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interaction of the hydrogen 
molecule with the environment: 
stability of the system and the PPTT 
symmetry breaking
i. A. Wrona1, M. W. Jarosik2*, R. Szczȩśniak1,2, K. A. Szewczyk1, M. K. Stala1 & W. Leoński3,4

the stability of the hydrogen molecule interacting with the environment according to the balanced gain 
and loss energy scheme was studied. We determined the properties of the molecule taking into account all 
electronic interactions, the parameters of the Hamiltonian being computed by the variational method. 
the interaction of the hydrogen molecule with the environment was modeled parametrically (γ) by means 
of the non-Hermitian, PPTT-symmetric Hamiltonian. We showed that the hydrogen molecule is 
dynamically unstable. its dissociation time (TD) decreases if the γ parameter increases (for γ → 0 we got 
TD → + ∞). the dynamic instability of the hydrogen molecule is superimposed on the decrease in its static 
stability as γ increases. then we can observe the decrease in the dissociation energy value and the 
existence of the metastable state of the molecule as γMS reaches 0.659374 Ry. The hydrogen molecule is 
statically unstable when γ > γD = 1.024638 Ry. Moreover, we can also observe the PPTT symmetry breaking 
effect for the electronic Hamiltonian when  PPTTγ  = 0.520873 Ry. This effect does not affect such properties 
of the hydrogen molecule as: the electronic Hamiltonian parameters, the phonon and the rotational 
energies, and the values of the electron-phonon coupling constants neither it disturbs the dynamics of the 
electronic subsystem. However, the number of available quantum states goes down to four.

Research on the impact of the environment (external quantum system) on the state of the quantum system is an 
interesting, but very difficult issue1,2. This is due to two reasons: (i) usually in the case of the realistic quantum 
system it is impossible to accurately determine its internal state due to the mathematical complexity of the prob-
lem, and (ii) the interaction between the quantum system and the environment can be so complicated that it is 
impossible to obtain unambiguous results.

In the paper, we studied the physical properties of the hydrogen molecule, which interacts with the environ-
ment according to the Balanced Gain and Loss (BGL) energy scheme3. The hydrogen molecule is an interesting 
case because it represents the non-trivial quantum system, and its state can be described accurately using the 
variational method4–7. On the other hand, the BGL scheme describes the interaction between the molecule and 
the environment in the realistic and simple way. From the mathematical point of view, the BGL type interaction 
is modeled by the non-Hermitian Hamiltonian8,9 which is invariant due to the PPTT symmetry (the symmetry of 
reflection in space (P) and in time (TT))10–14. It should be emphasized that if the Hamiltonian is the 
non-Hermitian one, but has the unbroken PPTT symmetry, the energy spectrum of the system is real – at least to 
the characteristic value of the parameter controlling the interaction with the environment.

The interest in the non-Hermitian Hamiltonians, in the context of the description of the open systems, 
appeared in many areas of physics. The papers15,16, in which the open Bose-Hubbard dimer was analyzed are 
worth mentioning here. Such system can be implemented experimentally in the form of trapped bosons, where 
the coupling constant between the studied system and the environment reflects the value of barrier potential17. 
The PPTT symmetry breaking was also analyzed in18–20 in the context of Bose-Einstein condensates. It is worth 
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noting that the existence of the PPTT symmetry breaking effects were also confirmed in the field of quantum 
optics21–24. Additionally, the fact of the appearance of complex energy values can be applied in explanation of the 
dynamics of the physical systems, the probability of disintegration, or the transport mechanism25–31. It should be 
noticed that although most of the existing models were introduced heuristically, nevertheless it was done on the 
basis of relatively satisfactory mathematical justification17.

On the basis of the discussed issues, we intended to analyze the hydrogen molecule interacting with the envi-
ronment and to examine its stability. We assumed that the required calculations would be carried out in the 
extremely accurate manner (at the level required by the the quantum chemistry standards), so that the obtained 
results could be verified experimentally.

In our opinion, the results presented in the paper shall be useful for people interested in the statistical and 
dynamical stability of small quantum systems interacting with environment and for those who research into the 
impact of PPTT symmetry breaking on the physical properties of a system. The presented results are significant 
insomuch that they concern the real physical system, and calculations were carried out for the model which does 
not contain any free parameters.

The achieved results can also be important from the technical point of view, because they can be related to the 
properties of the electronic devices in the single-molecule scale. Indeed, we already know that single particles can 
act similarly to the crucial elements of contemporary microelectronics, in particular they can serve as the rectifi-
ers32, the electronic mixers33, and the switchers34–36. Therefore one can reasonably hope that the molecular elec-
tronics will replace the current technologies over time. However, the real development in this branch of knowledge 
depend on the full understanding of the transport mechanisms in single-molecule junctions. The presented work, 
by the example of the hydrogen molecule interacting with the environment in the balanced gain and loss energy 
scheme, draws attention to the fact that the interaction of the molecular bridge with anchors of the nanojunction 
can lead to changes in the bridge energy levels and to the reduction of their number. This is a substantial effect, 
because the electronic structure of a single molecule controls the electrical properties of the junction, in which it is 
used as a building block37. The way of description of physical properties of the molecular bridge in the nanojunc-
tion, applied within the formalism presented in the work, is discussed in detail in the concluding part of the work.

formalism
The total energy (ET) of hydrogen molecule is defined as:

= + γE E E , (1)T p e

where: Ep = 2/R represents the energy of proton repulsion, with R = |R| as the distance between protons, and Eeγ means 
the energy of the lowest electronic state in the presence of the loss and gain effect (γ represents the coupling between 
the molecule and the environment). For γ = 0, the energy = γ=E Ee e( 0) should be determined using the Hubbard 
Hamiltonian, which takes into account all electronic interactions. In the second quantization formalism, we have6:
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where n̂j is given by: = ∑ = ∑σ σ σ σ σˆ ˆ ˆ ˆ†n n c cj j j j , and ˆ†
σcj  ( σĉj ) is the electron creation (annihilation) operator, which 

refers to the j-th hydrogen atom, σ represents the electronic spin: σ ∈ ↑ ↓{ , }. In the last part of the Hamiltonian, 
ĤHe the symbol −σ (in the subscript) denotes the spin direction opposite to the direction marked with σ. The 
product of spin operators ˆ ˆS Si j takes the form of: + +
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= −↑ ↓ . The symbol +h.c. in Eq. (2) is the abbreviation for plus the Hermitian conjugate and it means 
that an additional term being the Hermitian conjugate of the preceding term should be added. The Hamiltonian 
parameters are defined by the following integrals:
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The meaning of above quantities is as follows: ε represents the energy of the molecular orbital, t is the elec-
tronic hopping integral, U denotes the on-site Coulomb repulsion, K is the energy of the inter-site Coulomb 
repulsion, J stands for the integral of the exchange, and V is called the correlated hopping. The integrals were 
calculated numerically, which is the complicated procedure that requires the use of the large computer resources. 
We notice that the contribution of the individual integrals to the energy eigenvalues is very diverse (see Table 1), 
nevertheless omitting any interaction would lead to the non-physical shortening of the distance between protons. 
We chose the Wannier’s functions in the form of:

φ φΦ = −r a br r( ) [ ( ) ( )], (4)j j l

where the coefficients ensuring normalization are expressed in the formulas:

=
+ −

−
=
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The atomic overlap (S) has the form: ∫ φ φ=S d r r r( ) ( )3
1 2 , where 1 s Slater-type orbital can be written as: 

φ α π α= − −r r R( ) / exp[ ]j j
3 , α is the inverse size of the orbital. It should be noted that the second quantiza-

tion method is completely equivalent to the Schrödinger analysis38–42.
The effective interaction of hydrogen molecule with the environment will be taken into account by supple-

menting the Hubbard Hamiltonian ĤHe with the balanced gain and loss operator3,43:

γ= − .γ
ˆ ˆ ˆi n n( ) (6)1 2HH

The interpretation is that the operators ˆi n1γ  and ˆγ−i n2 enable the effective description of the inward and out-
ward fluxes of the probability amplitude (the interaction with the environment)3,44. The addition or removal of an 
electron from the system would look more realistic, but this approach requires solving the master equations45–47, 
which is a quite complicated numerical task. Notice that the operator = +γ γ

ˆ ˆ ˆHH HH HHe e  represents the 
non-Hermitian Hamiltonian, nevertheless it remains invariant due to the PPTT symmetry – at least to the charac-
teristic γPPTT value for which the symmetry is broken.

Results
Static stability of the system: the electron, the phonon and the electron-phonon properties.  
In the Fig. 1, we plotted the dependence of the eigenvalues Ej on γ. The analytical formulas for Ej have been col-
lected in the Appendix. Analyzing the obtained results, we found that for PPTTγ = .0 520873 Ry there occurs the 
breaking of PPTT symmetry of the electronic Hamiltonian. This fact is manifested by the appearance of the com-
plex values of E5 and E6. Physically, this means that the PPTT symmetry breaking reduces the number of the avail-
able electronic states from six to four. Nevertheless, the considered effect has no physical significance due to the 
fact that the states E5  and E6  have the highest energy values. They cannot be thermally occupied - the kBT 
energy is of the order of 25 meV, while the difference between E6 and E4 is around 25.5 eV (E4 is the ground state 
energy of the electronic subsystem). When discussing the results, it should be clearly emphasized that E4 is always 
the real number.

Although the PPTT symmetry breaking is not manifested physically, the interaction of the hydrogen molecule 
with the environment can significantly change its physical state. This fact is connected with the dependence of the 
total energy on the γ parameter. In the Fig. 2, we presented the total energy values ( = +E E ET

j
p j

( ) ) of the isolated 

γ [Ry] ε0 [Ry] t0 [Ry] U0 [Ry] K0 [Ry] J0 [Ry] V0 [Ry]

0 −1.749493 −0.737679 1.661254 0.962045 0.022040 −0.011851

0.1 −1.74866 −0.743562 1.66607 0.965198 0.022117 −0.0118825

0.2 −1.74599 −0.760758 1.68006 0.974349 0.0223398 −0.0119744

0.3 −1.74114 −0.788025 1.70198 0.988664 0.0226876 −0.0121193

0.4 −1.73366 −0.823632 1.73016 1.00702 0.0231322 −0.0123074

0.5 −1.72329 −0.865608 1.76279 1.02821 0.0236434 −0.0125275

γ
PPTT

 = 0.520873 −1.72075 −0.874986 1.770000 1.03288 0.0237558 −0.0125764

0.6 −1.70997 −0.911931 1.79817 1.05107 0.0241927 −0.0127687

γMS = 0.659374 −1.70076 −0.940627 1.81984 1.064996 0.0245259 −0.0129176

0.7 −1.69397 −0.960458 1.83473 1.07453 0.0247533 −0.0130205

0.8 −1.67604 −1.00854 1.87081 1.09738 0.0252963 −0.0132714

0.9 −1.65787 −1.0515 1.90394 1.11776 0.0257748 −0.0135041

0.0 −1.6462 −1.07108 1.92509 1.1285 0.0260069 −0.0136584

γD = 1.024638 −1.65569 −1.03796 1.911296 1.11581 0.0256683 −0.0135781

Table 1. The values of the Hubbard Hamiltonian integrals calculated for the equilibrium distance of the 
hydrogen molecule. The selected values γ have been taken into account.
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hydrogen molecule, and the influence of the γ parameter on the ground state energy ET
(4). One can see that an 

increase in the minimum energy value E R( )T
(4)

0  is observed with the increase in γ, whereas the molecule is in the 
stable state. Above γ = .0 659374MS  Ry the hydrogen molecule can exist only in the metastable state: 

> → + ∞ =E R E R( ) ( ) 2T
MS

T
(4)

0
( ) (4)  Ry, where = .R 1 244701MS

0
( )  a0. After exceeding γD = 1.024638 Ry, which 

corresponds to = .R 1 196587D
0
( )  a0, the molecule breaks down (see the appendix). The insert (a) presents the 

dependence of the hydrogen dissociation energy ( = −E y E2R TD
(4)) on the value of the γ parameter. The insert 

(b) shows the influence of the γ parameter on the equilibrium distance R0. Figure 3(a–c) trace the change of the 
distribution of electron charge for the stable case at γ = 0 (R0 = 1.41968 a0), for the metastable case (R MS

0
( )), and at 

the dissociation point (R D
0
( )). The density of electron charge was calculated according to the formula: 

ρ = ∑ |Φ |r r( ) ( )j j
2.

The determination of the explicit function ET(R) for the given parameter γ allows to trace the influence of the 
environment on the vibrational energy. In the simplest approach (the harmonic approximation), the potential can 
be calculated as follows: = + −V R E R k R R( ) ( ) ( )TH

(4)
0

1
2 H 0

2, where: =
=

k d E R dR[ ( )/ ]T R RH
2 (4) 2
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quantum oscillator has the form:

E n( 1/2) (7)o
H

0
Hω= + .

The symbol n indexes the energy level: = ...n 0, 1, 2, . Additionally, ω = ′k m/0
H

H , where m′ is the reduced 
mass of the protons: ′ = = .m m /2 918 076336p  (mp is the proton mass). The more advanced approach is based on 
the Morse potential: α= + − − −V R E R E R R( ) ( ) [1 exp( ( ))]o T oM

(4)
0 D M 0

2, where αMo means measure of the cur-
vature of the potential about its minimum. The force constants, kMo should be calculated according to the formula: 

Figure 1. The real and the imaginary part of the eigenvalues of the Hamiltonian γĤHe . The equilibrium distances 
between protons (R0) were assumed. The hatched areas correspond to the γ values for which the operator ˆ

γHHe  
ceases to be invariant due to the PPTT symmetry.

Figure 2. The dependence of the total energy ET
j( ) on the distance between protons. Additionaly, we took into 

account the influence of γ on the ground state energy ET
(4). Insert (a) the dissociation energy ED versus γ 

parameter. Insert (b) equilibrium distance R0 versus γ parameter.
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= =k d V R dR[ ( )/ ]R RMo
2

Mo
2

0
. The Morse energy is given by: ω = ′k m/o0

Mo
M  (see Table 2). The energy formula has 

the more complex form than for the harmonic case:

ω ω= + + + .E n E n( 1/2) (( ) /4 )( 1/2) (8)o D
Mo

0
Mo

0
Mo 2 2

Figure 4(a) depicts the dependence of the energies ω0
H and 0

Moω  on the value of the γ parameter. There is a 
clear difference in the courses of the functions under consideration. It results from the applied method of approx-
imation of the exact dependence of the total energy on the inter-proton distance (see Fig. 4(b)). It is worth notic-
ing that the anharmonic approximation can be used only for the γ values smaller than γMS; the Morse curve 
incorrectly parameterizes the ground state energy function E R( )T

(4)  for higher values of γ.
The rotational energy of the hydrogen molecule should be calculated from the expression:

= +E B l l( 1), (9)r 0

where: = ′B m R1/0 0
2 and = ...l 0, 1, 2, . The influence of the γ parameter on the rotational energy value has 

been presented in the Fig. 4(c). From the physical point of view, the increase of the energy B0 results from the 
decrease of the equilibrium distance R0, which we observe when the γ parameter grows (see the Fig. 2 - insert (b)).

Having the explicit dependence of the ˆ
γHHe  parameters on R (see the appendix), we computed the 

electron-phonon coupling functions according to the formula: gx = dx/dR, where ε∈x t U K J V{ , , , , , }. We plot-
ted the obtained results in the Fig. 5. One can easily see that the absolute values of the considered functions at R0 
increase as the γ parameter increases. The couplings associated with the ε, t, U, and K parameters are of the great-
est physical importance. The other two quantities gJ and gV take very small values as compared to other 
electron-phonon coupling functions. Note the relatively high values of the gU and gK functions. The obtained 
result is caused by the fact that the electrons in the hydrogen molecule form the strongly correlated system.

the dynamic instability of the hydrogen molecule. The basic observable of the electronic subsystem 
is the occupation number σn̂j  of the jth proton of the hydrogen molecule, where the symbol ...  means the 
expectation value. In the Hermitian case (γ = 0) the dynamics of σn̂j  can be analyzed using the conventional 
Heisenberg equation:

ˆ
ˆ ĤHi

d n

dT
n , ,

(10)
j

j e
MF

= 







σ
σ γ

−

where ˆ
γHHe

MF
 is the electron Hamiltonian in the mean-field approximation:

Figure 3. The distribution of electronic charge in the hydrogen molecule: (a) the stable case; (b) metastable 
case; (c) just before dissociation.

γ [Ry] ED [Ry] αM [ −a0
1]

0 0.323007 1.441564

0.1 0.314916 1.19386

0.2 0.290867 1.24564

0.3 0.251537 1.33815

0.4 0.19483 1.48597

0.5 0.123658 1.76235

γ
PPTT

 = 0.520873 0.114146 1.816998

0.6 0.062886 2.19766

γ
MMSS

 = 0.659374 0.0194576 2.95769

Table 2. The Morse potential parameters for different values of γ.
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The Hamiltonian parameters were defined by the expressions:
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jj j j
j

j j j

j j

j j

The new symbols have the following meanings:

Figure 4. (a) The influence of the γ parameter on the energy values ω0
H and ω0

Mo. (b) The exemplary 
parameterization of the total energy curve in the harmonic and the anharmonic Morse case. (c) The rotational 
constant B0 versus γ parameter.

Figure 5. The electron-phonon coupling as a function of inter-proton distance for selected values of the γ 
parameter. The symbols placed on the curves point to the equilibrium value of the inter-proton distance.
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=σ σ σˆ ˆ ˆ†n c cjj j j , =σ σ σ σ− −ˆ ˆ ˆ†n c cj j j , and ∆ = ↓ ↑
ˆ ˆ ˆc cj j j .

It should be emphasized that for ˆ
γHHe  the required operator calculations are not feasible due to their extensive-

ness. The mean-field approximation transforms the operator ˆ
γeHH  into the Hamiltonian, in which the energy of the 

molecular state and the hopping integral explicitly depend on the proton index j and the spin σ. In addition, the 
Hamiltonian have the part that models the reversal of the spin due to the exchange interaction J. It is also worth 
paying attention to the quantity of ∆̂j, which has the formal structure of the Cooper pair annihilation operator in 
the real space. This analogy is not complete, because the Hamiltonian ˆ

γe
MF

HH  term containing ∆̂j and ˆ †
∆ j  does not 

correspond to BCS pairing operator48–50 (the integral of the exchange J0 has the positive value instead of negative 
- see Table 1).

After performing the required operator calculations, we get the set of sixteen first-order differential equations, 
which is explicitly written in the appendix. In the non-Hermitian case (γ ≠ 0), determining the time dependence 
of the electron observables is the more subtle issue16,25,51. First of all, one must define the operators: 

= ±γ γ γ±
ˆ ˆ ˆ †
HH HH HH( )e

MF
e
MF

e
MF1

2
, where ˆ ˆ †

e
MF

e
MF

= ±γ γ± ±HH HH . Then we use the generalized form of the Heisenberg 
equation:

= + − .
σ

σ γ σ γ σ γ+ − − + −

ˆ
ˆ ˆ ˆ ˆ ˆ ˆi

d n

dT
n n n[ , ] [ , ] 2

(14)
j

j e
MF

j e
MF

j e
MF

HH HH HH

Tedious, but not difficult operator calculations lead to the complex system of the differential equations, which 
is presented in the appendix in the explicit form.

We plotted the time dependence of the observables ↑n1 , ↑n2  for the selected values of the γ parameter in the 
Fig. 6(a–e). As expected, the system in the Hermitian case is in the stable state, which manifests itself by the time 
invariance of the expectation value. In the non-Hermitian case, the weak interaction of the hydrogen molecule with 
the environment (γ = 0.1) causes oscillatory changes of the discussed quantities in time. However, this is not 
time-stable state of the system, because from the specific moment TD observables ↑n1 , ↑n2  accept complex values. 
From the physical point of view, the time TD should be interpreted as the moment in which the system dissociates. 
It is easy to show that as the γ parameter increases, the oscillations of the expectation values disappear and the value 
TD decreases very clearly (see Fig. 6(f)). The obtained results mean that any weak interaction of the hydrogen mol-
ecule with the environment modeled in the BGL scheme leads to the finite life time of the molecule.

Summary and Discussion of the Results
The obtained results show that the BGL type interaction of the hydrogen molecule with the environment leads to 
its dissociation. From the physical point of view, this means that the hydrogen molecule breaks down into two 
hydrogen atoms. Note that if the interaction of the hydrogen molecule with the environment would be modelled 
in the unbalanced gain and loss energy scheme, two other final states could be obtained: −H2  or +H2 .

Our result is caused by the dynamic instability of the electronic subsystem. Note that the dynamic instability 
of the molecule is superimposed on the static instability for high values of γ parameter. We showed that the 
increase in the value of γ strongly reduces the dissociation energy of the molecule. Above γ = .0 659374MS  Ry, the 
molecule is in the metastable state, decaying definitively for γ > .1 024638D  Ry.

An additional effect, that we observed for γ higher than γ = .0 520873PPTT  Ry, is the PPTT symmetry breaking 
of the electronic Hamiltonian γ

ˆ
eHH . As a result, the two highest energies of the electron state assume complex 

values and the number of available electronic states of the molecule is reduced to four. This effect does not influ-
ence the stability of the considered system. Additionally, the PPTT symmetry breaking does not change either the 
values of the integrals of the electronic Hamiltonian, or the phonon or rotational properties of the hydrogen 
molecules, or the electron-phonon interaction constants. The dynamics of the electronic subsystem is also inde-
pendent on the breaking of the PPTT symmetry of ˆ

γHHe .
It should be noted that all of the mentioned topics have more than just an academic value. Regarding the area 

of modern technology, particular attention should be paid to the nanoelectronic section linked to the molecular 
junctions52–61. Particularly interesting are the hydrogen molecule-bridged junctions of the type X/H2/X, where 
symbol X means metals like Pt52,53,56–58, Pd55, Au58,59, Cu60 or Ni61. It is obvious that in nanojunctions there is no 
issue with the stability of a molecular bridge interacting with environment, because of the whole system being 
stabilized by electrodes. However, it does not mean that the issue of reducing the molecular levels of the bridge 
caused by the correspondingly strong interaction of the hydrogen molecule with the electrodes of the joint can be 
omitted (γ γ> ′

PPTT, whereas γ ′
PPTT means the value of γ parameter for which the PT symmetry breaking of the 

electronic bridge sub-system happens in the junction).
It should be emphasized that the formalism presented in the work enables the detailed analysis of the elec-

tronic structure of the hydrogen bridge in a nanojunction. For this purpose, the initial determination of physical 
parameters of the considered nanojunction, particularly of the equilibrium distance between the hydrogen atoms 
in the bridge ( ′R 0), should be done according to the method based on the density-functional theory (DFT)62. The 
physical state of the bridge when there is no flux (γ = 0) corresponds to the minimum enthalpy value: 

= + + ′H E E FRp e , where the symbol F denotes the force exerted on the bridge by the junction anchors. The 
value of F, within the scheme presented in the work, should be selected so that the minimum enthalpy value is 

https://doi.org/10.1038/s41598-019-56849-2


8Scientific RepoRtS | (2020) 10:215 | https://doi.org/10.1038/s41598-019-56849-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

achieved for the ′R 0 distance. Further calculations in order to characterise the electronic structure of the bridge 
for γ ≠ 0 should be performed according to the presented scheme, applying the generalised formula for the 
enthalpy: = + + ′γH E E FRp e .

Noticeably, the dynamics of electronic observables of the molecular bridge interacting with electrodes should 
not be analyzed with the use of classical Heisenberg equation, but rather with a formalism of non-Hermitian 
quantum mechanics16,25,51.

the eigenvalues of the electronic Hamiltonian of the hydrogen molecule interacting with the 
environment. The Hamiltonian ˆ

γeHH  should be written in the matrix form:

ε

ε







+ +

+ + + −

+ +
+ − + +







.

+

−

h t V J t V
h

t V K t V J
h

J t V h t V
t V J t V K

0 0
0 0 0 0 0

0 2 0
0 0 0 0 0

0 0
0 0 2 (15)

1

2

2

1

Figure 6. (a–e) The time evolution of ↑n1  and ↑n2 , respectively, for γ equal to: 0, 0.1 Ry, γPT, γMMSS, and 1 Ry. 
The hatched areas correspond to the value greater than TD. TD is a time, after which an imaginary part of the 
observables exceeds the value of ±0.005. Figure (f) shows the form of TD(γ) function. The dashed curve was 
obtained from the formula: γ=

γ
T cexp( )D

a
b

, where a = 0.095689, b = 2.38294, and c = 2.80013.
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where: ε γ= + ±±h U i2 21 , and ε= + −h K J22 . By using the operator (15) there was brought out the prelim-
inary formulas for the eigenvalues, which has the form as follows:

ε= − + +E J K 2 , (16)1

ε= − + +E J K 2 , (17)2

ε= + +E J K 2 , (18)3

γ

γ

γ

γ

γ ε

= − + + + − + −

− − + − + + − + −

+ − + − + + − − −

+ + + + −

− − + − + −

+ − + + − − −

+ + + + − +

E J K U J J K U

K U t V J J K U
J K U t V K U K U

t V A B

J J K U J K U
t V K U K U

t V A B

1
3

( 2 [ 4 2 ( )

( ) 12( ( ) )]/[ 8 6 ( )
3 (( ) 12( ( ) )) ( )(( )

18(( ) 2 )) 1
2

]

[ 8 6 ( ) 3 (( )
12( ( ) )) ( )(( )

18(( ) 2 )) 1
2

] 6 ),
(19)

4
2

2 2 2 3 2

2 2 2 2

2 2 1
3

3 2 2

2 2 2

2 2 1
3

γ γ

γ

γ

γ

γ

ε

= + + − + − +

+ + − + + − + −

+ − + − + + − − −

+ + + + − + − −

+ − + − + − + +

− − − + + + + −

+ − + + +

E i J K U J K U

t V t V J J K U
J K U t V K U K U

t V A B i J

J K U J K U t V

K U K U t V A B

J K U

1
12

([2(1 3 )(4 ( ) 2 ( )

12( )( ))]/[ 8 6 ( )
3 (( ) 12( ( ) )) ( )(( )

18(( ) 2 )) 1
2

] 2(1 3 )[ 8

6 ( ) 3 (( ) 12( ( ) ))

( )(( ) 18(( ) 2 )) 1
2

]

4( 2 6 )), (20)

5
2 2

3 2

2 2 2 2

2 2 1
3 3

2 2 2 2

2 2 2 1
3

γ γ

γ

γ

γ

γ

ε

= − + − + − +

+ + − + + − + −

+ − + − + + − − −

+ + + + − + + −

+ − + − + − + +

− − − + + + + −

+ − + + +

E i J K U J K U

t V t V J J K U
J K U t V K U K U

t V A B i J

J K U J K U t V

K U K U t V A B

J K U

1
12

([2(1 3 )(4 ( ) 2 ( )

12( )( ))]/[ 8 6 ( )
3 (( ) 12( ( ) )) ( )(( )

18(( ) 2 )) 1
2

] 2(1 3 )[ 8

6 ( ) 3 (( ) 12( ( ) ))

( )(( ) 18(( ) 2 )) 1
2

]

4( 2 6 )), (21)

6
2 2

3 2

2 2 2 2

2 2 1
3 3

2 2 2 2

2 2 2 1
3

wherein:

γ= + − − + − + + + − − +A J K U J K U J K U t V J K U4[(2 )[( )(4 ) 18( ) ] 36( ) ] , (22)2 2 2

and

γ γ= + − + − + + + − + + .B J K U J K U t V t V4[4 ( ) 2 ( ) 12( )( )] (23)2 2 3

An attentive reader will notice that the energies ε, t, U, etc. are explicit functions of the inter-proton distance 
R and the parameter α. In the Fig. 7, we plotted the discussed values of the energies as the function of R and γ. 
Additionally, in Table 1 we give the equilibrium values of the ˆ

γeHH  parameters. The explicit dependence of the 
variational parameter α on the distance R is shown in the Fig. 8.

the equilibrium values of phonon energy, rotational energy and the electron-phonon coupling 
function. In the Tables 2 and 3, we collected the equilibrium values of the phonon parameters for selected γ. 
The Table 4 presents the equilibrium values of the electron-phonon coupling functions. The Table 5 presents the 
equilibrium distance R0, the equilibrium inverse size of the orbital α0, and the ground-state energy ET

(4)(R0) for 
different values of γ.
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The set of the differential equations for electron observables (γ = 0).  The system of differential 
equations has the form:

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ† ⁎

= − +

− + ∆ − ∆

↑
↑ ↑ ↑ ↑ ↑ ↑↓

↓ ↓↑

i
d n

dT
t n t n J n

J n P P ,
(24)

1
1 12 2 21 1 1

1 1 1 1 1 1

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ† ⁎

= − +

− + ∆ − ∆

↓
↓ ↓ ↓ ↓ ↓ ↓↑

↑ ↑↓

i
d n

dT
t n t n J n

J n P P ,
(25)

1
1 12 2 21 1 1

1 1 1 1 1 1

ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ† ⁎

= − + + −

+ ∆ − ∆

↑
↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓↑i

d n
dT

t n t n J n J n

P P ,
(26)

2
1 12 2 21 2 2 2 2

2 2 2 2

Figure 7. The integral of the Hamiltonian ˆ
γeHH  as a function of the inter-proton distance for the selected values 

of the parameter modeling the interaction of the molecule with the environment. The balls placed on the curves 
point to the equilibrium value of the inter-proton distance R0.

Figure 8. The variation parameter α as a function of the proton distance for selected γ values.
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γ [Ry] kH [ aRy/ 0
2] ω0

H [Ry]

0 0.691719 0.027449

0.1 0.379254 0.027886

0.2 0.387102 0.028463

0.3 0.402162 0.029570

0.4 0.412453 0.0303274

0.5 0.427453 0.0314304

γ
PPTT

 = 0.520873 0.919309 0.031644

0.6 0.439769 0.0323359

γ
MMSS

 = 0.659374 0.980341 0.0326775

0.7 0.0327805 0.445815

0.8 0.440037 0.0323556

0.9 0.409835 0.030135

1 0.29284 0.0215324

γ
DD

 = 1.024638 0.0050384 0.00234265

Table 3. The harmonic potential parameter kH and the quantum energy for different values of γ.

γ [Ry]
εg

0
 [Ry/a0] gt0

 [Ry/a0] gU0
 [Ry/a0] gK0

 [Ry/a0] g J0
 [Ry/a0] gV0

 [Ry/a0]

0 0.001744 0.609033 −0.126289 −0.236261 −0.007502 −0.000385

0.1 −0.000858724 0.615157 −0.127093 −0.237581 −0.00752746 −0.000362566

0.2 −0.00860958 0.633159 −0.12944 −0.241435 −0.00760231 −0.000297894

0.3 −0.0213324 0.662009 −0.133151 −0.247532 −0.00772034 −0.000194141

0.4 −0.0387245 0.70024 −0.13798 −0.255475 −0.00787403 −0.0000572511

0.5 −0.0603282 0.746108 −0.143655 −0.264823 −0.00805519 0.000105421

γ
PPTT

 = 0.520873 −0.0653133 0.756473 −0.144921 −0.266911 −0.00809584 0.000141774

0.6 −0.0854991 0.797725 −0.149904 −0.27515 −0.00825739 0.000284209

γ
MMSS

 = 0.659374 −0.101762 0.830226 −0.153775 −0.281576 −0.00838543 0.000392951

0.7 −0.113288 0.852925 −0.156455 −0.286042 −0.00847612 0.000466248

0.8 −0.142132 0.908801 −0.162993 −0.297043 −0.00870995 0.00063131

0.9 −0.168739 0.95991 −0.168994 −0.307449 −0.00896312 0.000736959

1 −0.179745 0.984777 −0.17245 −0.314684 −0.0092668 0.000605461

γ
DD

 = 1.024638 −0.156139 0.947351 −0.169079 −0.311133 −0.00941164 0.000204999

Table 4. The values of the electron-ion coupling constants at the hydrogen-molecule equilibrium for different 
values of γ.

γ [Ry] R0 [a0] α0 [ −a0
1] E T

4( )(R0) [Ry]

0 1.41968 1.199206 −2.323011

0.1 1.413598 1.202479 −2.314919

0.2 1.396223 1.211990 −2.290874

0.3 1.369845 1.22690 −2.251536

0.4 1.33742 1.24609 −2.19787

0.5 1.301859 1.268341 −2.131022

γ
PPTT

 = 0.520873 1.294281 1.273265 −2.115516

0.6 1.265651 1.292526 −2.052185

γMS = 0.659374 1.244701 1.307372 −2.000188

0.7 1.230858 1.317603 −1.962537

0.8 1.199459 1.342514 −1.863195

0.9 1.174508 1.365733 −1.755232

1 1.168653 1.38188 −1.639820

γD = 1.024638 1.196587 1.374634 −1.610491

Table 5. The equilibrium distance R0, the equilibrium inverse size of the orbital α0, and the ground-state energy 
E R( )T

(4)
0  for different values of γ.
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ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ† ⁎

= − + +

− + ∆ − ∆

↓
↓ ↓ ↓ ↓ ↓ ↓↑

↑ ↑↓

i
d n

dT
t n t n J n

J n P P ,
(27)

2
1 12 2 21 2 2

2 2 2 2 2 2

ε ε= − + + −↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

ˆ
ˆ ˆ ˆ ˆi

d n
dT

n n t n t n , (28)
12

1 12 2 12 2 1 2 2

ˆ
ˆ ˆ ˆ ˆε ε= − + + −↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓i
d n

dT
n n t n t n , (29)

12
1 12 2 12 2 1 2 2

ε ε= − + −↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

ˆ
ˆ ˆ ˆ ˆi

d n
dT

n n t n t n , (30)
21

1 21 2 21 1 2 1 1

ε ε= − + −↓
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

ˆ
ˆ ˆ ˆ ˆi

d n
dT

n n t n t n , (31)
21

1 21 2 21 1 2 1 1

ε ε= − + + −↑↓
↑ ↑↓ ↓ ↑↓ ↓ ↑ ↓ ↓

ˆ
ˆ ˆ ˆ ˆi

d n
dT

n n J n J n , (32)
1

1 1 1 1 1 1 1 1

ε ε= − + −↓↑
↑ ↓↑ ↓ ↓↑ ↑ ↓ ↑ ↑

ˆ
ˆ ˆ ˆ ˆi

d n
dT

n n J n J n , (33)
1

1 1 1 1 1 1 1 1

ε ε= − + + −↑↓
↑ ↑↓ ↓ ↑↓ ↓ ↑ ↓ ↓

ˆ
ˆ ˆ ˆ ˆi

d n
dT

n n J n J n , (34)
2

2 2 2 2 2 2 2 2

ˆ
ˆ ˆ ˆ ˆε ε= − + −↓↑

↑ ↓↑ ↓ ↓↑ ↑ ↓ ↑ ↑i
d n

dT
n n J n J n , (35)

2
2 2 2 2 2 2 2 2

ˆ
ˆ ˆ ˆ ˆ

†

† † ⁎ ⁎ ⁎ε ε
∆

= − ∆ − ∆ + + −↑ ↓ ↑ ↓i
d

dT
P n P n P ,

(36)

1

1 1 1 1 1 1 1 1 1

ˆ
ˆ ˆ ˆ ˆε ε

∆
= ∆ + ∆ − − +↑ ↓ ↓ ↑i

d
dT

P n P n P , (37)
1

1 1 1 1 1 1 1 1 1

ε ε
∆

= − ∆ − ∆ + + −↑ ↓ ↑ ↓

ˆ
ˆ ˆ ˆ ˆ

†

† † ⁎ ⁎ ⁎i
d

dT
P n P n P ,

(38)

2

2 2 2 2 2 2 2 2 2

ε ε
∆

= ∆ + ∆ − − + .↑ ↓ ↓ ↑

ˆ
ˆ ˆ ˆ ˆi

d
dT

P n P n P (39)
2

2 2 2 2 2 2 2 2 2

The system of differential equations for electron observables (γ ≠ 0).  The system of differential 
equations can be written in the form:

∑

γ γ

γ

= − + −

+ ∆ − ∆ + − |∆ |

− < > −
σ

σ σ

↑
↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓↑

↑

↑

ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

† ⁎

i
d n

dT
t n t n J n J n

P P i n i

i n n n

2

2 ( ),
(40)

1
1 12 2 21 1 1 1 1

1 1 1 1 1 1
2

1 1 2
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ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

† ⁎

∑

γ γ

γ

= − + −

+ − |∆ | + ∆ − ∆

− −
σ

σ σ

↓
↓ ↓ ↓ ↓ ↓ ↓↑ ↑ ↑↓

↓

↓

i
d n
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t n t n J n J n

i n i P P

i n n n

2

2 ( ),
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1 12 2 21 1 1 1 1

1 1
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1 1 1 1

1 1 2

∑

γ γ

γ

= − + + −
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− −
σ

σ σ
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↑

↑
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