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Maskless, rapid manufacturing of 
glass microfluidic devices using a 
picosecond pulsed laser
Krystian L. Wlodarczyk1,2*, Duncan p. Hand2 & M. Mercedes Maroto-Valer1

Conventional manufacturing of glass microfluidic devices is a complex, multi-step process that involves 
a combination of different fabrication techniques, typically photolithography, chemical/dry etching and 
thermal/anodic bonding. As a result, the process is time-consuming and expensive, in particular when 
developing microfluidic prototypes or even manufacturing them in low quantity. This report describes a 
fabrication technique in which a picosecond pulsed laser system is the only tool required to manufacture 
a microfluidic device from transparent glass substrates. The laser system is used for the generation of 
microfluidic patterns directly on glass, the drilling of inlet/outlet ports in glass covers, and the bonding 
of two glass plates together in order to enclose the laser-generated patterns from the top. This method 
enables the manufacturing of a fully-functional microfluidic device in a few hours, without using any 
projection masks, dangerous chemicals, and additional expensive tools, e.g., a mask writer or bonding 
machine. The method allows the fabrication of various types of microfluidic devices, e.g., Hele-Shaw 
cells and microfluidics comprising complex patterns resembling up-scaled cross-sections of realistic rock 
samples, suitable for the investigation of CO2 storage, water remediation and hydrocarbon recovery 
processes. The method also provides a route for embedding small 3D objects inside these devices.

Microfluidic devices are tools that allow the analysis, manipulation and processing of tiny amounts of fluids, 
often smaller than a droplet of water (<10 μL)1. The devices are typically made of two plates, one of which has a 
microfluidic pattern generated on its surface, whereas the other has a set of inlet/outlet ports and is used as a lid to 
enclose the microfluidic pattern from the top. Typically, the lid is transparent and must be properly bonded to the 
other plate such that the device is leak-proof and the injected fluids can flow only within the area of a microfluidic 
pattern. Such microfluidic devices enable various complex physical and chemical operations to be performed on 
small amounts of liquids, gases and solids, including small particles, colloids, living cells and microbes. Therefore, 
these devices have found use in many different areas of chemistry, biology and medicine1–5. So-called Micro Total 
Analysis Systems (μTAS), Lab-on-a-chip (LoC) devices, Organ-on-a-Chip (OoC) devices, and Point-of-Care 
(PoC) medical diagnostic devices are used by biochemists, pharmacologists, clinicians and medical staff. These 
devices, for instance, allow them to analyse and manipulate single cells6–8, detect pathogens and diseases9–12, 
discover and develop new drugs and antibiotics13,14, or even mimic human and animal organs15–17. Microfluidic 
devices also play an important role in research related to hydrology, carbon dioxide storage and hydrocarbon 
recovery18–25. In these fields of science, they are used as simplified models and up-scaled replicas of porous media 
(e.g. rock samples) for the investigation of different fluid flow phenomena that govern surface and subsurface 
systems. Thanks to these devices, it is possible to observe and study different multiphase fluid flow mechanisms 
that occur for instance between rock grains, such as snap-off and corner flow phenomena which are responsible 
for disconnection and trapping of carbon dioxide and/or hydrocarbons26.

Microfluidic devices can be manufactured from a wide range of materials, such as transparent silicone elasto-
mer (poly-di-methyl-siloxane (PDMS)), thermoplastics (e.g. poly-methyl-methacrylate (PMMA), polycarbonate 
(PC), cyclic-olefin-copolymer (COC)), renewable polymers (e.g. polylactic acid (PLA)), chromatography paper, 
photoresist, hydrogels, glass and silicon26–35. Depending on the material used, a microfluidic pattern can be gener-
ated by using soft lithography, casting, hot embossing, injection moulding, wax printing, inkjet printing, mechan-
ical milling, laser micro-machining, two-photon polymerisation, etching or even 3D printing36–42.
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Glass in comparison to the other materials used offers a unique combination of optical, mechanical, thermal, 
electrical and chemical properties. Superior optical transparency, high hardness, thermal stability and tempera-
ture resistance, excellent electrical isolation, chemical inertness to many fluids, biocompatibility, and well-defined 
surface chemistry make this material almost ideal for the fabrication of microfluidic devices, in particular those 
for the investigation of CO2 sequestration and hydrocarbon recovery processes where different (often aggressive, 
reactive and flammable) fluids can be injected at very high pressures (even > 300 bar) and elevated temperatures. 
Unfortunately, conventional manufacturing of glass microfluidic devices is a complex, multi-step process that 
involves using a combination of different fabrication techniques and tools36–38. As a result, it is time-consuming 
and expensive in particular for the manufacture of laboratory microfluidics in low quantity. The most common 
techniques used for the generation of microfluidic patterns on glass substrates are reactive ion etching (RIE) and 
wet (chemical) etching, which respectively use chemically reactive plasma and liquid chemicals called etchants 
to remove selectively the material. Both these methods require the use of custom-designed masks that certainly 
adds time, cost and efforts to generate a pattern. These masks can be manufactured by using a combination of 
spin coating and direct laser writing, physical vapour deposition and direct laser writing, photolithography and 
etching, or photolithography and electroplating. Microfluidic patterns can also be generated directly on a glass 
surface using a CO2 or ultrashort pulsed laser43–47, or inside the material using so-called a selective laser etching 
(SLE) process48–50. The latter method is particularly attractive because it eliminates additional fabrication steps 
related to the bonding of two glass plates together, but it still requires the use of etchants.

To ensure the flow of fluids only within the area of a microfluidic pattern, the pattern must be properly closed 
from the top using the second glass plate. Two glass plates can be permanently bonded together using adhesives, 
but this method has a high risk that glue will enter microchannels during the bonding process, blocking and 
destroying the flow pattern. More common methods involve the use of intermediate layers (such as SU-8 pho-
toresist, parylene, polyimide), heat (so-called thermal bonding) or electric field (so-called anodic bonding)36,37,47. 
Unfortunately, all these methods require additional equipment, e.g. a furnace, wafer bonding machine and clean 
room, which again significantly increases the fabrication costs of glass microfluidic devices.

This report describes a maskless laser-based method suitable for the fabrication of glass microfluidic devices 
(see Fig. 1), where an ultrashort picosecond pulsed laser system is the only tool used for the manufacture of the 
entire devices. In contrast to the other fabrication methods described earlier, this technique does not use any 
dangerous etchants (e.g. hydrofluoric acid) and additional expensive equipment, and also it can be carried out in 
normal laboratory environment (i.e. without being in a cleanroom).

The concept and initial results of our fabrication method were presented in the Micromachines journal51. 
Since then, we have improved significantly the fabrication process. For instance, we found a solution to eliminate 
submicron gaps between the two glass substrates and developed a technique for the manufacture of microfluidic 
devices using thinner (≤0.5 mm) glass substrates. As will be shown in this report, our fabrication process ena-
bles the rapid manufacturing of different types of microfluidics, e.g., Hele-Shaw cells52 or microfluidic devices 

Figure 1. Key stages of the laser-based technique for the rapid fabrication of glass microfluidic devices. STEP 1 
involves the design of a microfluidic pattern and importing it to the laser machining software (Trumpf Trutops 
PFO). In STEP 2, the laser generates the microfluidic pattern directly on the glass surface by ablating the 
material. In this step, inlet/outlet ports are also generated in the second glass plate. In STEP 3, the glass plates 
are cleaned in order to remove debris and burrs generated during the laser machining process. STEP 4 involves 
bringing the laser-machined glass plates into optical contact. This process is called pre-bonding. STEP 5 is a 
laser microwelding process in which the two glass plates are permanently bonded together without using any 
adhesives nor intermediate layers. The welding closes any pre-existing gaps between the two materials, making 
the device leak-proof and free of air gaps. All photographs were taken during different fabrication stages of a 
microfluidic device.
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comprising patterns that resemble up-scaled cross-sections of realistic rock samples. Such devices are used in 
many areas of science and engineering (CO2 sequestration, water remediation, petroleum engineering) as micro-
models of porous media for the investigation of different multiphase fluid flow phenomena occurring in surface 
and subsurface systems. Our fabrication method can also be adapted to encapsulate small 3D objects inside 
microfluidic patterns. This unique feature of the process opens an opportunity to manufacture glass microfluidic 
devices with integrated minerals and/or miniature sensors, which can be used for monitoring different dynamic 
parameters (e.g. pressure, temperature or pH change) inside channels as fluid flows are introduced.

Materials and Methods
Glass. 75 mm × 25 mm borosilicate glass plates (Borofloat 33, SCHOTT Technical Glass Solutions GmbH, 
Germany) of nominal thickness 1.1 mm were used to manufacture the microfluidic devices presented in this 
report; thinner plates (0.25 mm and 0.5 mm thick) were also used for the Hele-Shaw cells. Borofloat 33 glass was 
chosen because this material has many physical properties similar to highly pure fused silica, but is less expen-
sive. It is characterised by very high transparency, outstanding thermal resistance, high chemical durability and 
excellent mechanical strength53. The glass plates were purchased from Newcastle Optical Engineering Ltd. (UK).

Laser. The direct writing of microfluidic patterns, the drilling of inlet/outlet ports, and the bonding of the glass 
plates was performed using a picosecond pulsed laser (TruMicro 5x50, Trumpf GmbH, Germany). The maximum 
average power (PMAX) of this laser is 50 W, as measured at the fundamental wavelength (λ) of 1030 nm and the 
pulse repetition frequency (PRF) of 400 kHz, the maximum pulse energy (EPMAX) is 125 μJ, and the pulse duration 
is 6 ps, as measured at Full-Width-Half-Maximum. The laser is switchable between three wavelengths: 1030 nm, 
515 nm and 343 nm. Each output provides a linearly polarised laser beam. The PMAX values for the shorter wave-
lengths (515 nm and 343 nm) are 32 W and 16 W, respectively.

Laser micromachining setup. Microfluidic patterns were generated using the laser setup shown schemati-
cally in Fig. 2(a). The laser micromachining of glass was carried out using the 515 nm wavelength. The laser beam 
radius in the focus (ω0) was approximately 12 μm, as measured at 1/e2 of its peak intensity, using a scanning slit 
beam profiler (Beam-Map 2, DataRay, US). Such a small laser spot was obtained by expanding the output laser 
beam to a 6.4 mm diameter spot and then focusing it using a 163 mm focal length F-Theta lens mounted to a 
galvo scanner (HSR10, Trumpf, Germany). The laser was controlled using TruControl 1000 software (Trumpf, 
Germany). The galvo scanner enables movement of the laser beam with a velocity as high as 5 m/s. The glass 
plates ready for machining were placed in a customised holder, which later was mounted onto the XYZ linear 

Figure 2. Schematics of laser setups used for: (a) micromachining and (b) microwelding of glass plates, and (c) 
a photograph of the custom holder used for welding the glass plates. Acronyms: BEX – beam expander; HWP – 
half-wave plate; PBS – polarising beam splitter; HR mirror – high reflectivity mirror with polished back surface; 
ND filter – neutral density filter.
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translation stages (PRO115-05MM, Aerotech Inc., US). A kinematic mount attached to the holder and the base of 
the translation stages allowed us to obtain repeatable positioning of the glass plates for micromachining.

Laser microwelding setup. The bonding of the laser-machined glass plates was performed using the 
setup shown schematically in Fig. 2(b). In this setup, the 1030 nm beam is delivered to the glass plates through a 
half-wave plate (HWP), polarising beam splitter (PBS), beam expander (BEX) and 10 mm focal length aspheric 
lens (AL1210M-B, Thorlabs, US). The HWP and PBS are used to reduce the laser beam power in a controlled way, 
allowing an appropriate power level to be selected. The high-reflectivity (HR) mirror between the BEX and the 
focusing lens has a polished back surface that partially transmits the laser beam reflected from the top surface 
of the upper glass plate to a 10 megapixel CMOS camera (uEye UI-1490RE, IDS Imaging Development Systems 
GmbH, Germany). The camera does not have any in-built focusing optics, only a neutral density (ND) filter is 
attached for attenuating the laser beam. This allows the Fresnel reflection from the air-glass interface to be imaged 
onto the CMOS sensor by using the 10 mm FL aspheric lens. By adjusting the lens-camera separation distance, it 
is possible to obtain this image and determine the focal position of the laser beam relative to the glass plate sur-
face. The glass plates prepared for welding are mounted in a special holder, which is shown in Fig. 2(c), and placed 
onto the XYZ linear translation stages. The holder consists of a pneumatic piston that applies an upwards force 
to the lower glass plate, ensuring that close contact between the two plates is maintained throughout the welding 
process. Similarly to the laser micromachining setup, the holder has a kinematic mount which provides repeatable 
positioning of the glass plates for microwelding.

Laser micromachining procedure. Microfluidic flow patterns and inlets/outlets ports were generated 
using the 515 nm laser wavelength. At this wavelength, the laser provides the highest peak fluence and enables 
the generation of features as small as 20 μm. The laser uses TruTops PFO software that enables the generation of 
various microfluidic patterns by raster scanning the laser beam. This scanning method was described in our other 
publication54. In TruTops PFO software the laser machining parameters, such as pulse energy (EP), laser beam 
scan speed (v) and the number of laser passes (N), can be defined for each line and polyline. For the generation of 
more complex patterns, we used AutoCAD software where the final design was saved as a DXF file and exported 
to TruTops PFO. Laser machining of glass plates was performed in ambient air without using any additional gas-
ses. Inlet/outlet ports in a borosilicate glass cover were generated by machining multiple times the same area of 
glass until through holes were created.

Cleaning the laser-machined glass plates. Following the laser machining process, each glass plate was 
placed individually into a beaker filled with methanol. Then the beaker was placed into an ultrasonic cleaner 
(USC-300-THD, VWR International, UK) for a few minutes at room temperature in order to remove loose debris 
from the glass surfaces. In addition to loose debris, the laser machining process generates small burrs around the 
machined area, which cannot be removed in this way, hence the glass surfaces were also gently lapped by hand. 
For lapping, we used a 0.3 μm FibrMet abrasive disc (Buehler, Germany) mounted onto a 10 mm thick glass plate. 
The cleanliness of the glass plates was checked using a Leica optical microscope (DM600 M, Leica, UK).

pre-bonding. Close contact between the glass cover and the glass plate comprising a microfluidic pattern 
must be obtained in order to achieve good welding results, i.e., high bonding strength, no material cracking, no 
ablation and no air gap between the two materials. Good contact is necessary at least in the area where the laser 
welding process starts. To obtain good contact, both glass plates were again washed in methanol, wiped off using 
soft polyester tissues (WW-3009, CRTM CleanRoomProducts GmbH, Germany), and treated with a jet of ionised 
nitrogen (Model 3080 S, Hugle Electronics Inc., Japan). Following this cleaning procedure, the glass cover was 
placed on the top of the other glass plate and pressed by hand. Perfect (optical) contact is achieved when optical 
fringes between the two materials disappear. If any large dust particles are trapped between the two glass plates, 
optical contact cannot be achieved and the cleaning process must be repeated; in this case it is necessary to first 
use the ultrasonic cleaner to separate the pre-bonded glass plates.

Laser microwelding. Pre-bonded glass plates were placed in a special holder (see Fig. 2(c)), aligned in a slot, 
and pressed from the bottom by the pneumatic piston, which was pressurised with nitrogen to around 0.8 bar. 
This holder was transferred onto the base of the translation stages. Thanks to the kinematic mount that ensures 
repeatable positioning of the glass plates, it is possible to predict the position of the weld that will be generated by 
the laser beam for the given XYZ coordinates. This feature is very important because it allows us to control the 
generation of welds in specific areas, thereby avoiding the generation of welds inside the microfluidic channels.

Welds were generated along the glass-glass interface by opening a mechanical shutter (SH05/M, Thorlabs, 
Germany) and simultaneously moving the translation stages. The shutter and translation stages were controlled 
using a G-Code programming language in Ensemble Motion Composer (Aerotech Inc., US). The Aerotech soft-
ware enables the creation of G-code scripts for the automatic generation of weld seams in specific areas in glass, 
for example, only around microfluidic patterns. In order to bond two glass plates together, the laser beam was 
focused below the glass-glass interface. After finding the Fresnel reflection from the first air-glass interface, the Z 
axis (vertical) stage was translated by an amount calculated based on the glass thickness and refractive index to a 
new position at which the laser beam was focused inside the material.

Sample analysis. The mean depth and surface roughness of the laser-machined areas were measured using 
a non-contact surface profilometer (InfiniteFocus, Alicona Imaging GmbH, Austria). The measurements were 
performed using a × 10 objective that provides a field of view of 1.43 mm by 1.08 mm and a lateral resolution of 
0.88 μm. The mean depth and surface roughness were calculated for areas of 0.5 mm by 0.5 mm.
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The Leica optical microscope was also used to analyse the weld seams generated inside cross-sectioned glass 
samples. The cross-sectioning was performed by using a low-speed diamond wheel saw (STB Model 650, South 
Bay Technology, US). Small pieces of the sectioned glass were mounted in epoxy resin (Acri-Kleer, MetPrep, 
UK), and then mechanically polished using a lapping machine, (LaboPol-5, Struers, Germany) with a 3 micron 
diamond suspension (MetPrep, UK).

Testing the microfluidic devices. Two different tests were performed. The first test was to determine 
whether the manufactured microfluidic device is watertight, whilst the second was to investigate fluid propaga-
tion through the microfluidic channels and determine whether the as-machined surface finish on the channel 
bottom and side-walls has any impact on flow. In the first experiment, we injected deionised (DI) water into the 
microfluidic device (to fill in the pattern completely), and then performed drainage of the device by injecting 
nitrogen. Different flow rates were used in order to validate the strength of welds. During the drainage process, 
we monitored the injection pressure using an analogue pressure gauge (available from RS Components, UK). 
Following each test, the device was visually inspected for any water leakage. In the second test, we delivered a 
small droplet of DI water to one of the ports by using a syringe needle. The propagation of water inside the pat-
terns was observed and recorded using the Leica optical microscope.

Results and Discussion
Laser-generated microfluidic patterns. The mean depth (D) and surface roughness (Sa) of the patterns 
generated using the 515 nm wavelength were observed to depend on many laser machining parameters, such 
as the laser spot size (2ω), pulse energy (EP), pulse repetition frequency (PRF), scan velocity (v), hatch distance 
(ΔH), and number of laser passes. Also the laser beam scanning strategy may have a significant impact on these 
two surface parameters (D and Sa), as recently reported in Micromachines54. In general, too high PRF value, too 
low v, or too small ΔH may result in the generation of highly irregular surfaces that can contain thin glass fibres 
and glass particles partially fused to the surface. Obviously, such surfaces must be avoided in microfluidic patterns 
because they can introduce artefacts during the flow of fluids, making the system behaviour difficult to predict 
and model.

The microfluidic patterns presented in this report were generated using 2ω = 24 μm, PRF = 20 kHz, and 
v = 40 mm/s. By changing the peak fluence (F) and ΔH, as shown in Fig. 3(a), it was possible to generate patterns 

Figure 3. Laser micro-machining of Borofloat 33 glass. Influence of peak laser fluence on: (a) mean depth, (b) 
surface roughness, and (c) material removal rate (MRR) for different values of hatch distance (ΔH = 2, 4, and 6 μm).  
Also it was found that the mean depth increases linearly with increasing energy dose, as shown in (d). All data 
are valid for λ = 515 nm, 2ω0 = 24 μm, PRF = 20 kHz, v = 40 mm/s. Datasets used to plot these graphs are in the 
Supplementary Materials (see Table S1).
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with different depths, in the range of 15 to 58 μm in a single laser pass. The peak fluence is defined as (2 × EP) 
/ (π × ω2), where ω is the laser beam radius. To make deeper structures, multiple laser passes can be used (see 
Table S1 in the Supplementary Materials). Unfortunately, structures less than 15 μm deep cannot be generated 
because a laser peak fluence below 10.5 J/cm2 leads to partial machining of both glass surfaces (upper and lower) 
as a result of the incubation of low-intensity laser pulses and self-focusing of the laser beam in the transparent 
material55. The roughness (Sa) of the laser-machined surfaces was measured to be approximately 1 μm for ΔH = 4 
μm and 6 μm and approximately 1.6 μm for ΔH = 2 μm. As shown in Fig. 3(b), the Sa value varies slightly with 
peak fluence and this variation was observed to be greater for ΔH = 2 μm.

Material removal rate (MRR) is also an important parameter to consider as it directly impacts fabrication 
time, and this is plotted as a function of peak fluence in Fig. 3(c) for 3 different values of ΔH. Not surprisingly, 
a higher laser fluence results in an increase of MRR. More interestingly, however, for the same laser fluence an 
increase of ΔH from 2 μm to 6 μm increases the MRR by at least 25%. Finally, it was observed by calculating the 
energy dose (EDOSE) per 1 mm2 (calculated as N × EP, where N is the total number of laser pulses within a 1 mm2 
area) that the mean depth of the laser-machined areas is a linear function of this parameter (see Fig. 3(d)). From 
a practical point of view, this means that microfluidic patterns of a certain depth can be generated by using differ-
ent combinations of laser machining parameters, for instance, using a reduced laser fluence and a shorter hatch 
distance. Moreover, this also means that the same machining results can be obtained using a different picosecond 
laser system as long as the same energy dose and laser spot size are preserved.

Cleaning and lapping the laser-machined glass plates. The laser-machined patterns are typically sur-
rounded by glass particles and have small (sub-micron in height) but well-attached burrs. These defects must be 
removed prior to the bonding process in order to obtain close contact and eliminate the formation of air gaps 
between the two glass plates. Loose particles, such as dust and glass debris, were removed by using the ultrasonic 
cleaner, whereas fused glass particles and burrs were efficiently removed by lapping the glass plates. An example 
of the laser micro-machined glass plate before and after the cleaning and lapping is shown in Fig. 4.

Laser microwelding the glass plates. Our laser microwelding process uses a high-intensity, ultrashort 
pulsed laser beam, which is focused close to the interface of two solid materials of which at least one is trans-
parent, to generate a plasma as a result of non-linear (multi-photon and/or tunnelling) absorption56–58. Thermal 
accumulation in the small volume around the plasma creates a melt region that after subsequent cooling locally 
fuses the two materials, creating a weld volume (called heat-affected zone, HAZ). Continuous weld seams are 
created by laterally translating the laser beam.

In order to generate weld seams inside glass, the ultrashort laser pulses must be delivered with a high PRF, 
of at least a few hundred kHz, to provide sufficient thermal accumulation56. In the case of Borofloat 33 glass, 
it was found that a PRF of 400 kHz is sufficient. The size of the HAZ and hence the cross-sectional area of the 
resultant welds depends on the average laser power (P) and the sample translation velocity (v). Figure 5(a) shows 
cross-sections and top views of the welds generated with a constant v of 2 mm/s and using different P values. The 
HAZ is clearly visible because the rapid resolidification of the melt results in a different refractive index from the 
surrounding material. These welds were generated by focusing the laser beam approximately 0.1 mm below the 
glass-glass interface. The top view of the weld seams shows that most of the welds have a periodic pattern and that 
this periodicity depends on the P value. This indicates that the laser-induced heat accumulated in the material 
undergoes regular terminations and the weld seams evolve continuously along with the laser beam movement58. 
For laser powers just above the process threshold (P = 1.00–1.25 W), the periodicity of the weld seams is less than 
a few tens of μm. These welds are very small, and hence are suitable for welding two very thin (≤250 μm thick) 
glass plates together. For laser powers between 1.5 and 2.5 W, the periodicity gets larger and the HAZ increases in 
size (see Fig. 5(b,c,d)). Interestingly, the periodicity was not observed in the weld seams generated at P = 2.75 W. 
At this laser power, the weld seams create a continuous line which seems to be optimal for bonding two glass 
plates together. Finally, it must be noted that the same periodicity patterns, as shown in Fig. 5(a), were also 

Figure 4. Laser-machined glass plate: (a) before and (b) after the cleaning and lapping.
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observed for the same laser power values when the laser beam focus was above or below the nominal position of 
0.1 mm from the glass/glass interface (see Table S2 and Figures S1 to S8 in the Supplementary Materials).

In many cases the pre-bonding process (described in Materials and Methods) does not provide optical con-
tact between the two glass plates over the entire area even though both glass plates are flat, smooth and relatively 
clean. Fortunately, the laser microwelding process itself reduces or even completely eliminates any existing air 
gaps between the two materials, as shown in Fig. 5(e,f). This is because the molten regions in both glass plates 

Figure 5. Laser welding results obtained with a sample translation velocity of 2 mm/s: (a) cross-section and top 
view of the weld seams generated at the glass-glass interface using different values of average power, (b) width, 
(c) height, and (d) area of HAZ from (a). Datasets used to plot these graphs are in the Supplementary Materials 
(see Table S2). A 0.5 mm thick glass plate on a 1.1 mm thick glass plate is shown in (e) after pre-bonding and (f) 
after welding, using P = 2.75 W and v = 2 mm/s. Weld seams in the form of parallel lines were generated at the 
glass-glass interface, covering the whole area of glass. The distance between the lines is 0.5 mm.
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mix with each other and then shrink during cooling, pulling the two materials closer together. As shown in the 
Supplementary Materials (see Figure S9), welds can be generated exactly along the glass-glass interface in equally 
spaced locations.

Replication of realistic rock samples. Figure 6 shows a microfluidic device in which the pattern 
resembles an up-scaled, thin section of a Berea sandstone rock sample59. The physical model was engineered 
at Schlumberger Cambridge Research (UK) and its thin section was measured using X-ray microtomogra-
phy (XMT). This particular pattern has found use as a benchmark in many complex numerical simulations, 
such as direct numerical simulations using OpenFOAM software and lattice-Boltzmann simulations, and in 
pore-network modelling in order to simulate fluid flow and transport in complex 3D porous media59,60.

To generate the Berea rock pattern on a 1.1 mm thick glass substrate, firstly we saved the original image as a 
monochrome bitmap, then converted the bitmap into a DXF file (using an online converter available on: https://
convertio.co/bmp-dxf/), and finally exported the DXF to TruTops PFO software. In the laser software, we selected 
areas for machining and defined laser process parameters, such EP, PRF, v, ΔH, number of passes, and laser beam 
raster scanning pattern. To make a longer flow pattern (20 mm × 9.1 mm), we tiled two patterns together.

The microfluidic pattern shown in Fig. 6 was generated using EP = 42.8 μJ, PRF = 20 kHz, v = 40 mm/s, and 
ΔH = 6 μm. With two orthogonal laser passes (scan direction of ± 45°), we obtained the depth of 38 μm and the 
Sa value of approximately 1.2 μm. The whole pattern was generated in 18 minutes.

Inlet/outlet ports of 1.5 mm diameter were drilled in the second borosilicate plate (glass cover) using EP = 62.8 
μJ, PRF = 40 kHz, and v = 80 mm/s. To generate the through-holes, the glass cover was machined multiple times. 
After every 4 laser passes the glass plate was moved 0.15 mm towards the galvo scanner in order to maintain the 
laser beam focus on the machined surface. In each laser pass, the beam moved inwards the hole following a spiral 
pattern. For odd numbers of laser passes, the radius of the spiral decreased by 6 μm per revolution, whereas for 
even numbers of laser passes the radius of the spiral decreased by 5 μm per revolution. This laser beam scanning 
strategy allowed us to slightly reduce the machining time without affecting the surface finish of the holes.

Following the pre-bonding process, the glass plates were placed in the holder, as shown in Fig. 2(c), and 
pressed against each other by applying a constant pressure of 0.8 bar. Laser microwelding of the glass plates was 
performed using P = 2.75 W and v = 2 mm/s. The laser beam focus was 0.12 mm below the glass-glass interface. 
Welds were generated around the pattern and they can be seen as parallel and orthogonal lines in Fig. 6(a). The 
distance between these lines was typically 0.5 mm, but close to the microfluidic pattern the distance was in some 
cases reduced to 0.25 mm. The generated weld seams provide strong, permanent and watertight sealing of the 

Figure 6. Microfluidic device containing irregular pattern that resembles an up-scaled 2D structure of Berea 
sandstone rock sample: (a) photograph, (b) pattern dimensions, and (c) 3D surface profile of the area selected in (a).
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patterns. Our tests have shown that the laser-generated weld seams can easily withstand injection pressures as 
high as 2.2 bar and temperatures up to 620 °C.

Impact of the laser-generated surface texture on the flow of fluids. The surface of the laser-generated  
microfluidic patterns was observed to have a texture in the form of parallel ripples. These ripples are created as a 
result of the very small laser beam (typically 24 μm diameter) being translated across the material surface at high 
fluence. The orientation of these ripples was found to depend on the laser beam scanning direction in the final 
laser pass. Figure 7(a) shows a glass surface that was machined using 2ω = 24 μm and F = 25 J/cm2. The average 
roughness (Sa) of this surface was measured to be 1.23 μm. As can be seen in Fig. 7(b), the next laser pass using 
the same laser parameters but a different laser beam scanning direction (perpendicular to the laser beam move-
ment of the first pass) changes the orientation of the ripples and results in a small increase in surface roughness 
(Sa = 1.35 μm). Figure 7(c), meanwhile, demonstrates the reduction in surface roughness that can be achieved by 
using a larger laser beam in the second pass. By defocusing, the laser beam diameter (2ω) at the glass surface was 
increased from 24 to 58.4 μm (calculated using the Gaussian beam propagation equation), and this had the effect 
of completely removing the ripples and also reducing the Sa value to 0.8 μm (see Fig. 7(e)). In this case, melt phase 
was not observed, which implies that laser ablation is solely responsible for this smoothing effect. The second pass 
resulted in an increase in the mean depth from 22 to 36 μm. Additional results of this experiment can be found in 
the Supplementary Materials (see Table S3 and Figure S10).

Figure 7. Glass surface after laser micromachining using: (a) single laser pass, laser spot diameter (2ω) of 24 
μm, and peak fluence (F) of 25 J/cm2; (b) two laser passes orthogonal to each other using the same laser spot 
sizes and peak fluence values (2ω = 24 μm and F = 25 J/cm2); (c) two laser passes orthogonal to each other using 
two different laser spot sizes and peak fluence values (first pass: 2ω = 24 μm and F = 25 J/cm2, second pass: 
2ω = 58 μm and F = 4.2 J/cm2). The other laser process parameters were as follows: PRF = 40 kHz, v = 80 mm/s, 
ΔH = 6 μm (bidirectional raster scanning). The relative mean depth and surface roughness (Sa) after the second 
laser pass using 2ω ≥ 24 μm (see numbers above each data point), and hence for different peak fluence values, 
are shown in (d) and (e), respectively. The dashed lines show the mean depth and surface roughness obtained by 
the first laser pass using 2ω = 24 μm and F = 25 J/cm2. Finally, the results of spontaneous imbibition of deionised 
(DI) water by the surfaces (a), (b) and (c) are shown in (f), (g), and (h), respectively.
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The use of a laser spot diameter in the range of 24 to 50 μm also provides more efficient machining of Borofloat 
33 glass in the second laser pass. As shown in Fig. 7(d), the mean depth can be even 50% greater than that 
obtained with the 24 μm diameter laser beam. The largest depth of 33 μm was obtained at the fluence of 11.2 J/
cm2 where the 2ω was 35.8 μm. More efficient machining in the second pass results from an increased absorption 
of the laser beam, because the glass surface is rough and multiply scattering, and also from a higher laser beam 
overlap which results from a larger laser beam used for machining. Interestingly, the fluence of 11.2 J/cm2 is very 
similar in value to the ablation threshold determined for the first laser pass (see Fig. 3(a)).

Finally, it must be noted that the laser-machined glass surfaces are highly hydrophilic. The static contact angle 
between the glass surface and a droplet of deionised (DI) water was measured to be ≤ 20°. This means that a drop of DI 
water placed onto one of the inlet/outlet ports is imbibed spontaneously into the microfluidic pattern. During sponta-
neous imbibition of DI water, it was observed that the as-machined surface texture has a significant impact on the prop-
agation of fluids. When the texture has ripples, see Fig. 7(f,g), DI water prefers to flow along these ripples, forming an 
“unrealistic” interface between DI water and air. Fortunately, the removal of these ripples by laser smoothing overcomes 
this problem, as shown in Fig. 7(h), and such surfaces can be used in the studies of subsurface systems.

Other examples of glass microfluidic devices. Our fabrication method also allows the manufacturing 
of Hele-Shaw cells, as shown in Fig. 8(a), which is fabricated from three glass plates. The thickness of the top and 
bottom glass plates was 1.1 mm, whereas the middle glass was only 0.25 mm thick. This thin glass plate was cut 
through using the picosecond laser (EP = 62.8 μJ, PRF = 20 kHz, v = 40 mm/s, ΔH = 6 μm, 240 passes) in order 
to generate the microfluidic pattern. This plate is then used as a customised spacer between the two thicker glass 
plates, providing precise air gap between them.

Welding these three glass plates together was carried out in two steps. In the first step, the thin glass was 
welded to the bottom plate using P = 1.25 W and v = 2 mm/s. The laser beam was focused 75 μm below the 
glass-glass interface. For these laser welding parameters, the HAZ is relatively small (125 μm × 40 μm, as shown 
in Fig. 5(a)), which prevents the thin glass plate from cracking. Such a small power value also eliminates the risk 
of ablation of the upper glass surface. The second step was to weld the top glass to the thin glass plate. This time we 
used P = 2.85 W and v = 2 mm/s and the laser beam was focused 120 μm below the glass-glass interface.

Hele-Shaw cells of this type can be used for the investigation of various fluid flow mechanisms, including 
multiphase flow in homogenous media52,61. Moreover, if the air gap is filled with small glass beads this device can 
be used as a heterogeneous model of porous medium62. The pattern could be filled with glass beads just before the 
pre-bonding process or by injecting glass beads through one of the inlet ports.

The evidence that is possible to embed small 3D objects into glass microfluidic devices is shown in Fig. 8(b). 
Here, the microfluidic device comprises a 175 μm thick paper disc, which was inserted into a 225 μm deep square 
recess just before pre-bonding two glass plates together. The paper was used as a test piece in order to see whether 
the laser welding process may cause any damage to the objects sensitive to elevated temperatures, and as shown in 
Fig. 8(b) it remains intact. This means that small glass beads, thin sections of minerals or even small sensors can 
be integrated within glass microfluidic devices.

Figure 8. (a) Schematic drawing and photograph of a Hele-Shaw cell with a 0.25 mm air gap and (b) schematic 
drawing and photograph of a microfluidic device with embedded 3D object (a 175 μm thick piece of paper).
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conclusions
In this report, we have described and demonstrated a maskless laser-based technique that is suitable for rapid 
prototyping and low volume manufacturing of different types of glass microfluidic devices. The technique is a 
flexible alternative to the time-consuming, multi-step conventional fabrication methods that typically involve 
using a combination of photolithography, etching and thermal/anodic bonding. Our technique uses a single tool, 
a picosecond pulsed laser system, to manufacture a fully-functional microfluidic device. The digitally-controlled 
micro-machining process directly generates microfluidic patterns that can be highly complex, allowing for 
instance an up-scaled replication of the cross-sections of realistic rock samples. By controlling laser machin-
ing parameters, it is possible to generate patterns with a variety of dimensions, aspect ratios, and surface 
morphologies.

The laser welding process, in turn, permanently bonds the two glass plates together without using any adhe-
sives nor intermediate layers. The laser-generated welds are capable of closing sub-micron gaps between the two 
materials, and they are strong enough to withstand injection pressures of at least 2.2 bar (without using con-
fined external pressure) and elevated temperatures as high as 620 °C. The laser-generated welds can be produced 
precisely at the glass-glass interface, which allows even very thin sheets of 250 μm thickness to be joined. The 
laser-generated microfluidic devices are fully watertight and can be used in many areas of research to investigate, 
for example, CO2 storage, water remediation, and hydrocarbon recovery processes.

Finally, our fabrication method enables the safe embedment of small 3D objects. This unique feature of the 
process opens an opportunity to manufacture glass microfluidic devices with integrated miniature sensors that 
can used to measure in real time different dynamic parameters (e.g. pressure, temperature or pH change) inside 
channels during the flow of fluids. By embedding such sensors into the patterns representing microstructures of 
realistic rock samples, it should be possible, for the first time, to obtain a better understanding of the fluid flow 
and reactive transport mechanisms that govern subsurface processes at pore level. These unique experimental 
data can be used, for instance, to validate the existing numerical models of subsurface systems, providing their 
further development and improvement of their accuracy.
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All datasets used in this article can be found in the Supplementary Materials.
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