This association was confirmed to be strong for 17 of the 25 features being examined 
when using Spearman’s rank correlation test. ICC ascended with the number of the discretization levels for nine 
of the 17 features including GLCOM-based Entropy, Homogeneity, and Variance, GLSZM-based LGZE, HGZE, 

Figure 3. Scatter plots comparing percent error from ground truth against DICE for radiomics features 
extracted using discretization scheme with number of gray levels of 64.
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SZLGE, and LZLGE, and GLNDM-based Contrast and Strength while descending for the other eight consisting 
of GLCOM-based Correlation, GLSZM-based LZE, ZP, LZHGE, and GLV, and GLNDM-based Coarseness, 
Busyness, and Complexity.

Selection of the top performing features for leave-p-out analysis was based upon ICCLB and features with 
ICCLB for all raters no less than 0.950 were selected. The number of features qualified by this criterion was eight 
for the discretization scheme involving 32 gray levels while nine for the rest of the discretization schemes. Worth 
noting are features consisting of GLCOM-based homogeneity, GLZSM-based LZE, ZP, and LZHGE, and 
GLNDM-based Coarseness and Strength as they met the criterion regardless of type of discretization method. 
Results of the leave-p-out analysis for these selected radiomics features are showed in Fig. 6, from which it can 
readily appreciated that as the number of raters was decreased ICCLB declined, as might be expected, whereas how 
and the extent to which it declined in response to the number of raters varied for each of the selected features and 
also depended on the discretization schemes. Among the selected features for the discretization scheme with 32 
gray levels, GLSZM-based LZE and LZHGE along with GLNDM-based Coarseness appeared to be the top three 
most stable ones with the number of raters decreasing. The top three most robust features for the discretization 
schemes with 64 and 128 gray levels were the same and consisted of GLNDM-based Coarseness and Strength 
together with GLSZM-based LZE. As to the discretization scheme with 256 gray levels, GLNDM-based Strength 
performed the best against the number of raters decreasing following by GLNDM-based Coarseness and 
Contrast.

Discussion
As the tumor shape increases in complexity and irregularity, the interpretation of lesion border requires raters to 
make increasingly subjective choices, leading to delineation differences and errors. A general observation based 
on the calculated DICE and SMASD values was that lesions with simple geometry tended to have higher agree-
ment among manual contours whereas lesions with complex and irregular shapes produced lower agreement 
(e.g., see Fig. 1). Use of the ground truth volume information of the lesions allowed quantification of the accuracy 
and variability of manual contouring and furthermore their impacts on radiomics parameters. The results of only 

Figure 4. Spearman’ correlation coefficient (ρ) between DICE and percent error from ground truth for the 
studied radiomics features. Results are color coded pink, green, cyan, and purple representing feature extraction 
done using discretization scheme with gray levels of 32 (GL32), 64 (GL64), 128 (GL128), and 256 (GL256), 
respectively.
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weak and moderate correlations existing between percent feature error and DICE (Figs. 3 and 4) for the majority 
of the radiomics features being studied implies a complex relationship between volume delineation and feature 
values. Radiomics features are complex and are related to the gray-level intensities included as well as their 
arrangement. Two different delineations may attain the same DICE in regard to the ground truth volume while 
potentially containing different gray-level intensities and arrangements. The observed widely varying patterns 
between percent feature error and DICE are thus most likely attributed to the reliance of radiomics features on the 
content of a VOI whereas DICE more on its spatial placement.

The ICC analysis afforded an estimate of the reliability of radiomics feature values in the context of delineation 
variability. Using the McGraw convention, <ICC  0.750 is considered poor reliability, within the range of 
0.750 ≤ ICC < 0.900 good reliability, and 0.900 ≤ ICC is considered to have excellent reliability32. Upon initial 
calculation of the ICC, a majority of the 25 investigated features (21 for the discretization schemes with 32 and 64 
gray levels; 22 for the discretization schemes with 128 and 256 gray levels) had ICC no less than 0.900. When the 
number of raters dropped to three, a typical upper limit for number of raters for VOI contouring as seen in major-
ity of radiomics studies, the number of features attaining excellent reliability regressed to no greater than six for 
any of the discretization schemes, implying the necessity of taking into consideration contouring variability for 
the design and implementation of PET radiomics studies in future.

Our analysis fits well with previous works and expands on many points. Johnson et al. correlated intensity, 
geometric, and GLNDM-based texture features extracted from synthetic PET images to six contouring accuracy 
metrics23. In agreement with our results, they found a weak correlation between DICE  and any of the 
GLNDM-based features using Pearson’s correlation coefficient. In the present work, correlation between contour-
ing accuracy and texture features was expanded by examining the error from ground truth for three classes of 
texture features. ICC has been previously used to demonstrate intrarater reliability and reproducibility of texture 
features, conveniently allowing direct comparison. Leijenaar et al. investigated the stability of radiomics features 
by analyzing test-retest and inter-observer variability of manually delineated Non-Small Cell Lung Cancer 
(NSCLC) tumors on fused PET-CT data sets15. In their study, five physicians contoured 27 lesions from which 
GLCOM-based features were calculated. It was reported that GLCOM-based Contrast, Homogeneity, and 
Dissimilarity performed well in regard to stability in inter-observer testing, achieving similar values of 
ICC ≥ 0.900. Bashir et al. investigated the effects of segmentation algorithms on PET-derived texture features 
including manually defined NSCLC lesions16. Their study employed three physicians to contour 53 patients. 
Overlapping metrics included GLCOM-based Homogeneity and Dissimilarity with ICC of 0.782 and 0.753 
respectively. Based upon three raters, in our study, the same features displayed low dependence upon contouring 
variability with average ICC of 0.848 for Homogeneity and 0.850 for Dissimilarity. Although Bashir et al. investi-
gated GLNDM-based contrast as well, they applied a logarithmic transform to the feature, rendering direct com-
parison inappropriate. In addition, previous work investigating the influence of delineation variability on stability 
of CT-based radiomic features found a strong dependence on cancer site, with relatively high stability for lung 
cancer35. Prior to our study we had no expectation that PET-based radiomic stability results would be similar to 
results of studies from other imaging modalities. In fact, the two studies result in very similar stability results, 

Figure 5. ICC with 95% confidence intervals for the studied radiomics features. Panels from left to right for 
results with feature extraction done using discretization scheme with number of gray levels of 32 (GL32), 64 
(GL64), 128 (GL128), and 256 (GL256), respectively. Features with lower bound of confidence interval no less 
than 0.950 were considered for inclusion in leave-p-out analysis.
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with both showing a number of radiomics texture features stable (ICC > 0.800) for lung cancer; however, while 
the CT study showed very high correlation between DICE and stability, the current study showed it is largely 
feature-dependent. Thus, care should be taken when applying such results across imaging modalities.

The results from the current study present several implications regarding the use of PET radiomics analysis in 
lung cancer that are worthy of mentioning. Firstly, the connotation that the impact of contouring variability on 
radiomics parameters is feature-dependent and can vary substantially calls for prudence in the use of PET radi-
omics parameters in the context of disease classification or risk stratification for lung cancer. A large number of 
the previous studies in this line of research were carried out with using contouring data from a single or only very 
few raters and thus conclusions drawn from these studies may potentially be biased by the availability and source 
of the contouring data. As to future studies on this topic, it is advised that study design should take into account 
the demonstrated impact of contouring variability upon radiomics parameters so that the effect can be dimin-
ished, if not removed entirely. Additionally, the findings also advocate the notion that predictive models based 
on PET radiomics aiming at supporting the decision-making process for patient risk assessment and treatment 
response identification, in lung cancer at least, should be introduced with discretion given the well anticipated 
contouring variability between the training data and the clinical data to be stratified. Despite these caveats for 
now, however, the outlook is promising for PET radiomics with the likely advent of valid automatic approaches 
for the segmentation of PET imaged target volumes in near future. By which time, PET radiomics — especially 
when plugged into the framework of big data analytics — may fulfil the potential of delivering greatly improved 
diagnostic, prognostic, and predictive accuracy for the personalized management of cancer via harvesting ever 
increasingly voluminous and heterogeneous imaging data while coming along with the ease of implementation 
and deployment for clinical use.

Figure 6. Results of leave-p-out analysis for radiomics features with lower bound of confidence interval of ICC 
computed based on all 10 raters no less than 0.950. Panels from top left to bottom right for results with feature 
extraction done using discretization scheme with number of gray levels of 32 (GL32), 64 (GL64), 128 (GL128), 
and 256 (GL256), respectively.
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Although the current work is informative to the development and translation of PET radiomics research into 
potential solutions clinically applicable across distinct institutions and for broader populations and is to our 
knowledge the first attempt to determine how contouring variability implicates radiomics analysis in a setting 
with complete knowledge of ground truth, there are several limitations that need to be acknowledged. Chief 
among them is that the raters participating in the study were from a single institution. As such, we were only 
able to assess the extent of variability in manual contouring PET positive lung targets together with its effects on 
radiomics parameters in our own setting and the results may not be representative of broader clinical practices in 
RT. Secondly, this work comprised a rather limited sample size, i.e., the number of PET lesions being used, which 
likely had precluded our ability to identify potential associations that might be present as well compromised 
generalizability of the demonstrated findings. Thirdly, among the wide array of uncertainties and variabilities 
involved in the processes of image acquisition, pre-processing, and feature extraction for PET radiomics analysis, 
the current work put emphasis primarily on the influence on radiomics parameters due to contouring variability. 
Thus, its synergistic effect with those other factors in PET radiomics analysis remains to be further investigated. 
Furthermore, the current study focused solely on the assessment of the impact on radiomics analysis from varia-
bility of manual contouring, owing largely to the fact that, in essence, a valid and convincing automatic “solution” 
has not been reached so far for the segmentation of PET-imaged tumor volumes36,37. As to how and to what extent 
automatic contouring methods affects oncological PET radiomics analysis, it remains to be dealt with upon the 
arrival of paradigm shift of PET target volume segmentation from manual to automatic in clinical practices.

conclusions
It is apparent from the results of the current study that the impact of contouring variability on PET-based radiom-
ics features varies widely and could be experienced as a barrier to convey PET radiomics research across different 
institutions and for broader patient populations. It calls for caution in the use of predictive models involving PET 
radiomics features implicated with contouring variability within the context of disease stratification and risk 
assessment for lung cancer.

Data availability
The datasets used and/or analyzed in the current study are available from the corresponding author upon 
reasonable request.
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