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Diagnosis of Bovine Respiratory 
Disease in feedlot cattle using 
blood 1H nMR metabolomics
c. Blakebrough-Hall1*, A. Dona2, M. J. D’occhio1, J. McMeniman3 & L. A González1,4

current diagnosis methods for Bovine Respiratory Disease (BRD) in feedlots have a low diagnostic 
accuracy. the current study aimed to search for blood biomarkers of BRD using 1H nMR metabolomics 
and determine their accuracy in diagnosing BRD. Animals with visual signs of BRD (n = 149) and visually 
healthy (non-BRD; n = 148) were sampled for blood metabolomics analysis. Lung lesions indicative of 
BRD were scored at slaughter. non-targeted 1H nMR metabolomics was used to develop predictive 
algorithms for disease classification using classification and regression trees. In the absence of a gold 
standard for BRD diagnosis, six reference diagnosis methods were used to define an animal as BRD 
or non-BRD. Sensitivity (Se) and specificity (Sp) were used to estimate diagnostic accuracy (Acc). 
Blood metabolomics demonstrated a high accuracy at diagnosing BRD when using visual signs of BRD 
(Acc = 0.85), however was less accurate at diagnosing BRD using rectal temperature (Acc = 0.65), 
lung auscultation score (Acc = 0.61) and lung lesions at slaughter as reference diagnosis methods 
(Acc = 0.71). Phenylalanine, lactate, hydroxybutyrate, tyrosine, citrate and leucine were identified as 
metabolites of importance in classifying animals as BRD or non-BRD. The blood metabolome classified 
BRD and non-BRD animals with high accuracy and shows potential for use as a BRD diagnosis tool.

Bovine respiratory disease (BRD) is a multifactorial disease of welfare and economic significance to the feed-
lot industry globally. Bovine respiratory disease results from a combination of environmental and physiological 
stressors prior to and upon feedlot entry such as transportation, mixing of unfamiliar animals, and exposure to 
viral and bacterial agents1. Approximately 60–90% of the morbidity and mortality that occurs in feedlots has been 
attributed to BRD2,3. The complex nature of BRD makes establishing a universal ‘gold standard’ for BRD problem-
atic4. Current diagnosis methods rely on subjective visual signs of illness, often combined with rectal temperature 
or lung auscultation to trigger antimicrobial treatment protocols5. These diagnosis methods have varying accu-
racy in diagnosing BRD and the exploration of alternative diagnosis methods is warranted6–8.

Metabolomics monitors alterations in the concentration of small metabolites in tissues and biofluids that 
include lipids, amino acids, vitamins and sugars9–11. These metabolites can provide an insight into the response 
to disease and can be used as biomarkers to indicate the presence of disease12,13. Metabolite biomarkers are rou-
tinely used in humans to screen for over 30 different disorders including diabetes and heart disease, where met-
abolic profiling has shown high accuracy for disease detection14,15. More recently, many advances in the field of 
NMR-based metabolomics have been made16. Recent improvements include enhanced probe design17, higher 
field magnets and reduction in equipment size16, as well as improved methods of identification and quantifi-
cation18–20. These new developments have allowed for enhanced detection of lower concentration metabolites, 
increased speed of processing, simplification of the complexity of biofluids and more complete spectral assign-
ments. New NMR techniques such as selective optimized flip angle short transient (SOFAST) heteronuclear mul-
tiple quantum correlation (HMQC)21 and Correlation Spectroscopy (COSY)22 have decreased the processing 
time per sample and succeeded in overcoming issues with overlapping metabolite signals, allowing for proper 
identification and quantification of metabolites.

Recently, metabolomics has improved the diagnosis of pneumonia and respiratory-related conditions in 
humans, with metabolites such as L-histidine, glutamic acid and allantoin identified as biomarkers related to 
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the host response to infection14,23,24. In cattle, metabolomics has been used to predict production traits such as 
residual feed intake and average daily gain25, as well as diagnosing metabolic and reproductive disorders such 
as ketosis and metritis26–28. To date there has been minimal research on metabolomics as a diagnosis tool for 
infectious diseases in cattle such as BRD. In the few published studies, between five and twelve metabolites have 
differentiated healthy and BRD-affected calves29,30. A common limitation with studies on biomarker discovery 
for disease diagnosis in cattle are the small sample sizes of less than 50 animals, which do not allow the validation 
necessary to ensure reproducibility of the results9,26,31.

The objective of the present study was to use the blood metabolome to classify animals as BRD or non-BRD, 
and to search for blood biomarkers for BRD in feedlot cattle. It was hypothesized that the blood metabolome 
would contain biomarkers that could be used to classify animals as BRD or non-BRD using the most commonly 
used BRD diagnosis methods. Gaps in the literature were addressed by using a large sample size and training and 
validation datasets to ensure reproducibility of the models with future datasets.

Materials and Methods
The study had approval from the Animal Ethics Committee of Research Integrity and Ethics Administration, The 
University of Sydney (Approval # 1118). All methods were carried out in accordance with the relevant guidelines 
and regulations.

Animals and management. The study was conducted at a commercial cattle feedlot in southern NSW, 
Australia. Four pens of mixed-breed castrated male cattle (n = 898) were monitored from feedlot entry to slaugh-
ter. Animals were sourced from multiple locations and were either purchased at saleyards (n = 788) or direct con-
signment from cattle properties (n = 110) to enhance the robustness and generalisation of the models to diagnose 
BRD. Cattle breeds were Angus (n = 187), Angus cross (Hereford x Angus, n = 156), Bos indicus cross (n = 29), 
British cross (British breed mix, less than 75% Angus, n = 82), European (Simmental, Charolais or Limousin, 
n = 123), Hereford (n = 226), Murray Grey (n = 59) and Shorthorn (n = 36). Cattle entered the feedlot at approx-
imately 1 to 2 years of age. Processing of animals at feedlot entry was staggered over a four-week period in late 
summer and early autumn. At feedlot entry, animals had initial live weight recorded (mean induction weight 
was 432 ± SD 51 kg) and were administered standard feedlot treatments upon entry. The treatments included 
a hormonal growth promotant implant (Revalor S; Coopers Animal Health, NSW, Australia), vaccination for 
respiratory diseases caused by Mannheimia haemolytica (Bovilis MH, Coopers Animal Health, NSW, Australia), 
live intranasal vaccine for Infectious Bovine Rhinotracheitis (IBR) (Rhinogard, Zoetis Animal Health, New Jersey, 
USA), 5-in-1 vaccination for clostridial diseases (Tasvax 5 in 1, Coopers Animal Health, NSW, Australia) and 
an antiparasitic injection (Bomectin, Bayer, Leverkusen, Germany). Following feedlot entry, animals were sent 
to four production pens for the remainder of their time on feed. Pen 1 housed 300 animals, pen 2 housed 266 
animals, pen 3 housed 91 animals and pen 4 housed 241 animals. Animals were fed to allow for ad-libitum feed 
consumption and were transitioned through three starter rations to a steam-flaked barley-based finisher diet over 
an 18-day period. The finisher diet contained 71.60% steam-flaked barley, 11.00% cottonseed, 10% wheat distill-
er’s syrup, 5.30% liquid finisher supplement, 1.80% cottonseed oil and 0.30% barley straw. Animals remained on 
this ration until slaughter unless they were sent to hospital pens for disease treatment, in which case they received 
a high roughage (lucerne and barley hay) steam-flaked barley starter diet.

Animal slaughter. All animals in the study were monitored from induction to slaughter at an average of 
112 days on feed (DoF) and lung abnormalities indicative of BRD incidence were recorded using a previously 
described lung scoring method32, where the percentage of lung consolidation on each lobe was summed to form 
a total percentage of lung consolidation. Pleurisy was recorded using a scoring system of 0 to 3 (Table 1). The use 
of the term pleuritic tags refers to the adhesion of the lung to the rib cage by fibrous tags.

Sampling and clinical measures. Animals were checked daily by highly trained feedlot staff for visual 
signs of BRD, starting from Day 1 of the study (the day after the first pen of animals entered the feedlot). Animals 
were scored for signs of BRD in the pen by staff using a modified version of the Wisconsin calf scoring chart33. The 
modified scoring system included assessment of seven visual symptoms: lethargy, head carriage, laboured breath-
ing, cough, nasal discharge, ocular discharge, and rumen fill (Table 2). Animals with visual signs of BRD (n = 149) 
were removed from their pen and taken for blood sampling and clinical data collection. In order to be diagnosed 
with BRD based on visual symptoms, animals had to have one or more of the visual symptoms specific to BRD 
(nasal or ocular discharge, or laboured breathing or cough). This reduced the possibility of mis-diagnosing an 
animal with BRD. An equivalent number of visually healthy control animals (non-BRD; n = 148) with no visual 
signs of BRD were removed from the same pen each day and taken for blood sampling and clinical data collec-
tion along with the visually sick animals. Animals were between 2 and 42 DoF when they developed visual signs 

Pleurisy Score Description

0 No pleurisy or pleuritic tags evident on the lungs

1 Tags between lobes or small pleuritic tags on the lung surface

2 Significant pleuritic tags on the lung surface or small pieces of lung adhered to the thoracic wall or significant tags on the 
lung margins (fringing) or between lobes that could not be broken apart by the inspector

3 All the lung adhered to the thoracic wall with no lung present on the offal table for scoring

Table 1. Pleurisy scoring system to determine the incidence of Bovine Respiratory Disease in feedlot cattle at 
slaughter.
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of BRD and were removed from their home pens for clinical assessment, blood sampling for metabolomics and 
treatment for BRD if required. Data recorded at this time included date, visual identification number, electronic 
identification number, pen, live weight, rectal temperature and lung auscultation score for both visually sick and 
visually healthy animals. Rectal temperature was collected using a GLA M750 thermometer (GLA Agricultural 
Electronics, CA, USA) fitted with a 10 cm probe and inserted for 8 to 15 seconds until maximum temperature was 
reached. Lung auscultation score was recorded using a Whisper Computer Assisted Lung Auscultation system 
(Geissler Corporation, MN, USA). The diaphragm of an electronic stethoscope was held over the 5th intercostal 
space of the right thoracic wall, approximately 10 cm posterior to the elbow, and lung sounds recorded for 8 sec-
onds. Recorded lung sounds were then transmitted wirelessly to a computer containing software to analyse the 
lung sounds. The Whisper program classifies lung sounds into scores from 1 to 5 (1 = normal, 2 = mild acute, 
3 = moderate acute, 4 = severe acute, 5 = chronic). Blood samples for metabolomics analysis were collected from 
the coccygeal vein of each animal using a 10 ml lithium heparin BD Vacutainer. Samples were placed on ice until 
centrifugation (2500 × g, 20 min) within one hour of collection. The plasma was transferred to 1.5 ml Eppendorf 
safe-lock micro test tubes and frozen at −20 °C for a maximum of one month until all sampling was completed 
and then sent to the laboratory for storage at −80 °C for 5 months prior to analysis.

Bovine respiratory disease reference diagnosis methods. Due to the lack of a universal gold stand-
ard for diagnosing BRD, six commonly used methods of BRD diagnosis in feedlots were used as reference meth-
ods: visual diagnosis (VD), temperature diagnosis (TD), lung auscultation diagnosis (LAD), clinical diagnosis 
(CD), visual-clinical diagnosis (VCD) and lung lesion diagnosis (LLD) (Table 3). The sample size for the lung 
lesion diagnosis method was reduced to 270 animals due to 21 mortalities during the trial period, five animals 
that were not slaughtered with the main cohort due to injury or lameness, and an additional two animals that 
were treated for BRD once blood sampling had concluded and therefore could not be included in analysis as their 
metabolomics sample was taken before the animals developed and were treated for BRD, and therefore was not 
reflective of their BRD status.

Blood metabolomics analysis. Samples were prepared for metabolic profiling using methods from a pre-
viously published protocol34. Samples were thawed at room temperature and an aliquot (350 μL) was mixed with 
350 μL of aqueous (80% H2O:20% D2O) phosphate buffer solution including 0.075 M NaH2PO4, pH = 7.4 (KOH 
adjusted), 0.1% sodium azide, and 1 mM 3–141 trimethylsilyl-1- [2,2,3,3, −2H4] propionate (TSP) as an internal 
standard. Samples were then placed on a vortex for 30 sec and centrifuged at 6,000 x g for 10 min. Aliquots of the 
supernatants (600 uL) for each plasma sample was then transferred into 5 mm NMR tubes (Bruker, SampleJet 
5 mm, Billerica MA, USA) for 1H NMR analysis.

Samples were analysed with a Bruker Avance III 600 MHz spectrometer equipped with a 5-mm TCI cryoprobe 
(Bruker, MA, USA). Samples were run under automation mode using a SampleJet with all samples refrigerated at 
4 °C until just prior to acquisition. Data was collected at 310 K for a total of 20 minutes. The delay between acqui-
sition of each scan was set to a 10.00 s as the relaxation of some of the larger proteins and lipoproteins required 
this to reach an equilibrium. The sample change time, lock, shim and time the sample took to reach temperature 
was approximately 5 minutes, with a total time between samples being changes of approximately 20 minutes. The 
noesygrrp1d and cpmgpr1d pulse sequences were used to acquire two water suppressed 1H NMR spectra (32 
scans collected for each experiment)34. During presaturation delay (4.0 s), irradiation of the solvent (water) reso-
nance was applied for all spectra and the noesy during the mixing time (0.01 s)34. The pulse sequence parameters 
including the 90° pulse (~12 μs) receiver gain (~100) were optimised for each sample set run. The data were col-
lected with approximately 96,000 (NOESY) or 32,000 (CPMG) real data points and processed with an exponential 
line broadening of 0.3 Hz prior to Fourier transformation35.

Raw spectrums were imported into Matlab (Mathworks, Natick, MA), automatically phased, baseline 
corrected and referenced to the α-C1H glucose doublet occurring at 5.23 ppm36 (Supplementary Fig. 1). The 
water component was truncated from 4.30 to 5.10 ppm to reduce analytical variation (Supplementary Fig. 2). 
Probabilistic quotient normalization of the spectrums was performed across all samples, where for each of the 

Score 0 1 2 3

Lethargy normal, 
active, alert mild lethargy moderate lethargy profound lethargy, slow 

movement

Head Carriage normal head 
carriage

poll of head level with the 
withers

poll of head dropping under 
withers often

sustained low head 
carriage

Laboured breathing normal mild audible signs of 
laboured breathing

moderate audible signs of 
laboured breathing

audible signs of laboured 
breathing

Cough none dry non- productive cough moderate wet productive 
cough

severe wet productive 
cough

Nasal discharge normal serous 
discharge

small amount of unilateral 
cloudy discharge

bilateral, cloudy or excessive 
mucus discharge

copious bilateral 
mucopurulent discharge

Eye (ocular discharge) no ocular 
discharge

small amount of ocular 
discharge

moderate amount of ocular 
discharge heavy ocular discharge

Rumen Fill normal slight depression in rumen 
fill, no anorexia

moderate depression in 
rumen fill, no anorexia

severe depression in 
rumen fill, signs of 
anorexia

Table 2. Modified calf scoring chart used to assess seven visual signs of Bovine Respiratory Disease of animals 
in their pens.
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individual spectra, a series of quotients is generated by the element-wise division of the spectrum by the reference 
spectrum. Regions containing no or possibly interfering signals are ignored if possible, and the median of the 
remaining quotients is subsequently used as correction factor36,37. The normalized spectrums were then processed 
using Standard Recoupling of Variables to calculate the start and end points of each component or component38. 
This method automatically selects bins semi intelligently from the spectra with no set bin size39. The area under 
each component was calculated which represents the relative abundance or concentration of each component36. 
Raw spectrums were then imported into Chenomx NMR Suite (Chenomx, Edmonton, Canada) to identify indi-
vidual metabolites using reference libraries36. The relative concentration of metabolites or components were mul-
tiplied by 1,000,000 before analysis to reduce the number of decimal places.

Data processing and statistical analysis. Classification and regression trees40 were used to iden-
tify potential biomarkers for BRD and to develop models to predict BRD status using the blood metabolome. 
This technique searches for metabolites that partition the dataset into BRD and non-BRD groups with the 
highest accuracy or lowest error rate. Models were developed using entropy method to grow the trees41, with 
cost-complexity pruning40. The data was partitioned into training (n = 149) and validation (n = 148) data sets, 
with half the data used for developing the model and half the data used for validating or evaluate the models’ 
performance on future data sets. The data was randomly partitioned into a training and validation dataset using 
the MOD function in SAS where every other observation was sent to the validation dataset. All the metabo-
lite components produced by the NMR spectra were added to the model as predictors, with diagnosis method 
as the dependent variable. Sensitivity, specificity and accuracy (100 minus error rate) was calculated using the 
number of true positive, true negative, false positive and false negatives. Sensitivity (Se) was calculated as the 
frequency with which the model correctly identified BRD animals according to each reference diagnosis method 
(Se = TP/TP + FN), where TP: True Positive, FN: False Negative). Specificity (Sp) was defined as the frequency 
with which the model correctly identified non-BRD animals according to each reference diagnosis method 
(Sp = TN/(TN + FP), where TN: True Negative, FP: False Positive). Accuracy (Acc) was calculated as the sum of 
the proportion of true positive and true negative animals (Acc = (TP + TN)/(TP + TN + FP + FN)). Sensitivity 
and 1- specificity were plotted against each other to produce an area under the curve (AUC) which determined 
the overall accuracy of the models. Principal component analysis (PCA) was performed to obtain a score plot and 
loading plot of the first two principal components which explained the largest proportion of the variation. Only 
the first 10 components were retained in the model because these yielded eigenvectors greater than 1. All 34 iden-
tified metabolites, along with the twelve components of importance as selected in the CART analysis were labelled 
in the PCA loading plot. Where more than one component in the spectra belonged to the same metabolite, the 
component with the clearest, unique peak was used, with the exception of citrate which occurs twice in the plot as 
it was selected twice by the CART analysis as a metabolite of importance with two unique peaks.

Pearson correlation coefficients were calculated to assess the relationship between the relative concentration of 
34 identified metabolite components and the six reference diagnosis methods using point biserial correlations after 
assigning a value of one to BRD animals and zero to non-BRD animals42. Where more than one component in the 
spectra belonged to the same metabolite, the same component identified in the PCA loading plot was used for the 
correlation analysis. Mixed-effects linear regression models were used to determine the effect of BRD status on the 
relative concentrations in arbitrary units29 of the same 35 identified metabolites for the visual-clinical diagnosis 
method only, as presenting data for all diagnosis methods was not possible. The same component used in the PCA 
and correlation analysis was selected where more than one component in the spectra belonged to the same metabo-
lite. The relative concentrations presented are therefore the concentration of one selected component for each metab-
olite rather than being the sum of the concentration of all components belonging to the same metabolite. Diagnosis 
method and breed were included in the models as fixed effects. Where breed was found to be non-significant 
(P > 0.05) it was removed from the models. Pen number was included in the models as a random effect.

Results
BRD diagnosis using blood metabolomics. The 1H NMR spectra resulted in 323 metabolite features 
after processing using the standard recoupling of variables39. A full NMR spectra is shown in Fig. 1 with labelling 
of the 12 identified metabolites and unknown components selected by the CART analysis. The statistical models 
used were effective in differentiating between BRD and non-BRD animals. The sensitivity, specificity and accuracy 

Diagnosis method Non-BRD BRD

Visual Diagnosis Score of 0 for visual signs Score >0 for visual signs

Temperature Diagnosis Rectal temperature <40 °C Rectal temperature ≥40 °C

Lung Auscultation Diagnosis Lung auscultation score 1 Lung auscultation score ≥2

Clinical Diagnosis Rectal temperature <40 °C and 
lung auscultation score 1

Lung auscultation score >1 or rectal 
temperature ≥40 °C

Visual-Clinical Diagnosis Visual diagnosis controls 
regardless of clinical diagnosis

Case for both visual and clinical 
diagnosis

Lung Lesion Diagnosis Pleurisy score 1 or lung 
consolidation >10%

Pleurisy score ≥2 and lung 
consolidation of >10%, or 
pleurisy score 3 regardless of lung 
consolidation percentage

Table 3. Description of BRD and non-BRD groups for the six Bovine Respiratory Disease reference diagnosis 
methods used in the study.
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of the models developed to classify an animal as either BRD or non-BRD based on their metabolome profile for 
each of the six reference BRD diagnosis methods are shown in Table 4. Diagnosing BRD using the blood metabo-
lome displayed high accuracy (0.77 to 0.93) in the training datasets; however, the accuracy decreased in the vali-
dation data sets (0.64 to 0.85) for all reference diagnosis methods. This decrease in accuracy between the training 
and validation datasets was more pronounced for the temperature diagnosis, lung auscultation diagnosis and lung 
lesion diagnosis. The metabolome profile best predicted BRD when defined using the VD and VCD methods. 
The VD model showed the highest sensitivity (Se = 0.82), specificity (Sp = 0.87) and accuracy (Acc = 0.85) in 
the validation data set using only two leaves and one component in the final pruned tree (Table 3). This com-
ponent was an unidentified singlet at 5.39 ppm, which also showed the strongest negative correlation with VD 
(r = −0.72; Table 5). The VCD diagnosis method produced a model with the highest accuracy (Acc = 0.93) in the 
training dataset but a decreased accuracy in the validation data set (Acc = 0.81), with 19% of the observations 
misclassified. This model selected three components (tyrosine, citrate, and hydroxybutyrate) in the final pruned 
tree to classify an animal as BRD or non-BRD. Diagnosing BRD as defined by LAD had the lowest accuracy in 
the validation dataset out of all the diagnosis methods with 36% of animals being misclassified. Using the blood 
metabolome to diagnose BRD as defined by LLD used 5 metabolite components, with 3 of them not able to be 
identified. This prediction model yielded high accuracy (Acc = 0.92) for the training dataset, however the accu-
racy decreased to 0.74 in the validation dataset, with a sensitivity of only 0.38. The PCA score plot of the first two 
principal components (PC) using the visual diagnosis is displayed in Fig. 2 where PC 1 explained 27.76% of the 
variation and PC 2 explained 13.31% of the variation. The total variance explained by the 10 PC was 68.74% (data 
not shown). The PCA loading plot of the first two principal components with all 34 identified metabolites labelled 
is displayed in Fig. 3. The figure shows the clustering of certain metabolites such as dimethyl sulfone, mannose, 
α-glucose chain, phenylalanine, hydroxybutyrate, valine and pyruvate which had a positive correlation with PC 1 
and a negative correlation with PC 2. Similarly, the metabolites glutamine, glutamate, hydroxyisobutyrate, acetate, 
glycine, glycoprotein acetyl, creatinine, 1-methylhistidine, citrate, tyrosine, alanine, LDL, unsaturated lipid and 
unknown component 92 showed a positive correlation with PC 2 but a negative correlation with PC 1.

Metabolite identification and correlation to BRD status.  From the 323 spectral components, 34 
unique metabolites of bovine plasma were identified using Chenomx software. Pearson correlation coefficients 
between the relative concentrations of the 34 identified metabolites and BRD status according to the six refer-
ence diagnosis methods are shown in Table 5. The strongest correlations between the relative concentrations of 
metabolites and BRD status were found using the VD and VCD methods, whereas the weakest correlations were 
found using the TD, LAD, CD and LLD methods. There were metabolites that showed positive correlations with 
BRD status and others that showed negative correlations. Most metabolites were consistent in the direction of 
correlation across diagnosis methods. Using the VCD diagnosis definition, BRD status was positively correlated 
with α-glucose chain (r = 0.64), hydroxybutyrate (r = 0.64) and phenylalanine (r = 0.50; P < 0.001), and nega-
tively correlated with tyrosine (r = −0.65), glutamine (r = −0.61), citrate (r = −0.61), and glutamate (r = −0.57; 
P < 0.001). Correlation values ranged from −0.67 to 0.66. Some metabolites were significantly correlated to BRD 
status for all diagnosis methods (1-methyl-histidine, tyrosine, glutamine, citrate, glutamate, valine, LDL (low den-
sity lipid), alanine, hydroxyisobutyrate, unsaturated lipid, glycoprotein acetyl, pyruvate, 3-hydroxyisobutyrate, 
isoleucine, leucine, mannose, phenylalanine, hydroxybutyrate and α-glucose chain). Other metabolites were sig-
nificantly correlated to BRD status for only some of the diagnosis methods (glucose, glycine, acetate, creatinine, 
choline, methanol, lactate, succinate, creatine, isobutyrate, isopropanol, ethanol, acetone). Out of these, glucose, 
glycine and acetate were significantly correlated to BRD for all diagnosis methods except for the lung lesion diag-
nosis. Only two metabolites (dimethyl sulfone and formate) were not significantly correlated to BRD for any of 
the diagnosis methods.

Figure 1. NMR spectrum showing 12 identified metabolites and unknown components that were selected in 
the classification and regression tree analysis as metabolites of importance in differentiating BRD and non-BRD 
animals. The region in the box is magnified for clarity.
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Metabolite concentrations in BRD and non-BRD animals. The correlation analysis results were also 
reflected in marked differences in the relative concentration of metabolites between BRD and non-BRD animals 
using the VCD (Table 6). The relative concentrations of metabolites were statistically different between BRD and 
non-BRD animals for all metabolites except choline, dimethyl-sulfone, formate, lactate, methanol and succi-
nate. Animals with BRD had higher concentrations of 3-hydroxyisobutyrate, α-glucose chain, acetone, creatine, 
ethanol, hydroxybutyrate, isobutyrate, isoleucine, isopropanol, leucine, mannose, phenylalanine and pyruvate 
compared to healthy control animals. Animals with BRD had lower concentrations of 1-methyl-histidine, acetate, 
alanine, citrate, creatinine, glucose, glutamate, glutamine, glycine, glycoprotein acetyl, hydroxyisobutyrate, LDL, 
tyrosine, unsaturated lipid and valine compared to non-BRD animals.

Discussion
The present study evaluated the potential of blood metabolomics to differentiate between BRD and non-BRD 
animals. There have been few studies on characterizing the metabolome of healthy control animals to identify 
baseline metabolite concentrations9. We used a case-control study to capture the metabolome profile of BRD and 
non-BRD animals for appropriate model development and evaluation. Classification and regression trees (CART) 
were used to search for potential biomarkers for BRD and to develop prediction models. This technique was 
selected for developing the prediction models and for biomarker discovery as it allows for predictive modelling 
of the data and identification of specific biomarkers, as well as being relatively simple to understand43. Using this 
statistical method ensured that the models generated could be applicable to future datasets.

The models identified 12 metabolite components, or biomarkers, of importance in differentiating BRD and 
non-BRD animals. From these, eight out of 12 components were identified as seven unique metabolites (pheny-
lalanine, lactate, glutamine, hydroxybutyrate, tyrosine, citrate and leucine). Previous studies searching for bio-
markers for BRD in cattle have identified metabolites such as glucose, valine, phosphorous, propionate, acetate, 
phenylalanine, 2-methylglutarate and phenol as biomarkers for viral BRD infection29,30,44. In human pneumonia, 
six metabolites (uric acid, L-histidine, hypoxanthine, glutamic acid, L-tryptophan and ADP) have been identified 
as markers related to the host response to infection through energy metabolism and inflammatory and antimi-
crobial pathways23.

The blood metabolome best predicted BRD when using the visual diagnosis method, with 85% of animals 
correctly classified as either BRD or non-BRD in the validation dataset. This is lower than a previous study which 
reported an accuracy of 95% when diagnosing BRD calves using a sample size of 50 BRD animals and only 10 
non-BRD animals29. The greater accuracy of metabolomics to predict BRD reported by these authors could be 
due to the statistical methods and experimental design they used, using only 10% of the data for validation and 
the whole spectra as predictors rather than the components or peaks as in our study29. The 85% accuracy of the 
VD model was obtained using only one metabolite component which could not be identified. Interestingly, this 
unidentified component was also the component with the lowest relative concentration in BRD animals and 
showed the strongest correlation to BRD status. This is an important finding because it suggests that it is possible 
to achieve a high accuracy with only one biomarker, making the technique potentially practical and simple for 
applications under commercial conditions. Results of the PCA analysis using the visual diagnosis method support 
the findings of the CART analysis, showing good separation between BRD and non-BRD animals with a large 
proportion of the variance explained. The PCA analysis showed clustering of certain metabolites associated with 
different diagnosis methods. Hydroxybutyrate and phenylalanine were clustered together and these metabolites 

Diagnosis method Dataset Sensitivity Specificity Accuracy AUCa
N 
leavesb

N 
componentsc

Component 
Number
Metabolite ID

Visual Diagnosis
Training 0.81 0.93 0.87 0.87 2 1 92

Validation 0.82 0.87 0.85 0.85 2 1 Unknown (Singlet 
at 5.39 ppm)

Temperature Diagnosis
Training 0.76 0.88 0.85 0.82 2 1 34

Validation 0.52 0.77 0.69 0.65 2 1 Phenylalanine

Lung Auscultation 
Diagnosis

Training 0.80 0.73 0.77 0.76 2 1 123

Validation 0.77 0.45 0.64 0.61 2 1 Lactate

Clinical Diagnosis
Training 0.77 0.85 0.79 0.81 2 1 227

Validation 0.79 0.54 0.70 0.67 2 1 Glutamine

Visual-Clinical Diagnosis
Training 0.99 0.88 0.93 0.94 4 3 55, 211, 158

Validation 0.88 0.74 0.81 0.83 4 3 Tyrosine, Citrate, 
Hydroxybutyrate

Lung Lesion Diagnosis Training 0.76 0.97 0.92 0.90 6 5 219, 130, 292, 
305, 25

Validation 0.38 0.89 0.74 0.71 6 5
Citrate, Unknown, 
Unknown, 
Leucine, Unknown

Table 4. Sensitivity and specificity of 1H NMR metabolomics models to detect Bovine Respiratory Disease in 
feedlot cattle defined with six reference diagnosis methods. aAUC = Area Under the Curve. bN leaves = number 
of leaves in final pruned tree. cN components = number of components or metabolite components selected in 
final pruned tree by the classification tree analysis.
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Metabolite Visual Temperature
Lung 
Auscultation

Clinical 
Diagnosis

Visual-
Clinical

Lung 
Lesions

1-methyl-histidine −0.42+ −0.28+ −0.28+ −0.35+ −0.39+ −0.20***

3-hydroxyisobutyrate 0.45+ 0.18** 0.19*** 0.25+ 0.44+ 0.20***

Acetate −0.28+ −0.28+ −0.23+ −0.25+ −0.26+ −0.06

Acetone 0.42+ 0.10 0.21*** 0.27+ 0.41+ 0.18**

Alanine −0.43+ −0.23+ −0.22+ −0.30+ −0.41+ −0.25+

Choline −0.01 0.02 −0.02 0.01 0.01 −0.13*

Citrate −0.63+ −0.35+ −0.33+ −0.38+ −0.61+ −0.36+

Creatine 0.11 0.17** 0.11 0.12* 0.14* −0.12*

Creatinine 0.49+ 0.31+ 0.23+ 0.31+ 0.48+ 0.24+

Dimethyl sulfone 0.03 −0.02 −0.03 0.07 0.03 −0.05

Ethanol 0.23+ 0.06 0.01 0.04 0.23+ 0.12*

Formate 0.04 −0.05 −0.02 0.03 0.06 −0.02

Glucose −0.41+ −0.32+ −0.19*** −0.29+ −0.40+ −0.09

Glutamate −0.59+ −0.46+ −0.42+ −0.48+ −0.57+ −0.27+

Glutamine −0.63+ −0.48+ −0.43+ −0.51+ −0.61+ −0.29+

Glycine −0.29+ −0.28+ −0.24+ −0.25+ −0.28+ −0.10

Glycoprotein acetyls −0.29+ −0.16** −0.22+ −0.20*** −0.28+ −0.12*

Hydroxybutyrate 0.64+ 0.35+ 0.39+ 0.44+ 0.64+ 0.33+

Hydroxyisobutyrate −0.33+ −0.29+ −0.22*** −0.27+ −0.31+ −0.14*

Isobutyrate 0.15* −0.01 −0.04 −0.02 0.15** 0.07

Isoleucine 0.49+ 0.24+ 0.23+ 0.27+ 0.47+ 0.27+

Isopropanol 0.21*** 0.05 0.01 0.04 0.21*** 0.10

Lactate 0.09 0.16** 0.16** 0.16** 0.08 0.01

Leucine 0.47+ 0.25+ 0.23+ 0.26+ 0.48+ 0.23***

Low Density Lipid −0.42+ −0.22*** −0.27+ −0.31+ −0.42+ −0.24+

Mannose 0.48+ 0.36+ 0.34+ 0.31+ 0.48+ 0.24+

Methanol 0.05 −0.12* −0.09 −0.08 0.06 0.03

Phenylalanine 0.49+ 0.46+ 0.20*** 0.30+ 0.50+ 0.24+

Pyruvate 0.44+ 0.45+ 0.32+ 0.34+ 0.42+ 0.12*

Succinate 0.09 −0.06 −0.02 0.02 0.10 0.14*

Tyrosine −0.67+ −0.49+ −0.39+ −0.48+ −0.65+ −0.27+

Unsaturated lipid −0.38+ −0.19*** −0.25+ −0.30+ −0.38+ −0.23+

Valine −0.48+ −0.36+ −0.30+ −0.34+ −0.46+ −0.26+

α glucose chain 0.66+ 0.49+ 0.35+ 0.38+ 0.64+ 0.32+

Table 5. Pearson correlation coefficients between the relative concentration of 34 identified plasma metabolites 
and Bovine Respiratory Disease defined through six reference diagnosis methods.

Figure 2. Principal Component Analysis score plot showing the discrimination between BRD animals (blue 
dots, n = 149) and non-BRD animals (red dots, n = 148) as defined by the visual diagnosis (VD).
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were also selected by the CART analysis as important in differentiating BRD and non-BRD animals when using 
rectal temperature and the visual-clinical diagnosis. The clustering of certain metabolites associated with similar 
methods of BRD diagnosis could indicate these metabolites are involved in related physiological functions or 
pathways of BRD infection and progression.

Compared to the VD and VCD diagnosis methods, the accuracy of metabolomics to correctly diagnose BRD 
decreased when using the other four reference diagnosis methods in the present study. This is most likely because 
blood samples for metabolomics analysis were taken relative to the day animals exhibited obvious visual signs 
of BRD, however the time of sampling may not have coincided with the maximal change in rectal temperature, 
abnormal lung sounds or when lesions in the respiratory tract appear. The sequence of events with episodes of 
BRD include an initial elevation in rectal temperature as a result of the febrile response to an invading pathogen, 
followed by the development of clinical signs such as depression and ocular and nasal discharge, with the devel-
opment of abnormal lung sounds occurring up to five days after the initial fever episode45. Viral pathogens associ-
ated with BRD can take 7 to 9 days before a defence response is activated, whereas bacterial pathogens can cause a 
more rapid acute phase response through faster action of endotoxin infection46. Different metabolites were associ-
ated with the six reference diagnosis methods used in our study and this could be related to the stage or nature of 
the infection, extent of tissue damage or the physiological responses of the animal to the disease. For instance, lac-
tate was selected as a metabolite of importance for the lung auscultation diagnosis. In this instance there may be 
a reduced oxygen transfer from the lungs to the arterial blood, or elevated oxygen consumption due to increased 
breathing which would increase the importance of anaerobic pathways and increase lactate levels47. These results 
indicate that the blood metabolome could be useful in differentiating BRD causative agents (viral versus bacte-
rial), stage of infection, or disease severity. However, further research is needed to understand changes in the 
blood metabolome profile with the onset of BRD and with underlying causative agents. To determine changes 
in the blood metabolome with the progression of disease and with different BRD causative pathogens, samples 
would need to be obtained frequently over time, starting before pathogen infection up until slaughter.

The accuracy of the prediction models decreased when applied to the validation datasets, with some models 
demonstrating a larger decrease than others. The models that used the VD and VCD as reference diagnosis meth-
ods displayed a much smaller decrease in accuracy from the training to the validation dataset, indicating they 
are likely to be more robust on future datasets. The decrease in accuracy from the training to validation dataset 
is expected as the latter is an independent dataset not used to develop and train the model48. Although partially 
independent, the training and validation datasets used in this study were not completely independent because 
animals were part of the same experimental study conditions and therefore need to be tested under broader 
conditions (different feedlots, regions and animals). Despite not being completely independent, the models pro-
duced high accuracies considering the complex study design. Animals originated from multiple sources, were of 
mixed breed and age, had differing live weight and body condition and were sampled on different days in differing 
environmental conditions. Future work in this area should utilise independent datasets from multiple feedlots to 
further validate the models developed and evaluate their potential utility as a BRD diagnosis tool.

Figure 3. Principal Component Analysis loading plot showing the correlation between metabolites and 
principal components 1 and 2. All 34 identified metabolites as well as four unknown components that were 
selected in the classification and regression tree analysis are displayed in the plot. Citrate appears twice as the 
CART analysis selected two different citrate peaks as components of importance in differentiating BRD and 
non-BRD animals for two different diagnosis methods.
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The NMR spectra obtained resulted in 323 metabolite components, with 106 of these assigned to one of 34 
known metabolites of bovine plasma. The strongest correlations of metabolites to BRD status were found using 
the visual diagnosis and visual-clinical diagnosis. This suggests there is a significant impact of disease status on 
the blood metabolome. Most identified metabolites (20) showed significant correlations to BRD with all six refer-
ence diagnosis methods. Of interest is that many metabolites were significantly correlated to BRD when defined 
by lung lesions at slaughter. This result has not been described before and suggests that certain metabolites are 
related to the underlying lung pathology of BRD. The fact most metabolites were consistent in the direction of 
the correlation across all six diagnosis methods suggests a common pattern and possible common underlying 
mechanisms associated with these metabolites and BRD status.

All 34 identified metabolites showed statistical differences in relative concentration between BRD and 
non-BRD animals except for six (choline, dimethyl-sulfone, formate, lactate, methanol and succinate). Animals 
suffering from BRD had higher concentrations of 3-hydroxyisobutyrate, α-glucose chain, acetone, creatine, cre-
atinine, ethanol, hydroxybutyrate, isobutyrate, isoleucine, isopropanol, leucine, mannose, phenylalanine and 
pyruvate. From these metabolites, the statistical models selected phenylalanine, leucine and hydroxybutyrate as 
metabolites of importance in diagnosing BRD. Phenylalanine has previously been shown to be higher in calves 
with bronchopneumonia29 and human patients with pneumonia and sepsis49,50. A higher concentration of phe-
nylalanine in diseased patients potentially represents a reduction in its conversion to tyrosine when under oxi-
dative stress as a result of the immune response51. This could explain the higher concentrations of phenylalanine 
and lower concentrations of tyrosine seen in BRD animals in the present study. The elevated levels of leucine, a 
branched-chain amino acid, could be due to the increased requirements for protein synthesis associated with 

Metabolite

Visual-Clinical Diagnosis

Non-BRD
n = 152

BRD
n = 142 P-Value

1-methyl-histidine 1.30 ± 0.035 1.10 ± 0.035 <0.001

3-hydroxyisobutyrate 10.41 ± 0.262 12.74 ± 0.271 <0.001

α glucose chain 0.79 ± 0.023 1.26 ± 0.024 <0.001

Acetate 9.76 ± 0.382 7.72 ± 0.397 <0.001

Acetone 2.22 ± 0.082 3.13 ± 0.086 <0.001

Alanine 7.59 ± 0.141 6.68 ± 0.144 <0.001

Choline 5.86 ± 0.098 5.87 ± 0.102 0.941

Citrate 2.15 ± 0.054 1.63 ± 0.055 <0.001

Creatine 10.87 ± 0.214 11.60 ± 0.225 0.020

Creatinine 4.11 ± 0.104 4.90 ± 0.107 <0.001

Dimethyl sulfone 2.58 ± 0.124 2.67 ± 0.131 0.602

Ethanol 27.13 ± 0.220 28.43 ± 0.232 <0.001

Formate 0.47 ± 0.024 0.50 ± 0.025 0.330

Glucose 23.13 ± 0.216 20.82 ± 0.228 <0.001

Glutamate 4.36 ± 0.055 3.60 ± 0.057 <0.001

Glutamine 2.83 ± 0.042 2.15 ± 0.043 <0.001

Glycine 14.54 ± 0.238 12.97 ± 0.249 <0.001

Glycoprotein acetyls 14.72 ± 0.217 13.18 ± 0.228 <0.001

Hydroxybutyrate 5.78 ± 0.079 7.10 ± 0.082 <0.001

Hydroxyisobutyrate 2.37 ± 0.033 2.10 ± 0.035 <0.001

Isobutyrate 181.78 ± 1.811 188.20 ± 1.899 0.009

Isoleucine 12.50 ± 0.291 14.65 ± 0.297 <0.001

Isopropanol 13.19 ± 0.120 13.84 ± 0.126 <0.001

Lactate 57.96 ± 2.395 62.46 ± 2.517 0.181

Leucine 6.31 ± 0.076 7.33 ± 0.080 <0.001

Low Density Lipid 21.40 ± 0.380 17.11 ± 0.400 <0.001

Mannose 0.75 ± 0.020 1.02 ± 0.021 <0.001

Methanol 10.04 ± 0.116 10.20 ± 0.122 0.342

Phenylalanine 0.47 ± 0.015 0.62 ± 0.016 <0.001

Pyruvate 5.33 ± 0.107 6.54 ± 0.113 <0.001

Succinate 1.78 ± 0.037 1.87 ± 0.039 0.091

Tyrosine 0.67 ± 0.014 0.46 ± 0.015 <0.001

Unsaturated lipid 4.40 ± 0.092 3.46 ± 0.097 <0.001

Valine 4.82 ± 0.114 3.90 ± 0.117 <0.001

Table 6. Least squares means (±SE) of the relative concentrations in arbitrary units of 34 identified metabolites 
for the visual-clinical diagnosis method only. The metabolites in bold were not significantly different between 
BRD and non-BRD animals (P > 0.05).
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oxidative stress following inflammation and disease52. Hydroxybutyrate, a ketone body that accumulates in the 
bloodstream under negative energy balance has been shown to increase in many disease states50,53,54. Our finding 
of greater concentrations of hydroxybutyrate and ethanol in BRD animals is contrast to the trends reported by 
Basoglu et al. (2016), who found lower levels of hydroxybutyrate and ethanol in animals suffering from bron-
chopneumonia. Differences found in the concentrations of metabolites between sick and healthy animals across 
studies could be due to differences in analytical and statistical techniques, the type of animals used in the study 
and the possible causative agents involved.

Animals suffering from BRD had lower relative concentrations of 1-methyl-histidine, acetate, alanine, citrate, 
glucose, glutamate, glutamine, glycine, glycoprotein acetyl, hydroxyisobutyrate, LDL, tyrosine, unsaturated lipid 
and valine. From these, the models selected glutamine, citrate and tyrosine as metabolites of importance in diag-
nosing BRD. Lower levels of citrate and tyrosine have previously been observed in human pneumonia cases55. 
The reduction of citrate, an energy substrate and key metabolite in the tricarboxylic acid cycle, could be due to 
the increased energy expenditure required for immune cell production with the onset of disease and increased 
glucose oxidation, leading to decreased levels of energy substrates in the blood stream56. A previous study demon-
strated that citrate and hydroxybutyrate follow opposite trends and are negatively correlated in dairy cows with 
ketosis and metritis53. In agreement with the present study, tyrosine and glutamate were shown to decrease in 
cattle experimentally infected with lipopolysaccharide (LPS) from the bacteria Escherichia coli57. Tyrosine and 
glutamate have also followed a similar pattern in a study on human sepsis biomarkers50. The lower levels of ace-
tate, glucose, LDL and valine in animals suffering from BRD are in agreement with previous studies29,44. Many of 
the metabolites we found to be significantly different between BRD and non-BRD animals are in agreement with 
previous studies, indicating their potential utility in BRD diagnosis. However, further research is warranted to 
explore the predictive ability and prognostic value of these biomarkers in broader conditions and to determine 
the stability, or duration which they are detectable.

The present study has demonstrated that 1H NMR metabolomics is a feasible approach for the identification 
of biomarkers of BRD and that biomarkers identified by the statistical models were accurate at classifying animals 
as BRD or non-BRD. The sample size, diversity of the animals used and the validation of our models increased 
the robustness and generalisation of our results for future applications. We demonstrated that one to five metab-
olites could accurately diagnose BRD, indicating their potential for simple and rapid crush-side diagnosis tests. 
The accuracies obtained using the VD and VCD diagnosis were comparable to, if not higher than many of the 
currently used BRD diagnosis methods. Furthermore, most metabolites showed a significant correlation to BRD 
status, indicating a significant impact of disease status on an animal’s metabolite profile. The fact many of the 
metabolite biomarkers we identified were consistent with other studies confirms the potential utility of metabo-
lomics as a BRD diagnosis tool to aid in the confirmation of BRD following the initial visual diagnosis. Further 
validation of these biomarkers is needed to explore their potential as a BRD diagnosis tool.
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