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Full three-dimensional Poynting 
vector flow analysis of great 
field-intensity enhancement in 
specifically sized spherical-particles
Liyang Yue1*, Bing Yan1, James N. Monks1, Rakesh Dhama1, Chunlei Jiang2, Oleg V. Minin3,4, 
Igor V. Minin   3,4* & Zengbo Wang1*

The Poynting vector plays a key role in electrodynamics as it is directly related to the power and 
the momentum carried by an electromagnetic wave. Based on the Lorenz-Mie theory, we report 
on the focusing effect of a spherical particle-lens by properly analysing the Poynting vector maps. 
Conventional two-dimensional (2D) maps showing Poynting vector magnitude and direction in a 
given plane cannot deliver information on three-dimensional (3D) directivity and vectorisation in 
key regions of singularities, such as vortexes and saddle points, due to poor expressiveness. In this 
article, an analytical 3D mapping technology is utilised to track the field-features passing through the 
singularities of the distribution of the Poynting vector in a spherically dielectric mesoscale particle-lens. 
We discovered that the spheres with the certain size parameters can stimulate extremely large field-
intensity at singularities and then form two circular hotspots around the sphere poles. An astonishing 
large ‘heart-shape’ 3D Poynting vector circulation, which cannot be predicted by conventional 2D 
mapping analysis, is found to provide a great angular variation within an enormous range in these 
spheres. We anticipate that this effect will contribute to the field-enhancement phenomena, such as 
surface enhances Raman scattering, surface enhances absorption, super-resolution imaging and others.

The energy stored in the electric and magnetic fields is transmitted at a certain energy flow rate which can be 
calculated based on the Poynting theorem derived back in 18841. To represent the directional energy flux of an 
electromagnetic field2,3, it is acceptable to use the Poynting vector which is given by a cross product of the elec-
tric and magnetic fields (measured in V/m and A/m, respectively). Therefore, Poynting vector is a dimensional 
vector quantity and it is expressed as VA/m2 or W/m2, because electric and magnetic fields are both vectors. 
Computer-aided 2D mapping is a common plot method to characterise the Poynting vector in a certain electro-
magnetic field. Contour, colour, and field-line with arrows are normally used to denote magnitude and direction 
of the Poynting vector. However, in fact, a 2D mapping cannot accurately reflect the behaviour of Poynting vector 
at singularities because the conventional representations of Poynting vector are misleading over there. The singu-
larities in a 2D plot representation of the Poynting vector, such as saddle point or vortex, may indicate a complex 
coupling behaviour. This behaviour is the result of the Poynting vector flow through singularities along the spiral 
trajectories4,5. In this case, a 2D colour map can only determine positions of the singularities of Poynting vector, 
but destinations of the field-lines through these points are still unknown. The corresponding limitation of 2D col-
our mapping in Poynting vector representation was also found by the other researchers. Soukoulis et al. pointed 
out that 2D Poynting vector plot cannot perfectly reflect the real situation in the experiment of negative refraction 
for a 3D photonic metamaterial due to a poor interpretation of multiple singularities in it6. The similar circum-
stances of multiple Poynting vector singularities have been repeatedly discovered in laser devices, metamaterials, 
and super-resolution lenses7–9, which indicates that there is a strong demand to develop a spatial 3D tracking 
algorithm for the Poynting vector plot in photonics research.

1School of Computer Science and Electronic Engineering, Bangor University, Dean Street, Bangor, Gwynedd, LL57 
1UT, UK. 2College of Electrical and Information Engineering, Northeast Petroleum University, Daqing, 163318, 
China. 3National Research Tomsk Polytechnic University, Lenin Ave., 30, Tomsk, 634050, Russia. 4National Research 
Tomsk State University, Lenin Ave., 36, Tomsk, 634050, Russia. *email: l.yue@bangor.ac.uk; prof.minin@gmail.
com; z.wang@bangor.ac.uk

OPEN

https://doi.org/10.1038/s41598-019-56761-9
http://orcid.org/0000-0002-6108-8419
mailto:l.yue@bangor.ac.uk
mailto:prof.minin@gmail.com
mailto:prof.minin@gmail.com
mailto:z.wang@bangor.ac.uk


2Scientific Reports |         (2019) 9:20224  | https://doi.org/10.1038/s41598-019-56761-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Lorenz-Mie theory fully describes the optical absorption and scattering of light by a homogeneous sphere, 
which verifies that a jet-like near-field focus situates near the shadow surface of the sphere in the certain 
range of a/λ (a, particle radius, and λ, light wavelength)10. Such kind of focusing effect is named as ‘photonic 
jet’ and has been attracted much attention since 200011–13. It is known that photonic jet can deliver a strong 
field-intensity enhancement with a long-distance propagation (for several wavelengths) and possibly constitute a 
near-field super-resolution optical system13. Many approaches to sphere transformation, e.g. metalens, assembly 
of nano-fibres, and addition of a pupil-mask, were carried out to further reduce the transverse dimension and 
enhance field-intensity for photonic jet14–17. It is widely accepted that singularities of Poynting vector should be 
related to the above approaches, nevertheless, there is no mature mapping technology that can perfectly visualise 
the corresponding dependence due to the meaningless interpretation of Poynting vector presented as a 3D map. 
For that, Wang et al. systematically characterised features of Poynting vector in a small particle and its focus and 
claimed that the higher orders of optical resonance should be taken into account18. Fu et al. and Mundy et al. 
formulated the analytic expressions for single-scattering properties of a spherical sphere in an absorbing medium 
using a Poynting vector plot. However, these expressions were failing to graphically quantify the influence of 
singularities at the specific locations19,20. So far, there is no established theory to relate the elements of particle 
size, field-intensity enhancement of focus, and Poynting vector distribution. As an isolated physical phenomenon, 
giant field-intensity enhancement in spheres with particular sizes, was occasionally observed in the form of explo-
sion of few spheres in the initial research of laser cleaning of micro/nano-particles with random sizes. However, 
there was no comprehensive model that could explain this phenomenon back then21,22.

Teflon is a widely-used material for terahertz (THz) sensing and imaging nowadays due to its outstanding 
low-loss properties and low cost23,24. Compared with super-resolution lenses made of lossy metals, e.g. gold and 
silver, a Teflon super-resolution lens or a similar dielectric super-resolution lens is not limited by the intrinsic loss 
relying on an extremely small extinction coefficient, k, (nearly 0) of the material in the THz band. Minin et al. 
generated a photonic jet (terajet) in the THz band by using a dielectric non-resonant Teflon cuboid particle25–30. 
They showed the super resolution effect by using lens made of Teflon and PMMA spherical particles31. However, 
these studies did not involve any investigation about the size screening for particles. In this paper, we use for the 
first time a 3D mapping technology to track field-lines passing thought the singularities and hotspots (critical 
points) in a Poynting vector distribution map of a spherical Teflon particle-lens (refractive index n = 1.4332). 
Maximal electric field-intensity (|E|2) enhancement was analytically calculated varying the size parameter, q 
between π and 20π. The critical points of Poynting vector found in the sphere were set to the initial positions of 
3D field-line to study the giant field-intensity enhancement in spheres.

Results and Discussions
Figure 1(a) summarises peak |E|2 field-intensities along the central axis as a function of size parameter, q, for all 
Teflon spheres in this study. An increasing tendency is manifested with the regular oscillations for this curve. 
Two well-defined peaks associated with the giant enhancement reach values of 438 and 514 at q = 22.24159 and 
q = 28.64159, respectively. These values are far larger than those for the Teflon spheres with the neighbouring 
size parameters. We select the sphere of q = 22.24159 to plot the distributions of |E|2 field-intensity and Poynting 
vector to track the 3D field-lines passing through the critical points to analyse this giant enhancement effect. 
Figure 1(b)i,ii show the distributions of |E|2 field-intensity in the xz and yz planes, respectively. We note that the 
photonic jet (the light-blue-colour area below the sphere) is not of the largest magnitude. The areas possessing 
maximum |E|2 field-intensity symmetrically form two circular hotspots at the sphere poles in the xz place, as 
shown in Fig. 1(b)i, otherwise three smaller hotspots (the central one is larger) can be found in the same regions 
with the Whispering-Gallery mode effect shown in Fig. 1(b)ii for the yz place.

Since the layout of double polar hotspots in a sphere was overlooked in Lorenz-Mie theory and photonic jet 
effect so far, here we study the formation of these two hotspots. A logarithmic 2D plot of Poynting vector in the 
xz plane is shown in Fig. 2(a) for identification of the positions of the critical points (The distribution in the xz 
plane is less complex for analysis compared with that in the yz plane). We show that two Poynting vector hotspots 
(PVH) are marked as the green circles 1 and 2 near the upper pole, and a saddle point and a PVH are marked as 
the pink circle and the light blue circle near the bottom pole in Fig. 2(a), respectively. All these critical points are 
embraced by the polar hotspots of |E|2 field-intensity presented in Fig. 1(b)i. Also, the vortexes of Poynting vector 
appear at both flanks in the lower part of the sphere with the blue contours representing the small magnitude of 
Poynting vector. The largest magnitude of the Poynting vector is found in the jet area in Fig. 2(a), which is differ-
ent from the |E|2 field-intensity shown in Fig. 1(b)i. The spatial tracking of Poynting vector field-lines takes place 
at the critical points – this is based on the information provided in Fig. 2(a), and the corresponding 3D plot is 
exhibited in Fig. 2(b).

We illustrate the Teflon sphere as a transparent grey circle shown in Fig. 2(b). The 2D plot of Poynting vector 
along the xz plane also crosses the sphere. The spaces of two polar hotspots of |E|2 field-intensity are illustrated as 
two small transparent green-colour spheres with the radius of 0.1a to indicate the positions of 3D field-line track-
ing in Fig. 2(b). The 3D field-lines originating from the different critical points are distinct by multiple colours, 
such as the red line for the PVH upper 1, the purple line for the PVH upper 2, the blue line for the PVH bottom, 
and the green line for the saddle point. Due to the high density of Poynting vector field-lines, we do not show the 
arrows on each of them by intention (Fig. 2(b)), but all directions of arrows are from top to down in this case. We 
note, that these field-lines form a large ‘heart-shape’ circulation in the sphere to relate two polar hotspots before 
convergence to a jet below the Teflon sphere. In addition, the field-lines of the PVH upper 1 (red-colour lines in 
Fig. 2(b)) shape into a small circulation around the upper pole which has a ‘bottleneck’ area at the position of the 
PVH upper 2.

The Fig. 3 shows the zoomed pictures of two circulations of the Poynting vector field-lines at different 
angles. The Fig. 3(a,b) show that the bottom hotspot of |E|2 field-intensity (the green-colour transparent sphere 
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in Fig. 3(a,b)) is ‘wrapped’ inside the large ‘heart-shape’ circulation of Poynting vector field-lines, and its loca-
tion coincides with that for the PVH bottom as all blue-colour field-lines are originally launched at the centre 
of the green-colour transparent sphere. It is interesting that the green-colour field-lines from the saddle point 
simultaneously grow to both directions against the xz plane, which means that the saddle point shown in Figs. 2 
and 3 is an intersection of Poynting vector where the power flow consisting in the central plane escapes to the 
other locations in the Teflon sphere. The pattern of the upper small circulation is different from that of the large 
‘heart-shape’ pattern. The PVH upper 1 and 2 are situated in the upper hotspot of E2 field-intensity, as shown in 
Fig. 3(c,d).

The field-lines around the PVH upper 1 are dense in terms of arrows, indicating significant direction changes 
of Poynting vectors in that area. These arrows configure three streams to whirl inward in the xz plane, as shown 
in Fig. 3(d), and then merge with the field-lines of PVH upper 2 (purple-colour) to form the circulation and flow 
down together, as shown in Fig. 3(c). The relative positions of 3D Poynting vector field-lines to the critical points 
and the PVHs are shown in Fig. 3(e,f) for the bottom and upper circulations, respectively. The multi-time lateral 
movement of the Poynting vector along the y-axis direction would cause the high magnitude for the PVHs at the 
saddle point and the centre of the bottom hotspot of |E|2 field-intensity, as shown in Fig. 3(e). However, the forma-
tion of the PVH upper 1 and 2 is due to the repeatedly longitudinal movement of Poynting vector at the positions 
of the whirl and bottleneck of the small circulation, as shown in Fig. 3(f). Therefore, two multi-time circulations 
of Poynting vector happen simultaneously in the sphere, and the heart-like pattern provides an enormous angular 
variation within an enormous circulation range. This could result in the giant |E|2 field-intensity enhancement at 
the poles for the specifically sized sphere, as shown in Fig. 1.

Meanwhile, it is noted that the aforementioned giant enhancement of |E|2 field-intensity and large 
‘heart-shape’ circulation of the Poynting vector cannot be found in the Teflon spheres with the neighbouring size 
parameters. The distributions of |E|2 field-intensity and Poynting vectors for the sphere with the size parameter of 
q = 22.14159 are plotted as an example to demonstrate this contrast in Fig. 4(a,b), respectively. It is demonstrated 
that a typical photonic jet instead of two polar hotspots appears in the distributions of |E|2 field-intensity in the xz 
and yz planes for the sphere of q = 22.14159, as shown in Fig. 4(a)i,ii. Also, three critical points (one vortex and 
two saddle points) are indicated in Fig. 4(a)iii to perform 3D field-line tracking, however, there is only a single 
small circulation found in the lower part of the sphere, as shown in Fig. 4(b) and its insets. The corresponding 
angular variation and circulation range are much smaller compared to those for the sphere of q = 22.24159 with 
the giant field-intensity enhancement which are shown in Figs. 2 and 3. In addition, a model of high-index silicon 
sphere (n = 3.55 in the band of near-infrared33) was created using the same algorithm (the results are shown in 
Figs. S1 and S2 in the supplement of the paper). The similar field-intensity enhancement and large ‘heart-shape’ 
circulation of the Poynting vector are also found in the specifically sized spheres.

Figure 1.  (a) Peak |E|2 field-intensities for the Teflon spheres versus size parameter, q. The distributions of |E|2 
field-intensity in the xz plane (b) i and the yz plane (b) ii when q = 22.24159.

https://doi.org/10.1038/s41598-019-56761-9


4Scientific Reports |         (2019) 9:20224  | https://doi.org/10.1038/s41598-019-56761-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Conclusion
To conclude, we proposed a 3D mapping technology innovatively used to track field-lines passing the critical 
points of Poynting vector distribution for investigation of a significant field-intensity enhancement existing 
around the poles of dielectric spheres. We discovered an astonishing large ‘heart-like’ multi-time circulation 
of Poynting vector 3D field-lines, which cannot be characterised by conventional 2D mapping analysis. Giant 
angular variation and circulation range are considered to be the primary causes of this phenomenon. Our find-
ings are expected to deepen the knowledge in formation of fascinating effects such as photonic jet and hotspots. 
We stress that the corresponding giant field-intensity enhancement can be intentionally triggered in the multiple 
spectral ranges by tuning the wavelength of an incident plane wave illuminating the spherical particle under the 
specific parameters of refractive index and size. We anticipate that this effect and the technique of 3D Poynting 
vector track will contribute to the researches in field-enhancement phenomena, suppression of scattering, Fano 
resonance, and chiral material.

Methods
In this study, we implement the complete Lorenz-Mie formulas in FORTRAN and MATLAB scripts to automat-
ically sweep q values and study the evolution of peak |E|2 field-intensity enhancement within π and 20π (3.14159 
to 62.8318) with a resolution of 0.1. A plane wave polarized in x-axis direction illuminates the Teflon sphere along 
the z-axis as shown in Fig. 1(a). The size parameter of the Lorenz-Mie theory, q, can be expressed as34,

π
λ

=q a2 ,
(1)

Figure 2.  (a) The logarithmic 2D plot of Poynting vector of xz plane. (b) The 3D plot of Poynting vectors 
initiating at the critical points.
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where a is Teflon sphere radius, λ is the wavelength of the incident plane wave. Due to a relatively constant relative 
permittivity, ε, of Teflon in the THz band (ε = n + ki), and simplify the calculation, values of n and k of Teflon are 
considered as constants in our algorithms. We consider the background medium as the air with index of n = 1. 
Here n of Teflon is defined as 1.4332, and k is 0 for a case of lossless sphere. In our algorithm, we spatially scan 
across the sphere centre from −5a to 5a along the incident direction of the plane wave to find the highest |E|2 
field-intensity and its position in the sphere. Values of 500 points are collected per a in the sphere and its vicinity. 
Therefore, the total 5000 points are sampled per q. In addition, we plot the Poynting vector distribution along the 
cross-section of the sphere. All field-lines passing through the critical points in the high |E|2 field-intensity areas 
are automatically tracked by the algorithm. The |E|2 field-intensity enhancement in the sphere is induced by the 
scattered plane wave and composed of contributions from multiple resonant order modes. Its strength is quanti-
fied and determined by the absolute values of the complex scattering wave coefficients, Bl

e for electric field and Bl
m 

for magnetic field35. These coefficients are expressed in the form:
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where l is the order of mode, n̂  is the complex refractive index of the sphere relative to the surrounding medium, 
and ψ q( )l  and ζ q( )l

l( )  are defined by35,
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Figure 3.  The zoomed maps of the field-lines for the bottom circulation (a,b) and the upper circulation (c,d) at 
the different angles and their relative positions to the critical points (e,f).
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χ π
= − +q q N q( )

2
( ),

(6)l l 1
2

where +J q( )l 1
2

, 
+H q( )l
(1)

1
2

, and +N q( )l 1
2

 are the Bessel functions, the Hankel functions, and the Neumann functions, 
respectively35. Multiple order modes of resonance are stimulated in the sphere at the same time, and their collec-
tive contribution on |E|2 field-intensity enhancement is shown in Fig. 1(a). Also, amplitude of individual mode 
would finally approach 0 at a certain order. An empirical formula identifying this nearly 0 contribution order of 
mode, l0, is given by5,

Figure 4.  The distributions of |E|2 field-intensity and Poynting vector (a) and the 3D plot of Poynting vectors 
initiating at the critical points (b) for the sphere of q = 22.14159.

https://doi.org/10.1038/s41598-019-56761-9


7Scientific Reports |         (2019) 9:20224  | https://doi.org/10.1038/s41598-019-56761-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

≈ + . +l q q4 3 1, (7)0
1
3

The iterative calculation of collective enhancement is terminated when l0 is reached.
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