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Gas chromatography-mass spectrometry profiling is the most established method for the analysis of 
organic residues, particularly lipids, from archaeological contexts. This technique allows the decryption 
of hidden chemical information associated with archaeological artefacts, such as ceramic pottery 
fragments. The molecular and isotopic compositions of such residues can be used to reconstruct past 
resource use, and hence address major questions relating to patterns of subsistence, diet and ritual 
practices in the past. A targeted data analysis approach, based on previous findings reported in the 
literature is common but greatly depends on the investigator’s prior knowledge of specific compound 
classes and their mass spectrometric behaviour, and poses the risk of missing unknown, potentially 
diagnostic compounds. Organic residues from post-prehistoric archaeological samples often lead to 
highly complex chromatograms, which makes manual chromatogram inspection very tedious and 
time consuming, especially for large datasets. This poses a significant limitation regarding the scale 
and interpretative scopes of such projects. Therefore, we have developed a non-targeted data mining 
workflow to extract a higher number of known and unknown compounds from the raw data to reduce 
investigator’s bias and to vastly accelerate overall analysis time. The workflow covers all steps from raw 
data handling, feature selection, and compound identification up to statistical interpretation.

Fragments from unglazed ceramic cooking and storage pots (pot sherds), are one of the most common 
artefact-types recovered at archaeological excavations1. Besides the chronological and other information origi-
nating from visible features of these sherds, they also contain hidden chemical information that reflects their use 
history. Absorbed in the inorganic matrix and protected from microbial degradation and water leaching, residues 
of lipids (and other food constituents) can be preserved over millennia1,2. These accumulated lipid residues are 
an important source of information and allow reconstruction of the original vessel contents and thus the dietary, 
ritual and food procurement practices of past populations3–5.

To achieve this, lipids are extracted from powdered pottery samples and the molecular and isotopic composi-
tion is determined. Critically, only a small fraction of the originally absorbed lipids is actually preserved and can 
be recovered. Frequently, they have undergone structural changes. For instance, unsaturated fatty acids, although 
abundant in most food lipids, are only rarely recovered due to their higher susceptibility to oxidative degrada-
tion6. Similarly, hydrolytic changes occur, leading to a decrease of ester lipids (such as triacylglycerols or wax 
esters) and a dominance of their hydrolysis products, most prominently saturated fatty acids7,8. Thus, palmitic 
acid (16:0) and stearic acid (18:0) are the most frequently recovered lipids from archaeological pottery matri-
ces. While these are not diagnostic by themselves, different biosynthetic pathways and carbon routings between 
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non-ruminant (e.g. pig) and ruminant animals (e.g. cattle), as well as between adipose tissue and mammary 
glands, lead to different carbon isotopic compositions9. Using compound-specific stable isotope techniques, such 
as gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), differences in δ13C values 
can be exploited to distinguish lipids in pots originating from the processing of porcine and cattle adipose lipids 
or dairy products9. In addition, some easily degradable compounds such as polyunsaturated fatty acids can form 
highly diagnostic and stable transformation products. In reference experiments it has been shown how heating of 
long-chain polyunsaturated and monounsaturated fatty acids (as commonly encountered in aquatic lipids) can 
form a series of ω-(o-alkylphenyl)-alkanoic acids (APAAs) and vicinal dihydroxy fatty acids10–12. While the original  
unsaturated fatty acids are almost never recovered, their degradation products are routinely used as proxies to 
infer the original presence of these lipids5,13,14.

Over its lifetime, a cooking pot can be used for several thousand individual cooking events, and it is most 
likely that ingredients were mixed or the same pot used sequentially for different commodities. The lipid pattern 
therefore reflects an accumulation of the lifetime usage of the pot, which can result in very complex lipid patterns. 
In addition, use-related changes as well as post-depositional degradation increases the complexity of the lipid 
patterns even further1,2. Consequently, lipid extracts from archaeological samples often contain several hundred 
individual compounds, which makes the analysis and interpretation very challenging (Fig. 1). The high separa-
tion power of gas chromatography (GC) can be effectively used to separate as many compounds as possible, and 
single quadrupole GC-MS has been used extensively to confirm peak identity3,15,16. However, the low spectral 
resolution of these instruments limits their use for identification of unknown compounds. Moreover, manual data 
interpretation is very common and especially in larger projects, where thousands of samples are analysed, this 
can be very tedious and time-consuming and minor diagnostic compounds are likely missed. This has the effect 
of either placing constraints upon the scale and scope of projects undertaken, or means that the full diagnostic 
potential of archaeological residues is often not being realised.

Recently, we have used GC coupled to a high-resolution quadrupole-time-of-flight mass spectrometer 
(GC-Q-TOF MS) for the targeted analysis of cereal biomarkers in archaeological samples and for non-targeted 
lipid profiling of modern cereal lipids17,18. We have now transferred and optimised our non-targeted lipid analysis 
workflow for archaeological samples and want to use this to address common limitations of the current state of 
the art in archaeological lipid research. We focus on advancements in automated data processing workflows, the 
creation and usage of open libraries for spectral matching, and data interpretation. This now offers the potential 
to enhance the interpretative value achievable through analysis of ancient organic residues.

The arrival of open-source LC-MS data mining software solutions, such as MZmine19 and XCMS20 in the 
mid 2000s has opened up new possibilities for rapid data processing. Originally designed for metabolomics, 
these data mining software packages were used for various fields of study. In particular, MZmine, now in its 
second generation21, stands out due to its modular design which allows straightforward software extension. 
Therefore, we have added automated spectra matching to MZmine 2, which was the missing piece required for 
high-throughput GC-MS data analysis workflows. In addition, we have collected spectra from available standard 
compounds, well-characterised archaeological, and modern (cereal) lipid samples in order to build a reference 
library for archaeologically relevant compounds. The library will be provided in various file formats to facilitate 
compatibility with MZmine 2 and other open-source and proprietary software solutions. The developed work-
flow will be exemplified on a dataset consisting of lipids from 40 ceramic samples from the site of Vindolanda 
(Northumberland, UK), a Romano-British defence fort south of Hadrian’s Wall.

Experimental Section
chemicals. Chloroform, methanol, dichloromethane and n-hexane (all HPLC grade) were from Rathburn 
Chemicals (Walkerburn, UK), while tetratriacontane (>98%), pyridine, methyl hexadecanoate, methyl heptade-
canoate, methyl eicosanoate, methyl docosanoate, trimyristate, tripalmitate, tristearate (all >99%), and the deri-
vatisation agent consisting of N,O-bis(trimethylsilyl) trifluoroacetamide/trimethylchlorosilane (BSTFA/TMCS) 
99:1 (v/v) were supplied by Sigma-Aldrich (Munich, Germany).

Samples. Archaeological sherds were from the site of Vindolanda (Northumberland, UK), a Romano-British 
auxiliary defence fort south of Hadrian’s Wall. A total of 40 recently-excavated sherds from this site were selected 
in this study. The sherds date from the same phase of occupation (AD 105–120) and derive from the military 
context within the fort (n = 33), and the supposedly-local, civilian settlement that emerged outside the walls of 
the fort (n = 7).

Sample preparation and lipid extraction. The sherds were cleaned using a modelling drill and crushed 
to a fine powder using a mortar and pestle. After adding 40 µg of tetratriacontane (C34 alkane) as internal standard,  
approximately 2 g of the powder were extracted under sonication using 2 × 10 mL chloroform/methanol 2:1 (v/v). 
After centrifugation, the supernatant was transferred into a glass vial and the solvent was removed under a gen-
tle stream of nitrogen. The residue was then re-dissolved in 2 mL chloroform/methanol 2:1 (v/v). An aliquot of 
0.5 mL was applied on a small glass column (1 cm i.d.) filled with 0.5 g activated silica (conditioned with 5 mL 
chloroform/methanol 2:1 (v/v)). Lipids were eluted with 5 mL chloroform/methanol 2:1 (v/v). The solvent was 
transferred into a glass vial and blown to dryness. To this residue, 25 µL dry pyridine and 50 µL of the silylating 
agent (BSTFA/TMCS 99:1, v/v) were added and heated at 70 °C for 1 h. The silylating agent was then removed 
under a stream of nitrogen, the residue was re-dissolved in 0.5 mL n-hexane and, after the addition of  2.5 µg of 
the second internal standard methyl heptadeconate, used for GC-flame ionization detector (FID) and GC-Q-TOF 
MS analysis.
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Reference library building. A reference library was built from available standard compounds, 
well-characterised archaeological, and modern (cereal) lipid samples. Where possible, deconvoluted and 
background-subtracted spectra were used. Spectra were only manipulated to remove clearly identifiable back-
ground or noise signals. Structures were assigned to best knowledge and probability, but it needs to be noted that 
in electron ionisation (EI) neither the position nor orientation of double bonds in fatty acids nor the sn1/sn2 dis-
tribution of fatty acids in triacylglycerols can be reliably assigned (See “Limitations” below). The reference library 
can be accessed at https://gc-hrms-spectra.github.io/.

Analysis of trimethylsilylated lipid extracts by GC-FID and GC-Q-TOF MS. Extracted lipids 
were analysed after trimethylsilylation by GC-FID as described before in detail18. Lipids were also analysed by 
GC-Q-TOF MS as described before17. In short, trimethylsilylated aliquots of the lipid extracts were analysed using 
a 7890/7200B GC-Q-TOF MS (Agilent, Santa Clara, CA, USA) and a 15 m, 0.25 mm i.d., 0.1 µm film thickness 
ZB-5HT Inferno column (Phenomenex, Torrence, CA, USA). Data (profile and centroid) was recorded in the 
Extended Dynamic Range mode with 5 scans/s. The carrier gas flow rate, temperature program, and mass spec-
trometry conditions were identical to those described before. A standard consisting of methyl hexadecanoate, 
methyl eicosanoate, methyl docosanoate, tetratriacontane, trimyristate, tripalmitate, and tristearate was analysed 
with every sample batch for quality control and to assess inter- and intra-batch variation of chromatographic and 
mass spectrometric performance.

Results and Discussion
Analysis of archaeological lipids using GC-Q-TOF MS. Lipids could be extracted from all samples in 
appreciable quantities and lipid contents varied between 24 and 1383 µg/g ceramics (determined by GC-FID). 
Using a 15 m column with a non-polar stationary phase also allowed the elution of intact ester lipids, such as tri-
acylglycerols (C42–C54) and wax esters. However, many samples featured a very complex lipid pattern with ≫100 
partly resolved peaks, which made compound identification based on GC retention times alone difficult and 
not advisable. GC-MS not only allowed confirmation of peak identities through the respective mass spectra, but 
also deconvolution of co-eluting peaks. Importantly, the higher sensitivity and selectivity through the accurate 
mass capabilities of the instrument allowed detection of further minor compounds previously not detected. By 
extracting the ion traces of m/z 117.0372 and 257.2481 for example, the distribution of minor very long chain 
fatty acids and esters of palmitic acid with long-chain alcohols, respectively, could be investigated. In the extracted 
residue shown in Fig. 1, the distribution of fatty acids, wax esters, and alcohols (together with other characteristic 
compounds) indicated the presence of beeswax in this particular pot.

Figure 1. GC-Q-TOF MS chromatogram of a trimethylsilylated lipid extract from an archaeological sample 
displaying the total ion chromatogram (TIC, top) and the extracted ion chromatogram (EIC) for m/z 117.0372 
(second panel), which shows the elution of trimethlysilylated fatty acids from C14–C36. The third panel (EIC 
of m/z 257.2481) and the fourth panel (sum of EIC m/z 411.4022, 439.4335, 467.4648, 495.4961, 523.5274 and 
5511.5587) show the elution of wax esters and C24-C34 alcohols (trimethylsilylated), respectively. Peaks marked 
with an asterisk are internal standards.
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While this approach is very powerful to be used in a more targeted manner, it depends on the investigator’s 
prior knowledge of specific compound classes and their mass spectrometric behaviour to select appropriate ion 
traces, and unknown compounds will often be missed completely. This is important since the diagnostic poten-
tial of minor compounds over more ubiquitous major compounds is becoming increasingly recognised12,18,22. 
Furthermore, this approach can be very tedious and time consuming for a high number of samples and com-
pounds (or compound classes) that need to be investigated. Non-targeted data mining workflows can help to 
extract a higher number of known and unknown compounds from the raw data and therefore not only reduce 
investigator’s bias but also vastly accelerate overall analysis time. In addition, these unknown compounds can 
potentially contain valuable information in archaeological contexts, which can be made accessible through dedi-
cated data processing and interpretation procedures. Therefore, a new GC-MS data mining workflow was devel-
oped, which added new algorithms and functionalities to established tools.

Optimization of a LC-MS metabolomics data mining workflow for GC-MS data. The dataset was 
converted to the open format mzML23, using the MSConvert software of the ProteoWizard toolkit24. The con-
version is necessary to ensure MZmine compatibility. The converted dataset can be processed with various peak 
picking software tools, such as MZmine19,21, XCMS20, or OpenMS25. Due to its open-source modular framework, 
MZmine 2 has seen multiple extensions implemented by various different laboratories in the past years, which 
include feature detection algorithms26–28, molecular networking29,30, visualization techniques31,32, as well as com-
pound identification algorithms33,34, making the overall toolbox almost ready for GC-TOF MS data mining of 
complex archaeological sample sets, as recently shown by Decq et al.35. Since electron ionisation (EI) results 
in numerous fragments, which provide information about the molecular structure, spectra matching was the 
choice for compound identification. As MZmine has its roots in LC-MS profiling of metabolomics datasets, auto-
matic spectral library matching was not yet supported. In addition, there was no high-resolution spectral GC-MS 
library specific enough for archaeological biomarkers. Thus, we created a spectral reference library and added 
spectra matching functions to MZmine 2. The created spectral library is available at https://gc-hrms-spectra.
github.io/. Spectra matching support is available since MZmine 2.39, which was further improved and optimized 
for GC-MS in versions 2.40 and 2.41. In combination with the already existing export module for MetaboAnalyst, 
the processed and annotated feature lists can be statistically evaluated36.

Figure 2 displays the overall data mining workflow, covering all steps from raw data handling to statistical 
evaluation. First (Fig. 2a), each accurate m/z is determined for each signal in each scan above a user-set noise 
level. The resulting pairs of m/z and intensity are stored in so-called mass lists. In a second step (Fig. 2b), the mass 
lists of the individual scans are connected to EICs, which are stored in a list that can be examined by the user. Due 
to the nature of EI as a “hard” ionisation technique, numerous fragments are formed for all compounds, which 
can be very similar or identical for different lipids. For example, all trimethylsilylated fatty acids form a common 
fragment ion detected at m/z 117.0372 (C4H9O2Si+) through a cleavage between C-1 and C-2. Therefore, it is 
necessary to deconvolute EICs with multiple peaks into chromatographically separated features, as displayed 
in Fig. 2c. Due to the natural occurrence of isotopes, the same compounds are represented by several features 
with different isotopic compositions. Therefore, these features are grouped in the fourth step (Fig. 2d) and are 
represented by the feature with the monoisotopic composition. Another challenge with large GC-MS datasets are 
retention time shifts caused for example by instrument maintenance. By using internal standards, these shifts can 
be corrected automatically as depicted in Fig. 2e. This correction of the data heavily improves the results of the 
next steps, namely, feature alignment and gap filling. These algorithms merge all feature lists from all analyzed 
samples into a single data matrix (Fig. 2f). In addition, the raw data for each gap is checked again to ensure that 
a feature was not erroneously removed when processing the data. Even if this was not the case, at least the noise 
level is added to improve the statistical results. Next, the aligned feature list rows can be annotated using the newly 
implemented spectral library matching module (Fig. 2g).

Figure 3 displays the library matching result panel of MZmine 2 for the terpenoid dehydroabietic acid (as 
trimethylsilyl derivative) in one of the samples. The match result consists of two main panels, a spectra mirror 
plot on the left, showing the experimental scan (top) and the matched library scan (bottom), and on the right a 
metadata panel, which depicts the structure of the identified molecule and various compound and method spe-
cific information. In the mirror plot, blue signals are matched with the library and orange signals are unmatched. 
In addition, a spectral similarity score is given in the upper right corner. The score is based on the composite 
similarity37 and ranges from 0 to 1, for completely dissimilar to identical, respectively. Hence, the similarity score 
of 0.932 depicted in Fig. 3 (top, right) denotes a high resemblance of the experimental and the library scan.

In a last step, the annotated aligned feature list can be exported using the provided export function for 
MetaboAnalyst (Fig. 2h). Subsequently, statistics can be easily performed using the free MetaboAnalyst 4.0 online 
platform36.

The described workflow was performed using the 40 samples from the Vindolanda dataset. Supervised multi-
variate statistics, such as Partial Least Squares - Discriminant Analysis (PLS-DA), ortho PLS-DA38,39 (only for two 
sample groups) or sparse PLS-DA (sPLS-DA)40 can be used to discriminate the two sample groups (military and 
extramural), as displayed in Fig. 2, top right using sPLS-DA and in Fig. 4 using ortho PLS-DA.

The loadings plot of the respective scores plot can be investigated to identify significantly differing com-
pounds across sample groups. In the case of two sample groups, other statistical methods, such as volcano plots 
can be used as a powerful tool to rapidly identify significant changes in a compound’s intensity across sample 
groups, as displayed in Fig. 5c. A volcano plot combines fold-changes (FC), displayed on the x-axis, and the 
significance (t-test) of these changes, depicted as -log10(p-value) on the y-axis, in a single scatter plot. In Fig. 5c 
compounds above user defined thresholds for FC (2.0) and p-value (0.1) are highlighted in green and the thresh-
olds are marked as dotted lines. The volcano plot in Fig. 5c shows numerous significant compounds. Interesting 
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compounds in the archaeological context were, for example, dehydroabietic acid (Fig. 5a), which was significantly 
more abundant in the military samples compared to the extramural samples.

Dehydroabietic acid, identified through the intensive fragment ion detected at m/z 239.1794 (C18H23
+) and the 

[M-15]+ fragment ion detected at m/z 357.2250 (C22H33O2Si+), is a stable compound formed from terpenoic acids 
that are commonly found in conifer resins, including that of pine trees (Pinaceae). Its presence in archaeological 
ceramics is seen as a proxy for the presence of these resins, where they could have been used as sealing and water-
proofing agents, as well as for flavouring, ritual balsams and even exploited for their antimicrobial properties. Due 
to the absence or low abundance of related compounds, such as retene and dehydroabietic acid methyl ester, the 

Figure 2. GC-MS data mining workflow. The workflow covers all steps from raw data handling in MZmine 2 to 
statistical interpretation in MetaboAnalyst.
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material used was more likely a resin and not a heated pine pitch. The absence of 7-oxo-dehydro-abietic acid can 
be explained through the anoxic conditions at the site41–43. Use of coniferous resins is known to have been wide-
spread in the Roman world, and its presence has been determined in pottery absorbed residues44 and amphorae 
internal coatings45, as well as from mortuary ‘grave dust’ from Roman Britain46.

In contrast, 5α-cholestanol, identified through GC retention time, an intensive fragment ion at m/z 215.1794 
(C16H23

+) and the [M-15]+ ion at m/z 445.3866 (C29H53OSi+), was significantly more abundant in the extramural 
samples (Fig. 5b). 5α-Cholestanol is the biohydrogenation product of the principal animal sterol, cholesterol, 
and due to its fully saturated ring system it is less susceptible to oxidative degradation than its parent molecule, 
which favours its preservation47. The higher levels of this molecule in the extramural samples could be either 
due to higher initial levels of cholesterol, or better preservation. However, it was not found that cholesterol itself 
was more abundant in extramural samples. Therefore, a likely explanation is that this is evidence of different 
post-depositional conditions, e.g., stronger reducing than oxidising conditions, in the extramural settlement 
compared to the fort itself. This demonstrates the value of lipids as molecular fossils in archaeological research.

Application of the new workflow and limitations. This workflow is designed to guide towards ana-
lytically important and significant features, and can significantly speed up the processing of large sample sets. 

Figure 3. The MZmine 2 library matching result panel for dehydroabietic acid compiles a spectra mirror plot of 
an experimental scan (left, top) and a library scan (left, bottom), the structure and metadata of the library entry 
(right) and the spectral similarity (0.932) in the top right corner.

Figure 4. Scores plot of ortho PLS-DA showing the discrimination of extramural (red) and military (green) 
samples based on their GC-Q-TOF MS lipid profiles.
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However, certain limitations of this workflow need to be considered. GC-EI-MS has inherent caveats when it 
comes to structural identification of lipids and good library matches can sometimes give a false sense of speci-
ficity. For example, virtually all monounsaturated C18 fatty acids will show the same mass spectrum, disregard of 
double bond position or orientation (cis/trans). Similarly, the spectra of n-15:0 and iso/anteiso-15:0 (13-methyl- 
and 12-methyl-14:0, respectively) exhibit very little spectral difference. Furthermore, triacylglycerols show 
molecular ions only at very low intensity and the main fragments stem from the elimination of one or two acyl 
chains. However, these fragments are often identical, for example for a C54 TAG after elimination of a C18 fatty 
acid and for a C52 TAG after elimination of a C16 fatty acid and this makes reliable library matching very diffi-
cult. In addition, different instruments or instrument settings can have a big impact on ratios of fragment ions. 
Therefore, results from this workflow still need some manual checking for plausibility and should never just be 
accepted with blind trust. In particular, GC elution orders need to be considered, and the use of a standard mix 
for retention time referencing is also highly encouraged. In this way, this workflow should be considered a starting 
point and used to guide the researcher towards interesting compounds, which should be further investigated and 
(manually) verified. Furthermore, the data mining workflow presented in this work considers every generated 
ion as an independent feature. The advantage of this is that the raw data can be mapped accurately. Smirnov et al. 
have also developed and implemented algorithms in MZmine 2 to construct deconvoluted GC-MS spectra28,48. 
These algorithms can be subsequently applied or potentially implemented in the workflow to further improve 
non-targeted compound identification in archaeology.

conclusion
The developed workflow has enabled the rapid identification of significant compounds in archaeological samples 
acquired by GC-Q-TOF MS. The workflow was exemplified on a dataset of 40 sherds from the site of Vindolanda 
(Northumberland, UK), a Romano-British defence fort south of Hadrian’s Wall. The contemporaneous pots 
were excavated from either a military context within the fort (n = 33) or the nearby vicus, likely inhabited by 
the local, non-military population (n = 7). A discrimination of these two sample groups was possible based on 

Figure 5. (a) Bar chart plot of dehydroabietic acid, which is more abundant in military samples (blue). (b) 
Bar chart plot of 5α-cholestanol, which is more abundant in extramural samples (red). (c) Volcano plot of the 
aligned feature list of 40 samples from the site of Roman Vindolanda.
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non-targeted GC-Q-TOF MS lipid profiles using supervised multivariate statistics on the resulting data matrix of 
the data mining workflow. This revealed significantly higher levels of dehydroabietic acid in the military samples, 
which shows a wider presence of conifer resins in this group, possibly from storage or preparation in resinous 
vessels. In contrast, the higher levels of 5α-cholestanol in the extramural samples hints towards slightly different 
preservation (or soil conditions) between these sample groups. The workflow therefore is very useful to guide 
the researcher towards the significant features among the dozens or hundreds of undiagnostic compounds. This, 
together with the newly created open spectra database, considerably improves interpretation of the complex lipid 
distribution frequently encountered in archaeological research and allows extraction of considerably more infor-
mation and improved interpretations of the results.

Data availability
The GC-HRMS library used in this study is freely available online (https://gc-hrms-spectra.github.io/), and the 
spectra matching module is now integrated within MZmine 2 (since version 2.39). The raw GC-MS data used in 
this study will be available at https://doi.org/10.5523/bris.26hh9g6ktji7z2r5gxb2wqvjfq. Data is embargoed until 
1 July 2021.
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