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Dynamics of opinion formation 
under majority rules on complex 
social networks
Vu Xuan Nguyen1, Gaoxi Xiao   1,2*, Xin-Jian Xu   3, Qingchu Wu4 & Cheng-Yi Xia5

We study opinion dynamics on complex social networks where each individual holding a binary opinion 
on a certain subject may change her/his mind to match the opinion of the majority. Two rules of 
interactions between individuals, termed as classic majority and influence majority rules, respectively, 
are imposed on the social networks. The former rule allows each individual to adopt an opinion 
following a simple majority of her/his immediate neighbors, while the latter one lets each individual 
calculate the influence of each opinion and choose to follow the more influential one. In this calculation, 
the influences of different opinions are counted as the sum of the influences of their respective opinion 
holders in neighborhood area, where the influence of each individual is conveniently estimated as the 
number of social connections s/he has. Our study reveals that in densely-connected social networks, 
all individuals tend to converge to having a single global consensus. In sparsely-connected networks, 
however, the systems may exhibit rich properties where coexistence of different opinions, and more 
interestingly, multiple steady states of coexistence can be observed. Further studies reveal that low-
degree and high-degree nodes may play different roles in formulating the final steady state, including 
multi-steady states, of the systems under different opinion evolution rules. Such observations would 
help understand the complex dynamics of opinion evolution and coexistence in social systems.

Social opinion evolution and opinion formation have been extensively studied in the past decades1–8. A popular 
approach adopted in such studies is to model social opinions into a binary system2,3,9–11. That is, we assign two 
different values, typically denoted as 0 and 1, respectively, to reflect two different opinions. Such a model could 
conveniently resemble those cases where there exist two competing opinions, e.g., approval and disapproval in a 
vote or selection between two candidates in an election. In such a system, local interactions between individuals 
may drive the system to an equilibrium in the final steady state where a certain opinion dominates the system 
or coexists with the other one. In social opinion formation, people may be affected by those who are socially 
connected to them (e.g., friends, family members, and colleagues et al.) and tend to adopt the opinion that the 
majority of their connected individuals hold. To reflect such “majority effects”, a well-known majority dynamics 
model (also known as local majority rule or majority voter model) has been proposed10–14. Under the rule, each 
individual holds an initial opinion. During the temporal evolution, the individuals iteratively update their states 
to match the opinion of the majority of her/his immediate neighbors. In this paper, we term this rule as the classic 
majority rule, to differentiate it from the new majority rule we shall introduce later in this paper.

The classic majority rule, simple as it is, exhibits rich dynamical properties which have inspired scientists to 
propose and investigate quite a few variant models. The works by Mossel and Tamuz et al.10,12 focus on effective 
aggregation of information on two-state systems under majority dynamics and the conditions that drive the social 
systems to converge to unanimity. It also addresses other questions such as whether an opinion supported by the 
initial majority remains as the majority in the final state. Studies have also been carried out to develop different 
theoretical frameworks with different configurations of underlying networks. Some examples include the studies 
by Kanoria and Montanary on majority dynamics on regular tree graphs9, by Howard on 3-regular trees15, and by 
Fontes, Schonmann, and Sidoravicius16 on Zd, etc.

1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore. 
2Complexity Institute, Nanyang Technological University, 18 Nanyang Drive, Singapore, 637723, Singapore. 
3Department of Mathematics, Shanghai University, Shanghai, 200444, China. 4College of Mathematics and 
Information Science, Jiangxi Normal University, Jiangxi, 330022, China. 5School of Computer Science and 
Engineering, Tianjin University of Technology, Tianjin, 300384, China. *email: egxxiao@ntu.edu.sg

OPEN

https://doi.org/10.1038/s41598-019-57086-3
http://orcid.org/0000-0002-4171-6799
http://orcid.org/0000-0001-6088-976X
mailto:egxxiao@ntu.edu.sg


2Scientific Reports |          (2020) 10:456  | https://doi.org/10.1038/s41598-019-57086-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

In most studies, complete consensus state at which all individuals adopt the same opinion is observed at the 
end of the opinion evolution process. The study in11 shows that under the majority dynamics, when the initial 
opinions of agents on Erdös-Rényi random graphs with degrees Ω n( ) are independently and identically distrib-
uted, the agents eventually converge to the initial majority opinion, with a constant probability. It is also argued 
in17 that independently of underlying graphs, there is always a group formed by a half of the agents that can oblit-
erate the opposite opinion. Likewise, the authors in12 show that if the initial population is sufficiently biased 
towards a certain opinion, this opinion may finally become the unanimous preference of the entire population. 
Some other variants of majority dynamics can be found in13,18–21.

In our study, for the first time to the best of our knowledge, we find that under the classic majority rule, the 
systems’ behaviors may be different in densely and sparsely connected networks, respectively. Specifically, the 
existence of a large proportion of low-degree nodes may sustain the coexistence of two competing opinions in 
equilibrium, which is not observed in dense networks. These low-degree nodes are connected to each other 
forming up separating boundaries between clusters of opposite opinion holders. As the setting up of such sepa-
rating boundaries is sensitive to the initial allocations of different opinion holders, multi-steady states of opinion 
coexistence can be observed.

We then further consider the fact that when people choose to follow the “majority” opinion, what matters 
most may not be the number of people holding each of the opinions, but how influential each opinion is. In 
real life, the influence of an opinion may be estimated, say, by roughly calculating the sum of the influences of 
those opinion holders supporting this opinion. While there could be many different ways for people to estimate 
the influence of each opinion holder, a visible metric people may intentionally or unintentionally use in their 
calculations is the number of “valid” social connections this individual has, through which this individual may 
influence other people. In this report, we propose a new majority game model, termed as influence majority rule. 
Specifically, we let each individual follow the opinion with a stronger overall influence among his/her immediate 
neighbors. As a simplest case, we let the overall influence of an opinion be equal to the sum of the influences that 
its holders have, where the influence of each neighbor equals the number of connections s/he has. In a complex 
social network model where each individual is represented as a vertex and the connections s/he has are repre-
sented as network edges, this means that for each node, we sum up the nodal degrees of its immediate neighbors 
holding opinions 0 and 1 respectively; and let this node adopt the opinion with a larger sum value. Other influ-
ence majority rules certainly can also be proposed, e.g., by assigning a higher-degree node an influence value that 
is nonlinearly proportional to its degree, or by measuring or estimating every node’s betweenness, etc. Studies on 
these models, however, are out of the scope of this paper and shall be carried out in future research work.

Under the influence majority rule, as will be presented later, at first sight, it may seem that the observations 
are similar to those under the classic majority rule. That is, in dense networks, complete consensus would be 
achieved at the end of opinion evolution, while in sparse networks, multi-steady states of coexistence would be 
achieved. Closer observations, however, reveal that the seemingly similar final states have different structures 
and they emerge due to different reasons: unlike that under the classic majority rule where low-degree nodes 
form up separating boundaries between clusters holding opposite opinions, under the influence majority rule, it 
is high-degree hub nodes that connect their surrounding low-degree nodes to form into communities holding 
different opinions.

The rest of the paper is organized as follows. First, we present a formal description of the system model and 
the opinion formation rules, followed by some brief discussions on theoretical analyses. Then simulation results 
and discussions are presented. Finally we conclude the paper and briefly discuss some possible future research.

Models and Analyses
System models and opinion formation rules.  Let G = (V, E) be an undirected graph representing a 
social network, where V is the set of vertices (nodes) representing individuals and E is the set of edges (links) 
representing social connections. Denote the set of neighbors of a vertex v ∈ V as η(v) and the nodal degree of v as 
kv, kv = |η(v)|. At time step t, each node v ∈ V holds a state Sv(t) ∈ {0, 1} representing one’s opinion on a particular 
subject.

At the start of the opinion dynamics, each node v is endowed with a state Sv(0) drawn from {0, 1} at a certain 
distribution as assigned. At each time step, a node is randomly chosen and its state is updated following either of 
the two majority rules. Iteratively, the nodes update their states over time until an equilibrium is achieved where 
no vertex needs to further change its state.

Under the classic majority rule, a vertex shall adopt the opinion that occupies the majority of its adjacent 
nodes. When there is a tie, i.e., when the numbers of adjacent nodes holding each of the two opinions equal each 
other, the node shall retain its current opinion. When under the influence majority rule, a vertex shall sum up the 
degrees of those adjacent nodes holding opinions 0 and 1, respectively. It shall adopt the opinion that has a larger 
value of the sum. When there is a tie, the node shall retain its current opinion.

Mathematically, the two different rules can be respectively described in Eqs. (1) and (2) as follows:

η= | | − = ∈ |∈S t argmax u S t s u v( ) { ( 1) , ( )} , (1)v s u{0,1}

∑= .
η

∈
∈ | − = ∈

S t argmax k( )
(2)

v s
w u S t s u v

w{0,1}
{ ( 1) , ( )}u

For the sake of convenience, we hereafter term the classic majority rule and the influence majority rule as 
CMR and IMR, respectively.
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System dynamics equations.  Denote the relative densities of k-degree nodes holding states 0 and 1 at 
time t as ρ0,k(t) and ρ1,k(t) = 1 − ρ0,k(t), respectively. In an uncorrelated random network with an arbitrary degree 
distribution P(k), the temporal evolution of the system governed by CMR can be approximately described by the 
following dynamics equations:
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where θ0(t) (θ1(t)) is the probability that a randomly chosen link points to a 0-state node (1-state node):
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where 〈k〉 is the average degree,
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To derive the dynamics equation for IMR, let Dl be a multiset having cardinality l drawn from an ordinary set 
 ∩=U k k[ , ]min max . Dl can be represented by a set of ordered pairs: = | ∈ ∈D k n k k U n k{( , ( )) , ( ) }l D Dl l

, 
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. Here 
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. The 
dynamics equation of a system governed by IMR can be expressed as follows:
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where θ t( )k0, n
 (θ t( )k1, n

) is the probability that a randomly chosen link points to a node having degree kn and state 0 
(1) at time t:
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Note that when the network has a delta-Dirac degree distribution, Eq. (6) is reduced to Eq. (3).

Simulation Results and Discussions
We investigate the evolution of the system state under the two majority rules, mainly on underlying scale-free net-
works22 generated from the configuration method23. Specifically, let F0(t) and F1(t) denote the fractions of nodes 
holding states 0 and 1 at time step t, respectively. At t = 0, F0(0) ≤ 0.5 of the population are randomly chosen to be 
endowed with state 0 and the remaining nodes are endowed with state 1. The system starts to evolve under either 
of the two rules until the final steady state is reached. We refer to the state with a larger (smaller) proportion in a 
specified graph as the majority (minority) state of that graph.

We first verify Eq. (3) by carrying simulations on scale-free and Erdös-Rényi (ER)24 networks. Figure 1 shows 
the decline of the initial minority state over time, finally leading to the unanimity among all individuals in the 
steady state. Reasonably good matches between analytical and simulation results can be observed. Extensive sim-
ulations also show that the denser the networks are (quantified by average degree k ), the faster the state con-
verges. This observation is in line with the conclusions in13. It implies that having more social connections may 
facilitate exposing a node to the community holding the majority opinion and promote the updating of its state to 
match the dominant state of its neighbors, resulting in a faster concurrence on a denser network.

Under IMR, for a general network with a wide range of nodal degrees, the space of multisets becomes massive 
and consequently, the calculations of Eq. (6) may require heavy computations. For simplicity, we present both 
simulation and analytical results on ER networks with a relatively narrow nodal degree range where k varies from 
5 to 10. As shown in Fig. 2, there exists a reasonably good match between theoretical analysis and numerical sim-
ulation results, and the vanishment of the initial minority is observed.
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More noticeably, the observation that the initial majority opinion tends to completely dominate the whole net-
work in the final state does not hold in sufficiently sparse networks. As illustrated in Fig. 3, the state of minority 
may persist to exist in the steady state where the coexistence of the two states maintains stable.

The study in13 shows that for 4-regular infinite graphs with the minimum nodal degree kmin ≥ 5, the network 
state under the classic majority rule shall converge to unanimity. We observe that when kmin < 5 and the networks 
are sufficiently sparse, the coexistence of two states may sustain under both rules. As to why there could be a coex-
istence of different states, we argue that the main reasons are different for different rules. For CMR, it is because 
that the interconnected low-degree nodes could form up separating boundaries between communities favoring 
opposite opinions.

Figure 3 shows that the fraction of the minority state decreases over time and finally remains unchanged 
where the state coexistence persists. This occurs only on sparse networks where low-degree nodes constitute a 
reasonably large portion of the population. The low-degree nodes holding minority state may thus spread widely 
across the network with a good chance to be connected to each other, forming up inter-community separating 
boundaries between communities holding the opposite opinions. In a densely connected network, on the other 
hand, the network nodes are with higher degrees, giving them a better chance to be connected to many nodes 
of different states and consequently, quickly adopt the state of majority. A separating boundary formed up by 
low-degree nodes holding a minority state can hardly sustain under such case.

We illustrate in Fig. 4 an example showing how low-degree nodes take an increasingly larger proportion 
in a minority group while the overall group size decreases over time until a stable structure is reached. The 
decline of the average degree, as well as the steeper slope of the best-fitting line, reflects an increasing proportion 
of low-degree nodes in the minority community during the dynamic process. This process comes to an end 
when the population reaches an equilibrium where the two states coexist. Figure 5 illustrates such a coexist-
ence of opposite states in a sparse network. Due to the limited size of the network, only a single community of 
majority-opinion holders is observed. Nevertheless, we could see that minority-opinion holders are connected to 
each other and form up their own sustained community.

Under the regime of IMR, as illustrated in Fig. 2, global consensus would be achieved in dense networks. 
In sparse networks, as can be observed in Fig. 3 (IMR), majority and minority states coexist. Note that, though 
the two subfigures of Fig. 3 may appear to be similar to each other at the first sight, the coexistences of opposite 

Figure 1.  Temporal fraction of 0-state nodes under classic majority rule on scale-free (SF) and Erdös-Rényi 
(ER) networks with a size of N = 20000, kmin = 3, and kcutoff = 70. The simulation results are averaged over 50 
independent realizations with error bars representing the standard deviation.

Figure 2.  Temporal fraction of 0-state nodes under the influence majority rule on ER networks with a size of 
N = 20000, kmin = 5, and kcutoff = 10. The simulation results are averaged over 50 independent realizations with 
error bars representing the standard deviation.
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opinions under the two different majority rules are due to different reasons. Specifically, under IMR, highly con-
nected hub nodes play a critical role. The communities of minority-opinion holders center around some hub 
nodes while most of the other nodes of the communities are directly linked to those hubs (see Fig. 6). These hubs 
keep the state of their neighbors difficult to be changed according to the rule: In the community of nodes holding 
the minority state, a low-degree node has a small number of links. At least one of these links connects to one of 
the hubs of the minority state while most of the other links possibly connect to nodes in majority communities 
but not their hubs. Under such case, nodes holding the minority state may persist to exist in sparse networks. In 
dense networks, on the other hand, a minority-state node, even when it is connected to a hub of its own state, may 
still have a good chance to connect to one or more high-degree nodes of the majority-state communities, giving it 
a good chance to change its state. This may lead to a series of events where nodes leave the minority communities, 
ultimately causing the vanishment of the minority state.

From the above discussions, we may also expect that, in sparse networks under IMR, a minority-state holder 
not linked to a minority-state hub may tend to change its state. The communities of the two states shall thus 
become more and more disassortative until they get stabilized. We verify such is indeed the case by measuring the 
assortativity of the minority-state communities. Specifically, we remove nodes holding the majority state and then 
compute the assortativity coefficient of the remaining subgraph using the following equation25:

Figure 3.  The fractions of nodes with state 0 in time on a scale-free network with a size of N = 20000 and an 
average degree of 〈 〉 = .k 4 5 under CMR and IMR, respectively. Each curve corresponds to simulation results on 
the same network with the same parameters but a different randomly-generated initial set of 0-state nodes.

Figure 4.  Temporal distribution of degrees of minority-state nodes in log-log scale from the initial state to the 
final steady state. A scale-free network of a size of N = 20000 and an average degree of 〈 〉 = .k 4 5 is employed. 
The fraction of the minority in the initial and final state is 0.45 and 0.2, respectively. The best-fitting lines are 
obtained by using linear least-squares regression.
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where exy is the fraction of edges in the graph that connect a node of degree x to another one of degree y, 
ax = ∑y exy, by = ∑x exy, σa and σb are the standard deviations of the distributions ax and by, respectively. Figure 7 
shows an example where the assortativity coefficient decreases as the opinion evolution goes on.

Figure 8 further shows the steady-state fraction of nodes with state 0 in respect of its portion at the beginning. 
It reveals that the larger proportion the minority opinion initially takes, the wider range the coexistence may 
finally have. More noticeably, if the initial minority and majority are sufficiently close to each other (including the 
special case where each of them occupies 50% of the population at the beginning), the initial minority state may 
indeed have a chance to become the majority state in the end. Our numerical simulation experiences show that 
this is most likely to happen when the largest hubs hold the minority state at the beginning of the evolution. Note 
that the relatively large standard deviations in Fig. 7 and the relatively wide ranges of the box plots in Fig. 8 mainly 

Figure 5.  A snapshot of a 500-node network in the steady state governed by CMR. Peripheral nodes of the 
minority (blue) are mostly of low degrees and connected with each other (via black links), forming up a 
sustained minority group while being exposed to the majority (green) (via white links). Size of each node 
reflects its nodal degree.

Figure 6.  A snapshot of a 500-node network in the steady state governed by IMR. The two state communities 
are formed up, each containing its own hubs that sustain the persistence of the two communities. Size of each 
node reflects its nodal degree.
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come from the existence of multi-steady states, as will be discussed below. Also note that in the ER networks, 
since there are not obvious hub nodes with very high degrees, the evolution dynamics under IMR appears to be 
similar to, though not exactly the same as, that under CMR.

Lastly, it is worth pointing out that Fig. 3 reveals an important phenomenon that can be observed in sparse 
networks governed by either of the two majority rules. That is, both rules may drive the systems to multiple 
steady states. Specifically, with the same initial percentage of the minority state with independent random initial 
state allocation, on the same underlying network, the evolution may end up with different final states captur-
ing different portions of the population. This is mainly due to the randomness of the decline of the minority 
under the majority effects. To be specific, “majority-oriented” individuals facilitates the dominant growth of the 
initial majority opinion in dense networks, generally resulting in the vanishment of the minority. In a sparse 
network, groups formed by interconnected minority-opinion holders are more likely to form up and sustain. 
Such minority-opinion groups, however, could be vulnerable to small fluctuations of the system state, allowing 
them to be “swallowed” by the majority-opinion communities. For example, under CMR, when a small num-
ber of minority-opinion holders change their mind, say, when slightly more than half of their neighbors are 
majority-opinion holders, cascading effects may cause more minority-opinion holders to change their mind, 
leading to a significant decline or even total vanishment of a minority community. The vulnerability hence results 
in the multi-steady states at the end of the system evolution.

Such vulnerability of minority-opinion communities also exists under IMR, but to a less extent, as it typically 
takes changing the opinion of a hub to eliminate a minority-opinion community under IMR. This may explain 
why in sparse networks, minority state tends to occupy a relatively larger portion of nodes at final steady state 
under IMR than that under CMR, as can be observed in Fig. 3.

Figure 7.  Temporal assortativity coefficient of 0-state community on a network with a size of N = 30000, 
kmin = 3, kcutoff = 70 and k = 5. F0(0) = 0.45. The simulation results are averaged over 50 independent realizations, 
10 on each of 5 randomly generated networks, with error bars representing the standard deviation.

Figure 8.  Box plots showing the statistical fraction of 0-state nodes in the initial state versus that in the steady 
state. Simulations are carried out on networks with a size of N = 100000, kmin = 3, kcutoff = 70 and an average 
degree of k = 4.5. The results for each F0(0) are obtained from 50 independent realizations: we generate 5 
random scale-free networks and carry out 10 realizations of simulations on each of them, each realization has an 
independent random allocation of initial state on network nodes.
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Conclusion
In this report, motivated by the observations that though people may tend to follow majority in opinion forma-
tion, they may have different ways in evaluating which opinion is the majority one, we studied the opinion forma-
tion under the classic majority rule and the influence majority rule, respectively. It is found that under both rules, 
in dense networks, global consensus could be steadily achieved, while in sparse networks, multi-steady states of 
opinion coexistence may be observed. Closer observations, however, showed that the coexistences of opposite 
opinions under the two rules are caused by different reasons: interconnected low-degree minority-state nodes 
form into their own clusters under the classic majority rule, while hub nodes may play a critical role in forming 
up different communities under the influence majority rule. Our studies reveal some useful insights into how 
different opinions manage to coexist and sustain in complex social systems.

When social systems are arguably becoming more and more densely connected, theoretically speaking it may 
become easier than before to achieve global consensus, while co-existence of different opinions will almost for 
sure still be observed everywhere in real life. Such coexistences may be more and more caused by other factors, 
e.g., the existence of community structures, the temporal evolution of the systems, the adoption of different influ-
ence evaluation methods by different individuals, and some individuals/groups’ strong resistances to the majority 
effects, etc. Studies on the impacts of such effects in synthetic and real-life networks shall be of our future research 
interest.
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