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computational data mining 
method for isotopomer analysis 
in the quantitative assessment of 
metabolic reprogramming
fumio Matsuda*, Kousuke Maeda & nobuyuki okahashi

Measurement of metabolic flux levels using stable isotope labeling has been successfully used to 
investigate metabolic redirection and reprogramming in living cells or tissues. The metabolic flux ratio 
between two reactions can be estimated from the 13c-labeling patterns of a few metabolites combined 
with the knowledge of atom mapping in the complicated metabolic network. However, it remains 
unclear whether an observed change in the labeling pattern of the metabolites is sufficient evidence of a 
shift in flux ratio between two metabolic states. In this study, a data analysis method was developed for 
the quantitative assessment of metabolic reprogramming. the Metropolis-Hastings algorithm was used 
with an in silico metabolic model to generate a probability distribution of metabolic flux levels under a 
condition in which the 13c-labeling pattern was observed. Reanalysis of literature data demonstrated 
that the developed method enables analysis of metabolic redirection using whole 13c-labeling pattern 
data. Quantitative assessment by Cohen’s effect size (d) enables a more detailed read-out of metabolic 
reprogramming information. the developed method will enable future applications of the metabolic 
isotopomer analysis to various targets, including cultured cells, whole tissues, and organs.

Measurement of metabolic flux levels has been successfully used to investigate metabolic reprogramming or 
redirection in living cells or tissues of microbes, plants, and mammals1–5. A series of flux analysis methodologies 
based on stable isotope labeling have been used for the comparison of metabolic flux distribution in distinct met-
abolic states6–13. 13C-metabolic flux analysis (13C-MFA) is one of the most quantitative and sophisticated methods 
available to investigate flux distribution in the central carbon metabolism. There are several requirements for 
13C-MFA experiments (Requirement 1–5), as listed in Table 1 14–20.

Recently, a more simplified method termed flux analysis or isotopomer analysis has been used for the mam-
malian cell analysis. The original methodology for the isotopomer-based analysis of local flux ratios was devel-
oped more than decades ago21. It enables the qualitative survey of metabolic redirections that occur in cells, 
such as cancer and immune cells22–28. A metabolic flux ratio between two pathways can be estimated from the 
13C-labeling patterns or the mass isotopomer distribution vector (MDV) of the specific metabolites measured 
by mass spectrometry29,30. Isotopomer analysis has been often employed to investigate the reductive glutamine 
metabolism or the reverse reaction of isocitrate dehydrogenase (IDHreverse) in cancer cells31–33 (Fig. 1a). The labe-
ling patterns of citrate (Cit) have been measured in cells cultured in a medium containing [U-13C]glutamine. 
This measurement is possible because the citrate molecule labeled with five 13C atoms (Citm5) is derived from 
IDHreverse or the reductive glutamine metabolism (Fig. 1a). On the other hand, the clockwise reaction of tricarbo-
xylic acid (TCA) cycle produces Citm4 via citrate synthase (CS). All abbreviations used in this study are described 
in Supplementary Table S1.

Similarly, the medium containing [1,2-13C]glucose or [1-13C]glucose has been used to estimate the metabolic 
flux ratio between the Embden–Meyerhof–Parnas pathway (EMPP) and the oxidative pentose phosphate pathway 
(oxPPP)34–36. From [1-13C]glucose, the EMPP generates single 13C-labeled intermediates of glycolysis, such as 
[1-13C]fructose 6-phosphate (F6P) and [3-13C]3-phosphoglycerate (3PG). The oxPPP supplies non-labeled inter-
mediates, as the 13C atom is metabolically discarded as 13CO2. Thus, the relative abundances of the 13C-labeled 
and non-labeled intermediates could help estimate the metabolic flux ratio between the EMPP and oxPPP37,38.
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Isotopomer analysis has been widely applied for many metabolism studies because of its simpler experimental 
design (Table 1)29. In most studies, exponential growth phase cells have been used to measure MDVs of intra-
cellular metabolites to ensure (pseudo) metabolic and isotopically steady states (Requirement 1 in Table 1). An 
interpretation of the results of the isotopomer analysis remains puzzling as the relationship between an observed 
change in labeling patterns and metabolic redirection is not straightforward. The labeling of Cit by [U-13C]glu-
tamine can be affected by the rearrangement of the carbon skeleton by anaplerotic reactions including pyruvate 
carboxylase (PC) (Fig. 1a). The reversible reactions in the upper part of the EMPP and the PPP can also cause a 
complex rearrangement of the carbon skeleton (Fig. 1b). The complex labeling nature hinders a clear understand-
ing of whether a measured change in the labeling patterns provides definitive evidence to support the metabolic 
redirection of interest. For the same reason, the occurrence of other isotopomers has been ignored in isotopo-
mer analysis, although the labeling pattern data reflect the metabolic flux information of metabolic pathways. 
Recently, an analysis of metabolic changes in bacterial systems using 13C-labeling pattern data without complete 
13C-MFA has been attempted by PCA analyses and isotopomer comparisons39.

In order to extend the isotopomer analysis, a computational method using an in silico metabolic model 
(Requirement 3) was developed in this study to analyze data obtained by the isotopomer analysis. The method 
enabled the quantitative assessment of whether an observed change in a labeling pattern of metabolites was 
sufficient evidence of a shift of a flux ratio between two metabolite states based on the Cohen’s effect size (d) 
(Requirement 5). Moreover, reanalysis of literature data demonstrated that the developed method provided more 
detailed information concerning metabolic redirection.

Results
Design of computational data analysis method for isotopomer analysis. Figure 2a shows an example 
of mass spectra data for the isotopomer analysis. The data were acquired from our previous study (Supplementary 
Table S2)40. MCF-7 breast cancer cells that were untreated or treated with 10 nM paclitaxel were cultured in a 
medium containing non-labeled glucose and [U-13C]glutamine. The intracellular metabolites were extracted at 24 h 
and analyzed by mass spectrometry to determine the labeling patterns of Cit under the metabolic and isotopically 
steady states. The standard deviation of the measurement (σ) was previously determined to be approximately 0.015.

Requirements 13C-metabolic flux analysis (13C-MFA)
Isotopomer analysis 
(Conventional) Isotopomer analysis (This study)

1. (Pseudo) metabolic and isotopically 
steady state Required Required Required

2. Specific rates data Required Not required Not required

3. In silico metabolic model Required for finding best-fitted 
metabolic flux Not required Required for the Metropolis-

Hastings algorithm

4. Number of data points Larger than degree of freedom of in 
silico metabolic model No restriction Larger number is preferable

5. Statistical estimation of significance 95% confidence interval of point 
estimation result Not evaluated Cohen’s effect size, d

Table 1. Comparison of methodologies for metabolic flux analysis.

Figure 1. Example of atom mappings of the 13C-labeling experiment used for isotopomer analysis.  
(a) Simplified metabolic pathways related to the reductive glutamine metabolism including citrate (Cit) 
biosynthesis from [U-13C]glutamine (Gln) and non-labeled from glucose. (b) Simplified metabolic pathways 
related to the oxidative pentose phosphate pathway (oxPPP) and the Embden–Meyerhof–Parnas pathway 
(EMPP) from [1-13C]glucose. Filled and open circles represent 13C and 12C atoms respectively. CS: citrate 
synthase, PC: pyruvate carboxylase, IDHreverse: reverse reaction of isocitrate dehydrogenase. All abbreviations 
are described in Supplementary Table S1.
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The isotopomer analysis usually focuses on the intensity of m4 and m5 signals of Cit ([Citm4] and [Citm5], 
respectively) (Fig. 2a). The comparison of the mass spectra showed that the intensity of [Citm5] relative to 
[Citm4] in the paclitaxel-treated cells ([Citm5]/[Citm4] = 1.22) was higher than that of the control cells ([Citm5]/
[Citm4] = 0.86), suggesting that the relative contribution of IDHreverse to Cit synthesis might be increased in the 
paclitaxel-treated cells (the metabolic flux levels of IDHreverse and CS is denoted as [IDHreverse] and [CS] in this 
study) (Fig. 1a). Contrastingly, the isotope labeling pattern of Cit could also be affected by other factors. For 
instance, the relative abundances of both [Citm4] and [Citm5] decreased in the paclitaxel-treated cells. Moreover, 
other isotopomers, including Citm1, Citm2, Citm3, and Citm6, were observed in the measured data (Fig. 2a). 
Interpretation of the results of the isotope labeling experiment is not straightforward, as there is a non-linear 
relationship between the measured mass spectra data and metabolic flux ratio, as mentioned above.

To address this issue, a computational method was developed by an introduction of a metabolic model 
(Fig. 2b) and the Metropolis-Hastings algorithm (Fig. 2c). First, a metabolic model of the central carbon metabo-
lism of cancer cells, including stoichiometry of 53 reactions, was adapted from a previous 13C-MFA study (Fig. 2b 
and Supplementary Table S3)40. The metabolic model considers glucose and glutamine carbon sources (In the 
case of the example data shown in Fig. 2a, non-labeled glucose and [U-13C]glutamine were used). The metabolic 
model could be considered as a function, Model, to simulate MDV of metabolites, Msim, calculated for a given 
metabolic flux distribution, flux: Msim = Model(flux). A residual sum of square RSS(flux) between the simulated 
and the experimentally measured MDV (Mexp) was also calculated (see Methods for details).

In the 13C-MFA, a metabolic flux distribution was estimated by searching the metabolic flux distribution, flux, 
that minimized RSS(flux). For the point estimation of the metabolic flux distribution, an over-determined system 
is essential. This means that number of data points in measured isotope labeling data have to be larger than the 
number of independent flux of the metabolic model (Requirement 4 in Table 1). For instance, the number of 
independent flux of the metabolic model shown in Fig. 2b is 2338.

On the other hand, measured MDV data with smaller data points have usually been used for isotopomer 
analyses. For example, the data point of Mexp of Cit was six, because one degree of freedom (df) was used for the 
data scaling. The under-determined system is unsuitable for point estimation of one metabolic flux distribution. 

Figure 2. Data analysis method proposed in this study. (a) Example isotope labeling data of citrate obtained 
from MCF-7 breast cancer cells cultured in a medium containing non-labeled glucose and [U-13C]glutamine. 
Data were obtained from untreated cells or cells treated with paclitaxel (an anti-cancer drug) for 24 h. The effect 
of the natural isotopes was removed. The data are derived from our previous 13C-metabolic flux analysis study40. 
(b) The metabolic model used in this study. The model includes 53 reactions and 34 metabolites. Forward and 
reverse reactions of isocitrate dehydrogenase (IDH) are specifically described in the figure. All abbreviations 
are shown in Supplementary Table S1. (c) Procedure developed for the data analysis. A seed metabolic flux 
distribution, flux, was produced by minimizing the RSS(flux) for the measured mass spectra (MDV) data and 
was used as the 0th metabolic flux distribution, flux0, when an over-fitting result was obtained. Based on a flux 
distribution at step j, fluxj, a proposal flux distribution, fluxp, was generated by addition of random values. The 
fluxp was accepted at an acceptance probability p = P(RSS(fluxp))/P(RSS(fluxj)) where P(RSS(flux)) follows a χ2 
distribution. The procedure was repeated 5,000,000 times. A population of metabolic flux ratio was produced 
from the latter half of the chain. The procedure was repeatedly performed for two datasets (for example control 
and treated). Cohen’s effect size (d) was used as a quantitative measure of the magnitude of the mean difference 
in metabolic flux ratio between the two (control and treated) datasets.
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For instance, the best-fitted flux could be searched for the MDV data of Cit obtained from the control sample 
(including six data points from Citm0 to Citm5) (Fig. 2a). The minimum RSS(flux) was close to zero (0.012). This 
was an over-fitting result obtained using an under-determined system. It was because the RSS was too small by the 
two-sized χ2 test (RSS(flux) < χ2

0.05 (df = 6)) when considering that Mexp includes the measurement error derived 
from the analysis (σ = 0.015).

introduction of the Metropolis-Hastings algorithm. The measured Mexp of Cit from the control cells 
can be considered as an additional data to estimate flux. This means that a posterior distribution of flux under 
the condition that an MDV data was observed could be estimated. Since the observed Mexp includes a random 
experimental error following the normal distribution, a probability distribution of flux, P(RSS(flux)), follows 
a χ2 distribution (df = number of measurement). Here, the Metropolis-Hastings method was introduced to 
estimate a distribution or possible solution space of flux (Fig. 2c)41. The Metropolis-Hastings algorithm is one 
of the most popular Markov Chain Monte Carlo (MCMC) algorithms42. Based on a flux distribution at step j, 
fluxj, a proposal flux distribution, fluxp, was generated by addition of random value to fluxj. If an acceptance 
probability p = P(RSS(fluxp))/P(RSS(fluxi)) was larger than 1.0, the fluxp was accepted as fluxj+1. If p < 1.0, fluxp 
was accepted with probability p. When the fluxp was rejected, fluxj was also used as fluxj+1 (See Methods for 
detailed procedure) Like other MCMC methods, the Metropolis-Hastings algorithm is used to generate a chain 
of flux from a sequence of probability distributions that converge to a given target distribution. In this study, the 
Metropolis-Hastings algorithm was repeated 5,000,000 times (approximately 130 min by Intel Core i7, 3.0 GHz 
to produce one chain). The data of the initial 2,500,000 steps were discarded as the burn-in process. A set of 2,500 
data points sampled every 1000 steps of the latter half of the chain was used as a sample population of flux reflect-
ing the additional constraint. We used the 2,500 data points derived from latter 2,500,000 steps, because at least 
100,000-1,000,000 steps were required for obtaining a stable estimate (Supplementary Fig. S1).

For the MDV data of Cit obtained from control and paclitaxel-treated samples (Fig. 2a), two populations of flux 
were generated by the Metropolis-Hastings method (Fig. 2c). Here, a relative metabolic flux level of IDHreverse to 
CS was compared between the control and paclitaxel-treated samples as an example. Two populations of the flux 
ratio, log([IDHreverse]/[CS]), were generated for control and paclitaxel-treated samples, respectively (Fig. 3a–d).  
Flux ratio values were used for the comparison, since a flux ratio between two metabolic reactions is dimensionless  
and comparable between two metabolic states. The populations of the control cells showed that the values of 
log([IDHreverse]/[CS]) were evenly distributed across the chain of 2,500,000 sequences (Fig. 3a). The results sug-
gested that enough amount of samples were obtained by the Metropolis-Hastings method. The histogram shown 
in Fig. 3b is an estimated distributions of log([IDHreverse]/[CS]) values in the control cells. The procedure was also 
performed using the MDV data of Cit obtained from the paclitaxel-treated cells (Fig. 3c,d).

Comparison by the Cohen’s effect size. Comparison between the two distributions showed that 
the mean log([IDHreverse]/[CS]) for the population of paclitaxel-treated data (Fig. 3d) looked larger than that 
of control (Fig. 3b), as the p-value from the Student’s t-test was p < 0.001. However, the small p-value was an 
over-estimation of significance due to the effect derived from the large sample size. Instead of the t-test, Cohen’s 
effect size (d) was used here. The Cohen’s effect size is a quantitative measure of the magnitude of mean difference 
(See Method for details)43. Based on the Cohen’s original criteria for mean difference, effect sizes with larger than 
0.8 or less than −0.8 (|d| > 0.8) were considered to be large in this study43.

Cohen’s d-value between two distributions was determined to be d = 0.65. Based on the Cohen’s criteria, the 
result indicates that the measured data of Mexp of Cit (Fig. 2a) did not have a large effect to discriminate the flux 
ratio, log([IDHreverse]/[CS]), between the control and paclitaxel-treated cells. Thus, the measured data of Cit pro-
vided poor evidence to support the notion that the flux ratio, log([IDHreverse]/[CS]), was changed by the paclitaxel 
treatment.

A similar procedure was used for log([PC]/[CS]) (Fig. 3e–h). A larger mean log([PC]/[CS]) was observed 
for the population of the paclitaxel-treated data, with p < 0.001 and d = 1.90 (Fig. 3f,h). Since Cohen’s effect size 
d was much larger than 0.8, it can be claimed that log([PC]/[CS]) increased in the paclitaxel treated cells based 
on the measured data of Cit shown in Fig. 2a. These results showed a good coincidence with the metabolic flux 
distribution determined by the 13C-MFA conducted in the previous study40.

Estimated distribution flux and the Cohen’s effect size (d) should depend on the number of data points used 
for the analysis. An additional analysis for log([PC]/[CS]) showed that d-values were determined to be d = 1.67 
(when using Cit m0,1,2,4,5), d = 1.40 (Cit m0,4,5), and d = 0.20 (Cit m4,5), respectively (data not shown). Level of 
p-values were less than 0.001 for all conditions. These results indicated that an MDV dataset that includes a larger 
number of data points is preferable to produce a population with smaller variation by the Metropolis-Hastings 
algorithm. To perform the Metropolis-Hastings algorithm, however, it has to be verified that the metabolic model 
overfits to the measured MDV data (RSS(flux) < χ2

0.05). It indicates that an arbitrary selection of suitable MDV 
dataset is needed to satisfy the conditions before performing the analysis.

It should be also noted that the developed method compared flux ratios between two metabolic states, indi-
cating that estimated d-values depends on denominator reactions. For instance, d-values of log([PC]/[CS]), 
log([PC]/[ACLY (ATP citrate lyase)]), and log([PC]/[Glucose uptake]) were determined to be 1.90 (Fig. 3), 2.02, 
and 1.74, respectively (data not shown). The variation in d-values suggested that a careful selection of denomina-
tor reaction is needed to perform useful isotopomer analysis.

Reanalysis of literature reported data. The isotopomer analysis reported in literature were rea-
nalyzed by the method developed in this study32,33,44. Mullen et al. (2011) compared MDVs of Cit and Fum 
obtained from the wild type (WT) 143B cells cultured with [U-13C]Gln with that obtained from the mutant 

https://doi.org/10.1038/s41598-019-57146-8


5Scientific RepoRtS |          (2020) 10:286  | https://doi.org/10.1038/s41598-019-57146-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

(CYTB) 143B cells lacking the complex III in the electron transport chain (Fig. 4a, bar graphs)32. The authors 
reported that glutamine was used as the major anaplerotic precursor in WT143B cells that produced Citm4 from 
[U-13C]Gln. In contrast, CYTB 143B cells mainly produced Citm5 through the reductive glutamine metabolism 
(Fig. 1a). MDV data obtained from these figures were presently reanalyzed by the method developed in this study 
(Supplementary Table S2). Two populations of flux were generated from the MDVs of WT and CYTB 143B cells 
by the Metropolis-Hastings method described above. For example, the flux ratio of log([CS]/[ACLY]) in CYTB 
143B cells were smaller than that of WT 143B cells, since the d-value was smaller than −0.8. (d = −6.1, high-
lighted by the blue color in the lower panel of Fig. 4a; all results are shown in Supplementary Table S4). Here the 
metabolic flux levels of ATP:acetyl CoA lyase ([ACLY]) was used as a denominator reaction to compare relative 
contribution of CS and IDHreverse to the citrate biosynthesis (highlighted by the black color in Fig. 4a). On the 
other hand, the CYTB 143B cells had greater flux ratio of log([IDHreverse]/[ACLY]) than that in WT 143B cells 
(d-value = 5.5; highlighted by the red color in Fig. 4a). These results confirmed the measured MDV data sup-
ported the activation of the reductive glutamine metabolism in CYTB 143B as reported in the original literature. 
Moreover, additional metabolic reprogramming was read out from the reanalysis. As shown in Fig. 4a, the results 
suggested that flux ratios, such as log([PC]/[ACLY]), log([MAE]/[ACLY]), log([IDHfw]/[ACLY]), and log([Gln 
uptake]/[ACLY]), increased in CYTB 143B with Cohen’s d-values larger than 0.8.

Metabolic reprogramming induced by the metformin treatment has been reported in the two independent 
studies using MCF-7 cells (Fig. 4b)33 and 143B cells (Fig. 4c)32. Metformin is a prescription drug used to treat 
type 2 diabetes. Andrzejewski et al. investigated metformin-induced metabolic reprogramming in MCF-7 cells 
using [U-13C]glucose33. The authors described that the metformin treatment decreased the labeling of Citm2 
and [13C2]2-ketoglutarate (2KGm2) derived from glucose, indicating that less glucose entered the mitochondrial 
metabolism in cells (Fig. 4b, bar graphs). The present reanalysis of reported MDV data (including 2KGm0,m2 
and Citm0,m2,m4) confirmed that the MDV data were enough to support a decrease in the flux ratio of log([CS]/
[ACLY]) by the metformin treatment (d-value = −1.2). Moreover, it was also suggested from the MDV data that 
the reductive glutamine metabolism was also activated, since the d-value at 1.1 was observed for log([IDHreverse]/
[ACLY]). Since similar labeling patterns of Cit and 2KG were observed between the non-treated and treated cells, 
the d-values close to the threshold level were obtained.

Figure 3. Solution flux spaces estimated from the isotope labeling data of Cit using the Metropolis-Hastings 
algorithm. MDV data of Cit including six data points from Citm0 to Citm5 were used. (a,c,e,g) Chains of 
log([IDHreverse]/[CS]) and log([PC]/[CS]) values produced by the Metropolis-Hastings method. The data 
of initial 2,500,000 steps were discarded as the burn-in process. (b,d,f,h) Histograms of the populations of 
log([IDHreverse]/[CS]) and log([PC]/[CS]) values produced by the Metropolis-Hastings method. The two 
populations produced from the isotope labeling data of Cit of control and paclitaxel-treated MCF7 cells were 
compared by the p-value from Student’s t-test and the Cohen’s effect size (d). The results are shown in panels 
(d,h).
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Figure 4. Reanalysis of the literature reported data by the Metropolis-Hastings algorithm-based method. The 
mass isotopomer distribution vector (MDV) data were obtained from the four isotopomer analyses reported 
in the literature. The results are shown in the simplified metabolic network. For a metabolic reaction X, a 
population of flux ratio, log([X]/[ACLY])(panels (a–c)) or log([X]/[Glucose uptake]) (for panel (d)) were 
obtained by the Metropolis-Hastings algorithm and compared using the Cohen’s d-value between two metabolic 
states. The denominator reactions were highlighted in black. Reactions highlighted by red and blue colors 
indicate the metabolic reaction whose Cohen’s d-values were more than 0.8 and less than −0.8, respectively. 
Carbon sources are shown. (a) Comparison between wild type (WT) 143B and a mutant (CYTB) 143B lacking 
the complex III in the electron transport chain. The MDV data was obtained from Mullen et al.32.  
(b) Comparison between the MCF7 cells non-treated and treated with 5 mM metformin reported by 
Andrzejewski et al.33. (c) Comparison between the143B cells non-treated and treated with 10 mM metformin 
reported by Mullen et al.32. (d) Metabolic redirection of human skin fibroblast induced by the treatment with 50 
μM hydrogen peroxide (H2O2). The MDV data was obtained from Kuehne et al.44.
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Similar metabolic reprogramming was observed in the isotopomer analysis of 143B cells using [U-13C]Gln 
(Fig. 4c). In the original report, only the metformin-induced activation of reductive glutamine metabolism 
has been mentioned based on the MDV data of Cit, Fum, and Mal (Fig. 4c, bar graph)32. On the other hand, 
the reanalysis using the Metropolis-Hastings method found that the MDV dataset could suggest an increase in 
log([PC]/[ACLY]), log([MAE]/[ACLY]), and log([LDH]/[ACLY]), as well as a decrease in log([CS]/[ACLY]) and 
log([SDH]/[ACLY]) (See Supplementary Table S4 for full results).

Figure 4d depicts the result of isotopomer analysis of human skin fibroblasts that were untreated or treated 
with 500 μM hydrogen peroxide cultured in medium containing 50% non-labeled and 50% [1-13C]glucose44. The 
authors pointed out that carbon flux was redirected from the EMPP to the oxPPP upon oxidative stress due to an 
increased [F6Pm0] and [S7Pm0] coupled to a decreased [F6Pm1] and [S7Pm1] fractions. The finding was presently 
confirmed by the reanalysis using the Metropolis-Hastings algorithm (Fig. 4d). The reanalysis also revealed a 
decreased metabolic flux levels of the forward and reverse reactions of PGI, TAL, and TKL suggesting an increase 
in the chemical motive force or a decrease in the Gibb’s free energy change (ΔG’) of these reactions upon the 
hydrogen peroxide stress.

Discussion
Isotopomer analysis by stable isotope labeling has been widely adopted for the reliable estimation of metabolic 
redirection or reprogramming (Fig. 1)32,45–47. In this study, we developed a computational method for the analysis 
of the MDV data produced by the isotopomer analysis (Fig. 2c). The reanalysis of the literature data demon-
strated that more detailed metabolic redirection could be revealed by the developed method (Figs. 3 and 4). A 
drawback of the methodology is a longer calculation time for the Metropolis-Hastings algorithm. Moreover, 
caution is needed when interpreting the results, since changes in metabolic flux ratio instead of metabolic flux 
level were evaluated. In addition, estimated metabolic redirection should be validated by additional data or exper-
iment since these analyses were performed using a small number of MDV data and the metabolic model with 
several simplifications (Fig. 2). Furthermore, whereas the developed method is able to evaluate change in a flux 
ratio between two reactions, it is unsuitable for find a drastic flux re-organizations via novel metabolic pathways. 
Additional data or the 13C-MFA would be needed to measure a proportional increase and decrease in two meta-
bolic flux levels.

An advantage of the developed method is that it enables an analysis of metabolic redirection using numerous 
data point. By the conventional method, in the case of the example shown in Fig. 4a, only a relative contribution 
of the reductive glutamine metabolism and forward reaction of the TCA cycle to synthesize Cit was estimated 
from the two data points, including [Citm4] and [Citm5] (Fig. 1a). The developed method was able to assess meta-
bolic redirection in the metabolic network using the six plus four data points of Cit and Fum (Fig. 4a).

Another advantage is a quantitative assessment of more detailed metabolic redirections by Cohen’s effect size 
(d) (Figs. 3 and 4). We considered that the MDV data supported a metabolic redirection of interest when large 
Cohen’s effect size was observed (|d| > 0.8). In the case of the example shown in Figs. 2 and 3, although distinct 
labeling patterns were observed for [Citm4] and [Citm5], the reanalysis pointed out that the data was not enough to 
support a shift of a flux ratio between control and paclitaxel-treated MCF-7 cells, since d = 0.65. Notably, a larger 
effect size means stronger support from the measured MDV data, but does not always represent a larger shift in 
the metabolic ratio.

The reanalysis of the literature data also revealed that flux ratio levels, such as log([PC]/[ACLY]) and log([-
MAE]/[ACLY]), were increased by the metformin treatment (Fig. 4a,c). This was because the activation of these 
anaplerotic reactions was required to produce an amount of non-labeled form of Cit (Citm0) observed in the 
MDV datasets. These results demonstrate that a quantitative assessment by Cohen’s effect size (d) enables a more 
detailed evaluation of metabolic reprograming by the isotopomer analysis, that should be validated by additional 
data or experiment. This technique will support a future application of the isotopomer analysis for various targets 
including cultured cells, whole tissues, and organs as well as using an advanced experimental technique such as 
a parallel labelling29,48,49.

Methods
Metabolic models. A metabolic model of Homo sapiens that is similar to that used in the previous 13C-
MFA studies was employed50–54. The model includes 53 reactions and 34 metabolites in the pathways for glycol-
ysis, pentose phosphate, TCA cycle, anaplerosis, and lipid biosynthesis (Supplementary Table S3). In the model, 
intracellular compartmentalization between the cytosol and mitochondria was ignored for pyruvate, citrate, and 
2-ketoglutarate (2KG), based on a similar simplification process followed in previous 13C-MFA studies50,52,54,55. 
The following processes were assumed for the analysis: glucose uptake, glutamine uptake, production of lactate, 
and acetyl-CoA (AcCoA) supply required for the lipid biosynthesis. The specific glucose uptake rate was arbitrar-
ily set to 100. Other specific rates were considered to be in free flux, with specified lower and upper thresholds, 
including glutamine uptake (5–50), and lactate production (50–300). The lower and upper thresholds were set 
arbitrarily based on the previous reports50,52,54,55. Uptake of other amino acids and the carbon supply for the syn-
thesis of other building blocks were ignored in this study for simplification.

Data source and data analysis. The 13C-labeling pattern data reported in the previous isotopomer analysis 
studies were used. MDV data including relative signal intensities and their standard deviations were measured 
from figures obtained from the literature (Supplementary Table S2). The minimum standard deviation of the 
measurement was set to 0.015.

All data analyses were performed using mfapy 0.5.2 (a Python version of OpenMebius56) implemented 
in Python 3.6 (https://github.com/fumiomatsuda/mfapy). The aforementioned metabolic model could be 

https://doi.org/10.1038/s41598-019-57146-8
https://github.com/fumiomatsuda/mfapy


8Scientific RepoRtS |          (2020) 10:286  | https://doi.org/10.1038/s41598-019-57146-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

considered as a function, Model, to simulate MDV of ith measured metabolites, Mi,sim, calculated for a given met-
abolic flux distribution, flux, by the EMU method as follows:

=M Model flux( )i sim,

A residual sum of square (RSS) between the simulated and the experimentally measured MDV (Mi,exp) as 
follows:

∑=





−

σ






RSS Flux( )
M M

(1)i

i i

i

, exp , sim
2

where σ represents the standard deviation of measurement and RSS(Flux) is a RSS for a given flux. The 
Metropolis-Hastings algorithm was performed by the following procedure,

 (1) A seed metabolic flux distribution flux was produced by minimizing the RSS(flux) using the sequential 
least squares programming (SLSQP) function implemented in SciPy 1.357.

 (2) A seed metabolic flux distribution was accepted as a 0th metabolic flux distribution, flux0, if an over-fitting 
result with RSS(flux0) < χ2

0.05 (number of measurements) was obtained. Degree of freedom was the num-
ber of measurement.

 (3) Based on a flux distribution at jth step, fluxj, a proposal flux distribution, fluxp, was generated by addition of 
random values to flux level of three randomly selected reactions. Proposal flux distributions were iterative-
ly generated until a fluxp within feasible flux space was obtained.

 (4) If an acceptance probability p = P(RSS(fluxp))/P(RSS(fluxj)) was larger than 1.0, the fluxp was accepted as 
fluxj+1. P is a probability distribution of the chi-square distribution (degree of freedom was a number of 
measurement). If p < 1.0, fluxp was accepted with probability p. When the fluxp was rejected, fluxj was also 
used as fluxj+1.

 (5) The procedure was repeated 5,000,000 times to generate a Malkov chain. The data of the initial 2,500,000 
steps were discarded as the burn-in process.

 (6) From the population of the latter half of the chain (2,500,000 data points), 2500 fluxj were obtained by a 
sampling of every 1000 step of the chain.

 (7) The whole procedure was repeated eight times.
 (8) Sample population including 20,000 fluxj (2500 with eight replicates) were used for the following data anal-

ysis. The time required for the Metropolis-Hastings algorithm was approximately 130 min by Intel Core i7, 
3.0 GHz per one dataset.

Two populations were generated, such as for conditions A and B, in terms of a flux ratio, [M]i,n/[L]i,n, where, 
[M]i,n and [L]i,n indicate the metabolic flux levels of reactions M and L under the condition i determined by the 
nth sample. The Cohen’s effect size (d) was determined as follows58:

= − − + − + −d A B n s n s n n( )/ (( 1) ( 1) )/( 2)A A B B A B
2 2

where A  and B  are the means of populations A ([M]A,n/[L]A,n) and B ([M]B,n/[L]B,n). sA and sB are the standard 
deviations, and nA and nB are the sizes of populations A and B. Based on the Cohen’s original criteria for the case 
of mean difference, effect sizes larger than 0.8 or less than −0.8 (|d| > 0.8) were considered large.
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