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characterization of Holstein and 
normande whole milk miRnomes 
highlights breed specificities
S. Le Guillou  1*, A. Leduc1, J. Laubier1, S. Barbey2, M.-n. Rossignol1, R. Lefebvre1, 
S. Marthey1, D. Laloë  1 & f. Le provost1

the concept of milk as a healthy food has opened the way for studies on milk components, from 
nutrients to microRnAs, molecules with broad regulatory properties present in large quantities in 
milk. characterization of these components has been performed in several species, such as humans 
and bovine, depending on the stages of lactation. Here, we have studied the variation in milk 
microRnA composition according to genetic background. Using high throughput sequencing, we have 
characterized and compared the milk miRnomes of Holstein and normande cattle, dairy breeds with 
distinct milk production features, in order to highlight microRnAs that are essential for regulation of 
the lactation process. In Holstein and Normande milk, 2,038 and 2,030 microRNAs were identified, 
respectively, with 1,771 common microRNAs, of which 1,049 were annotated and 722 were predicted. 
The comparison of the milk miRNomes of two breeds allowed to highlight 182 microRNAs displaying 
significant differences in the abundance. They are involved in the regulation of lipid metabolism and 
mammary morphogenesis and development, which affects lactation. Our results provide new insights 
into the regulation of molecular mechanisms involved in milk production.

Milk is a complex secretory product and the source of nutrients for neonates and adults, whose composition could 
influence the short- and long-term health of consumers1,2. In addition to nutritional agents, it contains a large 
number of biological components, including microRNAs, small molecules involved in the post-transcriptional 
regulation of gene expression. Their roles in milk on recipient young animals are not well documented; many 
microRNAs, including those that are immune-related, are present and enriched in milk exosomes, membrane 
vesicles that deliver their content into recipient cells3–5.

Amongst fluids, milk presents the larger concentration of RNA and a higher variety of microRNA species6. 
Milk microRNAs are stable under adverse conditions, including RNase digestion, low pH, high temperature, and 
freeze/thaw cycles3,7,8. The milk miRNomes, studied in several species, including bovines, humans, marsupial 
tammar wallabies and giant pandas9–12, are highly conserved between species; however, some species specifici-
ties have been observed. Milk miRNomes vary considerably between individuals, depending on the maternal 
background (e.g., age and lifestyle) and health13–15. They also depend on the lactation period10,11,16–19 and even on 
different times of the day20.

The miRNomes of different milk fractions, i.e. fat, whey and cells, have been examined independently and 
compared within breeds9 or between species21–23. But the variation of the miRNomes of the whole milk, contain-
ing all milk fractions, according to the genetic background has still not been described. Moreover, concerning 
breed comparisons, three studies have characterized miRNomes in the mammary tissue of dairy and beef breed 
heifers24,25, on the one hand, and of two divergent phenotype swine breeds26, on the other hand. In all cases, the 
authors highlighted significantly differentially expressed microRNAs in the mammary tissues of the breeds.

If milk miRNome studies give information on microRNA which could act on recipient young animals, it is 
also a mirror of the mammary gland miRNome. In fact, most microRNAs present in milk originate from the 
mammary epithelium11,27, and a modification of mammary gland microRNA expression modulates its profile in 
milk28. In this context, a milk miRNome comparison of cattle breeds with different milk production characteris-
tics will highlight microRNA essential for the regulation of genes involved in milk synthesis and secretion.

Holstein and Normande cattle are two dairy breeds with distinct milk production characteristics. The Holstein 
is the first world’s dairy breed, with the stronger production in terms of quantity. The Normande cattle is a hardy 
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French breed, selected for the production of fat- and protein-rich milk, sought after for high-quality butter, cream 
and cheese manufacturing, and for their attractive meat properties. The Normande breed has lower milk produc-
tion than the Holstein, but higher fat and protein content and higher adaptability to hardy conditions. Therefore, 
these two breeds are considered relevant models to investigate the differences in profiles of milk microRNAs 
in relation to milk traits. To date, the whole milk microRNA patterns of Holstein and Normande cattle remain 
unknown. In the current study, a high-throughput sequencing screen was conducted to characterize and com-
pare the milk miRNomes of the two breeds, while also taking into account the impact of age. We aim to highlight 
microRNA regulators of molecular mechanisms involved in milk production.

Results
Dairy and milk quality traits. The Holstein and Normande cows had significantly different (p < 0.05) dairy 
milk production averaged over five weeks between breeds and for each age group, with higher production levels in 
Holsteins (Table 1). The Holsteins’ average milk production ranged from 22.3 kg/day for two-year-olds to 24.1 kg/day  
for three-year-olds. The Normandes’ average milk production ranged from 14.3 kg/day for two-year-olds to 
21.2 kg/day for three-year-olds. Moreover, at two years of age, milk protein content is higher in Normandes than 
in Holsteins, e.g., 35.4 g/kg compared to 30.6 g/kg, respectively, but it does not differ between breeds at three years 
of age. While Normande milk is fat-rich, the fat content does not differ significantly between breeds, varying from 
33 g/kg in the milk of three-year-old Holsteins to 43 g/kg in the milk of two-year-old Normandes. No difference 
in lactose, urea, acetone and BHB content was observed between breeds, whatever animal’s age. The somatic cell 
counts vary from 45,200 cells/ml to 150,600 cells/ml, with no significant differences between breeds (p < 0.05).

characterization of the Holstein whole milk miRnome. An average of 32,653,400 raw reads was 
obtained for the nine Holstein libraries, ranging from 4,641,274 to 56,924,058 raw reads per cow (Table 2). After 
library adaptors removal and size filtering (17–28 nt), 13.6 million clean reads on average were obtained, from 
1,277,332 to 29,280,218 clean reads. They were aligned against the bovine genome (BosTau8), and the final 
mapped reads resulted in 9,299,953 reads on average, from 492,668 to 21,654,866.

The analysis of these mapped sequences using miRDeep2 allowed the identification of 2,038 mature microR-
NAs in Holstein milk, corresponding to 1,107 annotated microRNAs and 931 predicted microRNAs (Fig. 1A; 

Age

Holstein Normande Holstein Normande

2 years (n = 4) 2 years (n = 3) 3 years (n = 5) 3 years (n = 5)

Dairy milk production 
averaged over 5 weeks (kg/day) 22.3 ± 2.4a 14.3 ± 2.2b 24.1 ± 1.4a 21.2 ± 1.8b

Protein content (g/kg) 30.6 ± 2.1a 35.4 ± 1.2*,b 32.5 ± 1.6ns 32.3 ± 2.7ns

Fat content (g/kg) 38.6 ± 5.0ns 43.4 ± 4.2*,ns 33.3 ± 4.6ns 37.4 ± 6.8ns

Lactose (g/kg) 482.5 ± 16.0ns 504.5 ± 26.2*,ns 503.8 ± 16.8ns 505.2 ± 21.4ns

Urea (mg/cl) 152.5 ± 53.2ns 95.0 ± 35.4*,ns 150.0 ± 35.4ns 130.0 ± 40.6ns

Acetone (mmol/l) 12.0 ± 5.4ns 12.0 ± 0.0*,ns 10.2 ± 1.8ns 9.2 ± 2.3ns

BHB (mmol/l) 8.8 ± 5.6ns 7.0 ± 0.0*,ns 5.8 ± 1.9ns 8.6 ± 4.4ns

Somatic cell count (cells/ml) 113,500 ± 139,189ns 126,000 ± 94,752*,ns 45,200 ± 26,119ns 150,600 ± 89,419ns

Table 1. Dairy and milk quality traits of experimental animals. Values are expressed as the means with their 
standard errors. a, b: indicate a significant difference among breeds of the same age-group (p < 0.05, Mann & 
Whitney); ns: non-significant. n: number of individuals analysed; *: only two individuals analysed.

Holstein Normande

Individual
Age 
(years) Raw reads

Cleaneda and 
filteredb reads

Mapped 
readsc Individual

Age 
(years) Raw reads

Cleaneda and 
filteredb reads

Mapped 
readsc

H1 2 23,959,434 11,207,607 7,442,391 N1 2 71,359,415 27,318,153 13,501,112

H2 2 29,605,886 12,894,672 8,424,745 N2 2 26,443,941 11,844,909 6,984,748

H3 2 4,641,274 1,277,332 492,668 N3 2 3,065,890 1,556,425 915,487

H4 2 10,057,132 5,613,708 3,677,686 N4 3 22,404,553 10,749,730 7,309,510

H5 3 56,924,058 29,280,218 21,654,866 N5 3 52,674,058 28,136,721 19,656,622

H6 3 43,242,357 13,344,848 9,917,574 N6 3 26,535,350 14,275,665 9,752,828

H7 3 33,041,730 15,520,982 10,350,694 N7 3 24,794,919 10,755,221 7,022,284

H8 3 56,840,975 23,475,553 15,295,377 N8 3 43,204,321 21,047,336 13,545,680

H9 3 35,567,753 9,386,785 6,443,574

Mean 32,653,400 13,555,745 9,299,953 Mean 33,810,306 15,710,520 9,836,034

Table 2. Sequencing data of whole milk microRNAs. Average reads for each library on Holstein and Normande 
milk. a: library adapters removed; b: 17–28 nt size filtering, reads used by miRDeep2 quantification process; c: 
reads with at least one and at most five reported alignments, used by the miRDeep2 prediction process.
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Supplementary Table). The annotated microRNAs corresponded to 673 bovine microRNAs referenced in both 
the miRBase29 and RumimiR30 databases, 227 bovine microRNAs referenced exclusively in the RumimiR data-
base, and 171 and 36 microRNAs referenced in other species in RumimiR (caprine and ovine) and miRBase (12 
species, especially Human and mouse).

Within the miRNome, microRNAs can be distributed according to their read abundance, expressed in reads 
per million (RPM). Approximately 90% of all microRNAs, corresponding to 1,847 microRNAs, are represented 
with a read abundance below 100 RPM (Fig. 1B). Two intermediate classes consisting of 124 and 49 microRNAs 
were present in milk with abundancies ranging between 100 and 1,000 RPM and between 1,000 and 10,000 RPM, 
respectively. The last group, comprising 18 microRNAs, exceeded 10,000 RPM (Fig. 1B,C). These 18 microRNAs 
corresponded to, in terms of number, 0.9% of microRNAs present in the miRNome and, in term of abundance, 
82% of the miRNome. They could be considered the major milk microRNAs.

The three most abundant microRNAs bta-miR-148a-3p, bta-miR-30a-5p and bta-miR-22–3p (Fig. 1C) rep-
resent approximately 40% of the total reads. Among the major microRNAs, two are predicted (bta-chr10_2883_
mt-5p and bta-chr20_18762_mt-3p) and mapped on the bovine chromosomes 10 and 20, respectively. They fulfil 
the prediction criteria of miRDeep2, passed through the Rfam filter, and the displayed miRDeep prediction scores 
equalled 5.5 and 1.5, respectively, and they did not match Bos taurus non-coding RNAs (lncRNA, rRNA, tRNA, 
snoRNA).

the milk microRnA composition depends on the genetic background. To evaluate the impact of 
the genetic background on the milk miRNome, the high throughput microRNA profiles of two dairy cow breeds, 
Normande and Holstein cattle, were compared. A total of 33,810,306 raw reads were obtained, on average, per 
library of eight Normande cows, ranging from 3,065,890 to 71,359,415 raw reads, and then resulting in 915,487 
to 19,656,622 mapped reads (Table 2).

The Normande and Holstein milk miRNomes were compared. The total number of microRNAs identified in 
Normande cattle was 2,030, thus eight less than in Holsteins (Fig. 2A and Supplementary Table). The majority of 

Figure 1. Description of the Holstein milk miRNome. Number of predicted and annotated microRNAs 
in Holstein milk, according to their annotation in the miRBase and RumimiR databases (A). Proportion 
of microRNAs according to their read abundance, on average, over the nine libraries (B) and major milk 
microRNAs, with abundancy equal to or greater than 10,000 RPM, which equals 91,879 reads (C). RPM: reads 
per million. n: number of microRNAs. %: relative number of microRNAs per range.
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the microRNAs were present in the milk of the two breeds, with 1,771 common microRNAs, comprised of 1,049 
known and 722 predicted entities. However, these common microRNAs display variable abundancies between the 
two breeds. In particular, 14 microRNAs (13 annotated, 1 predicted) were ranked within a lower read abundance 
class (in RPM) in Normande milk than in Holstein, and 48 microRNAs (21 annotated, 27 predicted) were ranked 
within an upper RPM class in Normandes than in Holsteins (Supplementary Table).

Furthermore, some microRNAs were identified in the milk miRNomes of only one of the two breeds, with 
267 and 259 microRNAs detected in Holstein or Normande milk only, respectively (Fig. 2A and Supplementary 
Table). All these microRNAs were poorly represented, with a number of reads up to 28, and were not present in 
all animals.

To perform a comparative analysis of the microRNA read counts, the HTSFilter31 package was used to identify 
the threshold that maximizes the filtering similarity among samples. The identified threshold was equal to 168. 
The microRNAs whose expression is below this threshold are considered to generate a noisy signal and are then 
discarded from the analysis. Therefore, differential analysis was applied to 502 common microRNAs, whose max-
imal count across all individuals was higher than 168 reads. The statistical analysis revealed significant differences 
(p < 0.05) between milk miRNomes (Fig. 2B): 58 and 124 microRNAs are less and more abundant, respectively, in 
the milk of Normande than Holstein cows (Fig. 2C). Within the microRNAs less abundant in the Normande milk, 
57 are annotated and display abundance ratios between 1.5 and 20.1 (Fig. 3A). Thirty-four of these 57 microR-
NAs are present with a read abundance above 100 RPM in Holstein milk. In particular, seven major microRNAs 
in Holstein milk (with RPM higher than 10,000 RPM) are involved: bta-miR-22-3p, bta-miR-26a-5p, bta-miR-
27b-3p, bta-miR-30d-5p, bta-miR-375-3p, bta-miR-660-5p and bta-let-7a-5p, displaying abundance ratios from 
9.1 to 1.5. Two microRNA families are particularly represented: the let-7 family with four members and the miR-
30 family with five members.

Figure 2. Comparison of Holstein and Normande milk miRNomes. Venn diagram depicting microRNAs 
present in Normande and Holstein milk (A), with the range of numbers of reads associated with microRNAs 
detected in only one of the two breeds in square brackets. Individuals were plotted according to their 
coordinates on the first two components of the principal component analysis (Normande in blue; Holstein in 
red). Inertia ellipses where 95% of individuals are likely to lie within characterize the dispersion of each breed 
around its centre of gravity (B). Heat map of pairwise Pearson correlation of the counts of milk microRNAs  
(p. adj. < 0.05) (C). miR: microRNA. n: number of microRNAs. In orange: higher level; in blue: lower level.
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Among the 124 microRNAs more abundant in Normande milk, 37 are annotated, with variations abun-
dance ratios between −3.0 and −74.8 (Fig. 3B). Only eight microRNAs are present with abundance higher than 
100 RPM in Holstein milk: bta-miR-223-3p, bta-miR-142-5p, bta-miR-2887-5p, bta-miR-11976-3p, Rum-bta-
00219-chr3, Rum-bta-00660, Rum-bta-01950 and Rum-chi-01931.

The milk microRNA profile varies according to age. The Holstein and Normande cows were distrib-
uted into two age groups. The analysis of the milk miRNomes was extended to a study of the impact of the age. 

Figure 3. Annotated microRNA differentially present in milk according to breeds. Annotated microRNA 
with significant greater abundance in Holstein (A) or Normande (B) milk. H: Holstein, N: Normande; Ratio: 
abundance ratio; adj.P.Val: adjusted P-value. Classes of microRNAs according to their read abundance: 
red ≥ 10,000 RPM; 10,000 RPM > orange ≥ 1,000 RPM; 1,000 RPM > yellow ≥ 100 RPM; grey < 100 RPM.
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The differential analysis between groups of age of the two breeds highlighted nine microRNAs (one annotated and 
eight predicted microRNAs) with significantly higher abundance (p < 0.05) at 2 years of age compared to 3 years 
of age (Fig. 4A).

Intra-breed analyses were also performed showing no significant difference between age groups within the 
Holstein breed. In contrast, 37 microRNAs were present in significantly different levels (p < 0.05) according to age 
group within the Normande breed (Fig. 4B). In fact, five microRNAs are more abundant in the milk of 3-year-old 
rather than in 2-year-old Normande cattle, and 32 microRNAs (nine annotated, 23 predicted) are present at lower 
levels in 3-year-olds when compared to 2-year-old cows, seven of which also emerged from the age analysis that 
included both breeds.

The milk miRNome is a partial reflection of the lactating mammary gland miRNome. This 
Holstein whole milk miRNome was carried out in exactly the same way (RNA isolation, library construction 
and sequencing, analysis processes) as our previous study of the Holstein lactating mammary gland32, consisting 
of 654 annotated (487 microRNAs annotated in bovine, 167 in other species) and 679 predicted microRNAs. 
Amongst the 487 miRNA annotated in bovine, 433 (88.9%) were detected in milk (Fig. 5A).

Notably, 16 common microRNAs are present in the top 30 of both the milk and the mammary gland (Table 3), 
which include the 3 microRNAs most present in milk, miR-148a-3p, miR-30a-5p and miR-22a-3p. This miRNome 

Figure 4. Variation of the milk miRNome according to age. Heat map of significantly different normalized read 
counts of milk microRNAs (p. adj. < 0.05) between 2-year-old and 3-year-old animals, among both breeds (A) 
or within the Normande breed (B). H: Holstein; N: Normande. In orange: higher level; in blue: lower level.
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comparison has also allowed the highlighting of microRNAs with contrasting levels of abundance between milk 
and the mammary gland. In fact, five microRNAs are particularly present in milk, whereas their expression is low 
in mammary tissue: miR-30d-5p, miR-375-3p, miR-191-5p, miR-660-5p and miR-423-5p (Table 3). In contrast, 
ten other microRNAs are strongly expressed in the mammary gland while their abundance in milk is low, in 
particular miR-16-5p, miR-23a-3p, miR-126-5p, miR-143-3p and miR-200c-3p (Table 3). Furthermore, an analysis 
of the common top 30 microRNAs, using Tarbase and Diana mirPath, has underscored the regulation of some 
key pathways for lactation. First, regulatory networks controlling milk fat synthesis and metabolism, and second, 
pathways related to protein processing in the endoplasmic reticulum, glycan biosynthesis and MAPK signalling 
(Fig. 5B).

Discussion
The in-depth knowledge of bovine milk composition is a matter of ongoing interest, as well as the understanding 
of its variation according to genetic factors. In this context, we performed for the first time an exhaustive charac-
terization of the miRNomes in the milk of Holstein and Normande cows, two dairy breeds with distinct genetic 
backgrounds and milk production features, in the purpose of highlighting differences in microRNAs between 
breeds associated with the regulation of milk synthesis.

This study provides an extensive description of the whole milk miRNomes, consisting of over two thousand 
microRNAs, of which half are annotated in ruminant species. Here, the deep sequencing data analysis allowed 
the identification of 207 new bovine microRNAs that had already been identified in other species. These findings 

Figure 5. Comparison of Holstein milk and mammary gland miRNomes. Venn diagram depicting annotated 
microRNAs present in lactating mammary glands and milk (A). Heat map of the 16 most abundant microRNAs 
in both milk and lactating mammary glands versus significantly enriched functional union pathways, from 
Tarbase v7.0 and Diana mirPath v3.0 (B). miR: microRNA. According to the colour key, red indicates lower p 
values. In boxes: key pathways for mammary differentiation and lactation.
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resulted from the broad use of the miRDeep2 tool for all species and not only the bovines, which was comple-
mented by the use of the latest update of miRBase database (v22) and the newly available RumimiR database. 
Furthermore, it allowed the prediction of 931 microRNAs, adding new elements to published data obtained by 
the analyses of the only annotated bovine microRNAs22,23,33.

The comparative analysis of the milk miRNomes between Holstein and Normande cattle provides an extended 
list of 1,771 known and predicted microRNAs shared between breeds, which corresponds to almost 87% of each 
miRNome. The two breeds have the same top 10 milk microRNAs. Five of them are also in the top 10 of the 
Fleckvieh33 and Brown Swiss33,34 breeds whole milk miRNomes: miR-21-5p, miR-26a-5p, miR-30a-5p, miR-
148a-3p and let-7a-5p. This finding reinforces the likely importance of these microRNAs for lactation, particularly 
for miR-148a-3p, which has been consistently reported as the most abundant microRNA in the different milk 
fractions (fat, whey, and extracellular vesicles)21.

Three microRNAs, miR-99a-5p, miR-200a-3p and miR-200c-3p, present in the top 10 of the Fleckvieh33 and 
Brown Swiss33,34 breeds are not among the major microRNAs, albeit they are present at more than 1,000 RPM, in 
Holsteins and Normandes. The discrepancies between the top 10 may be due to differences between the breeds, 
and it would be interesting to explore them further. Nonetheless, the independent studies comparison remains 
sensitive, partly due to possible disparities between the RNA sequencing analysis and the microRNA identifica-
tion processes. To be ensured of an effective breed impact and to overcome any technical bias, the systematic use 
of a reference milk miRNome in all research studies would be insightful. With the Holstein being the first world’s 
dairy breed, its routine addition in every high-throughput analysis on bovine would be relevant.

Furthermore, this study allows the introduction of new insights about the differences in the miRNA patterns 
between Holstein and Normande cattle, which was unknown until now, and could be related to differences in 
milk production and breed genetic backgrounds. Two sets of microRNAs, dependent on breed, are highlighted. 
One set consists of 267 and 259 microRNAs only detected in Holstein or in Normande milk, respectively, with 

microRNA

Milk Mammary gland

Rank Reads Rank Reads

Most abundant microRNAs in 
both milk and mammary gland

bta-miR-148a-3p 1 211,987 1 73,408

bta-miR-30a-5p 2 148,868 24 14,132

bta-miR-22-3p 3 79,454 12 22,402

bta-miR-26a-5p 4 48,350 2 69,491

bta-miR-27b-3p 5 38,236 20 18,194

bta-miR-186-5p 6 36,384 33 7,350

bta-miR-21-5p 7 31,081 5 51,854

bta-miR-181a-5p 8 30,827 36 6,554

bta-miR-141-3p 9 26,984 18 19,658

bta-let-7a-5p 10 25,862 3 66,625

bta-miR-92a-3p 14 16,553 30 7,871

bta-let-7f-5p 15 14,616 16 20,529

bta-let-7b-5p 20 6,459 6 38,006

bta-miR-103-3p 22 5,538 27 10,838

bta-miR-200a-3p 23 5,051 25 13,369

bta-let-7c-5p 30 2,573 28 9,822

microRNAs more abundant in 
milk than in the mammary gland

bta-miR-30d-5p 11 22,893 48 4,013

bta-miR-191-5p 12 18,699 45 4,788

bta-miR-375-3p 13 17,306 59 1,984

bta-miR-660-5p 16 11,945 101 682

bta-miR-423-5p 17 9,514 71 1,555

microRNAs more abundant in 
the mammary gland than in milk

bta-miR-200c-3p 34 2,045 9 27,254

bta-let-7g-5p 40 1,646 15 20,894

bta-miR-29a-3p 47 1,422 23 14,332

bta-let-7i-5p 49 1,252 26 11,049

bta-miR-16-5p 63 659 10 25,906

bta-miR-23a-3p 66 579 8 30,292

bta-miR-143-3p 68 573 4 60,696

bta-miR-200b-3p 83 252 19 19,187

bta-miR-24-3p 88 203 14 21,134

bta-miR-126-5p 225 8 11 24,272

Table 3. Comparison of the top 30 microRNAs of Holstein milk and lactating mammary glands. Ranks and 
average normalized reads of the microRNAs annotated in bovine divided into three groups: most abundant in 
both milk and the mammary gland, more abundant in milk than in the mammary gland and more abundant in 
the mammary gland than in milk.
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very low abundance and not found in all animals. Their low presence reduces the impact of their potential biolog-
ical role, and their absence in the milk of some individuals prevent their use as breed milk biomarkers. However, 
they could be used as relevant candidates for further investigations of tissues or fluids other than milk in the 
respective breeds to highlight breed-specific biomarkers as long as they display valuable expression levels.

More importantly, the other set of microRNAs is formed by 182 microRNAs present in both breeds but with 
significant differences in abundance (p < 0.05). The different profiles according to breeds would result from var-
iations on microRNA regulatory mechanisms, while knowing that milk microRNAs are primarily synthesized 
in the mammary tissue27 and that their level in milk is linked to their expression in the mammary gland28. Thus, 
knowledge of the genes and pathways targeted by microRNAs displaying different abundance levels between 
breeds could be very useful for a better understanding of their roles in the regulation of milk production 
processes.

On the one hand, among the more abundant microRNAs in Holstein milk, the let-7 and miR-30 families 
are particularly represented. Interestingly, the let-7 family is downregulated by the Wnt-β-catenin pathway35, 
as is miR-37536, which is far more abundant in Holstein than in Normande milk. The Wnt-β-catenin pathway 
is involved in mammary gland development, notably in alveolar morphogenesis during pregnancy37, and has a 
role in the terminal differentiation of the mammary epithelial cell, particularly in the maintenance of epithelial 
integrity, which is essential for lactation38. Furthermore, in mammary cells, oestrogen could induce the expres-
sion of the members of the let-7 and miR-30 families and regulate them by altering their rate of processing39. 
Tong et al. demonstrated that oestrogen has an effect on the proliferation of bovine mammary epithelial cells 
and on the modulation of the key components of the Wnt signalling pathway40. The regulation and interactions 
between important hormone-activated pathways for mammary gland function could differ between Holstein 
and Normande cattle, in association with differences in their milk production, and could thus affect expression of 
the different microRNAs highlighted in this study. The high expression of let-7, miR-375 and miR-30 in Holstein 
milk could be the result of specific regulation of the mammary signalling pathways in order to promote high milk 
production.

The miR-221/222 cluster and the miR-142 family are more prevalent in Normande milk. The miR-221/222 
cluster is involved in lipid metabolism in mammary epithelial cells41 and the regulation of lactose42. Chu et al. 
showed that inhibition of miR-221 expression increased lipid content in mammary epithelial cells through eleva-
tion of the lipid synthesis enzyme FAS, while microRNA overexpression reduced lipid content41. The expression 
of miR-221 and miR-222 are correlated with genes strongly expressed in adipocytes and related to lipid metabo-
lism43. The role of the miR-221/222 cluster in lipid regulatory processes is obviously complex and needs further 
investigation, for example, regarding its specific deregulation in bovine mammary cells and to determine its 
impact on gene expression related to lipid pathways. Furthermore, miR-142 may be involved in the regulation of 
the number of somatic cells in milk42. miR-223, also significantly more abundant in Normande than in Holstein 
milk, has been shown to interact with miR-142 by upregulating its expression through transcription factors44 and 
could play a role in the mammary response to pathogens after parturition45. Milk yield is unfavourably geneti-
cally correlated with mastitis, notably in the Holstein breed, and largely correlated with the somatic cell score46,47. 
Differential regulation of microRNAs such as miR-142 and miR-223 according to cattle genetic background could 
influence this relationship, making these microRNAs possible candidates in strategies for the improvement of 
mastitis resistance.

Therefore, the in silico functional analysis performed for the targeted genes of the microRNAs with different 
levels in milk of Normande and Holstein revealed pathways related to the regulation of milk fat synthesis and 
metabolism, and protein processing in the endoplasmic reticulum. By being involved in the regulation of lipid 
and protein metabolism, these microRNAs could affect major lactation processes, and thus, their variation could 
lead to differences in milk production.

Milk is a daily ready access fluid, allowing the development of noninvasive identification and the analysis of 
biomarkers for production efficiency, health, physiological status, environmental impact and animal welfare state 
in dairy cattle48. Among milk biomarkers, microRNAs are relevant candidates with good stability and resistance 
that are arousing growing interest21. For example, seven microRNAs, including miR-148a, have been proposed to 
serve as quality control markers of milk products16. Here, this study also highlights microRNAs that could be used 
as breed indicators to help indicate fraud in labelling during cheese manufacturing. Our results permit a proposal 
of the dosage of a combination of three microRNAs, as miR-375-3p, miR-660-5p and miR-142-5p, to detect the 
presence of Holstein milk.

Moreover, the variable repartition of microRNAs among milk fractions (whey, fat, cells, vesicles) may 
result from distinct microRNA maturation or address processes that previously occurred in bovine mammary 
gland9,21,49. Their specific abundance level in some fractions might affect milk processing characteristics and also 
may have implications for neonatal or consumer health. Thus, the accuracy of the distribution of the signifi-
cantly different microRNAs, such as miR-375-3p and miR-142-5p, among milk fractions between Holstein and 
Normande cows will help to refine their potential impact.

Furthermore, analysis of the milk miRNomes revealed nine microRNAs with significant differences in abun-
dance level according to age. Then the intra-breed analysis revealed an age effect within Normande cattle, but not 
within Holsteins. However the average milk production of the 2-year-old Normande cows differs from that of 
3-year-old Normande cows. The differences observed according to the age could not be distinguish to the differ-
ence of milk production.

The comparison of Holstein milk and lactating mammary glands highlighted 16 microRNAs highly pres-
ent in both miRNomes. Half of them (miR-21-5p, miR-26a-5p, miR-30a-5p, miR-92a-3p, miR-148a-3p, miR-
186-5p, miR-200a-3p and let-7a-5p) were also identified in the comparative analysis of bovine milk compartment 
miRNomes (fat, whey and cells) reported by Li et al.9, driving particular interest in these eight microRNAs 
for their likely critical regulatory roles in bovine mammary gland development, function and milk synthesis. 
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However, this comparison revealed (i) that around 11% of the bovine annotated mammary microRNAs are not 
present in milk and (ii) microRNAs with contrasting abundance levels between milk and the mammary tissue. 
These results raised the issue of an incomplete correlation between the expression of microRNAs in mammary 
tissue and their presence in milk. Milk microRNAs primarily originate from mammary epithelial cells21,27. One 
of the reasons of this difference is that these microRNAs may not be expressed in the luminal epithelial cells, but 
in myoepithelial cells or adipocytes, and are not secreted in the lumen. Indeed, among microRNAs displaying 
noticeable lower levels in milk than in the mammary gland, miR-126-3p and miR-143-3p are defined as mammary 
basal cell type-specific, and miR-23a-3p and miR-29a-3p are significantly overexpressed in myoepithelial basal 
cells compared to luminal cells50. Therefore, the milk miRNome is more accurately a reflection of the miRNome 
of the mammary luminal cells.

In all, this work demonstrates that milk microRNA composition depends on dairy cow breed, thereby leading 
to the identification of possible microRNA regulators of breed-specific or general lactation processes, providing 
new insights into the possible mechanisms of milk production. Among the differences in microRNAs between 
Holstein and Normande cows, displaying high levels in milk, bta-let-7c-5p and bta-miR-375-3p are particularly 
interesting. In fact, their abundance levels are significantly higher in the milk of Holsteins than of Normandes; 
however, their presence in milk does not reflect their expression in mammary glands. bta-let-7c-5p is in the top 30 
of mammary gland microRNAs, whereas bta-miR-375-3p is much less expressed. The mechanisms leading to this 
special enrichment of miR-375 in milk compared to that in mammary tissue are unknown, and deciphering them 
would provide interesting elements to gain a better understanding of the regulation of lactation. In particular, 
answering the question of whether this enrichment in milk is also the case in the Normande breed would provide 
additional information towards a possible specific role of this microRNA in the Holstein breed. Moreover, varia-
tions in milk according to breed are also observed in the cattle mammary gland for these two microRNAs. Both 
are significantly more expressed in the mammary gland of Limousin than that of the Holstein breed24.

Using TargetScan, a comparison of the lists of predicted target genes regulated by bta-miR-375-3p and bta-let-
7c-5p highlighted 440 common targets, presumed to be more repressed by these two microRNAs in Holstein than 
in the Normande breed. The analysis of these common targets, using DAVID, resulted in the identification of 
more than 300 associated biological pathways. Among them, the best represented are those involved in transcrip-
tion regulation and inhibition, signal transduction, cell proliferation activation and cellular differentiation, which 
constitute core functions related to an active cell metabolism necessary for lactation. These two microRNAs might 
therefore play an important role in the repression of key pathways involved in the production of a milk rich in fat 
and protein, which specifically characterizes the Normande milk.

conclusion
In conclusion, using new generation sequencing, we performed the first study of milk miRNomes in Holstein and 
Normande breeds. This study provides an extended list of annotated and predicted microRNAs, which, on anal-
ysis, have shown that the milk microRNA composition depends on genetic background. MicroRNAs displaying 
significant differences in abundance between Holstein and Normande milk are known to be involved in the regu-
lation of lipid metabolism, mammary morphogenesis and differentiation. The results of this comparative analysis 
provide information for a better understanding of the roles of microRNAs for the regulation of milk production 
processes in general and the relation to breed specificities. Therefore, milk microRNAs could be used as breed 
indicators for milk product manufacturing, on the one hand.

Materials and Methods
experimental animals and sample preparation. Experiments reported in this study comply with the 
Institut National de la Recherche Agronomique ethical guidelines, in strict accordance with the EU Directive 
guidelines and regulations (EU Directive 2010/63/EU). The experimental protocol was approved by the French 
Ministry of Higher Education, Research and Innovation (Authorization APAFIS#3066-201511301610897v2).

To minimize the effect of the environment, all cows were raised together on the same experimental farm, with 
the same diet and rearing conditions. All animals were housed in INRA facilities, at the INRA Le Pin experimen-
tal farm (Normandy, France). During the winter period (from 10 days before calving to April), cows were kept 
indoors and received a total mixed ration, distributed once daily.

Cows were milked twice a day. Milk samples were collected from 17 healthy lactating primiparous cows: nine 
Holstein cows (four 2-year-olds, five 3-year-olds) and eight Normande cows (three 2-year-olds, five 3-year-olds). 
Whole milk samples were collected from one-time morning milking, around lactation day-68 (from day-48 to 
day-79), simultaneously for each age group for both breeds. Milk yield was recorded over a five-week production 
in the milking parlour (Boumatic-2050®) at each milking throughout the experiment. Milk fat, protein, lac-
tose, urea, acetone and BHB content were determined by mid-infrared spectrometry (MilkoScan FT600, Foss, 
Hillerød, Denmark), and somatic cell counts (SCC) with a Fossomatic cell counter (Foss, Hillerød, Denmark) at 
the Normandy Dairy Milk Analysis Laboratory (LILANO, Saint-Lô, France).

total RnA isolation. Total RNA were isolated from 500 µl of frozen bovine whole milk samples, without 
cells and fat fractionation, using the RNA NOW kit (Ozyme), with overnight precipitation to guarantee a max-
imum yield of small RNA. The concentration and integrity of the RNA were assessed by spectrophotometry 
(Nanodrop™, ND-1000) and by using the RNA 6000 Pico Kit on a Bioanalyzer 2100 (Agilent Technologies, CA, 
USA). The RNA samples were stored at −80 °C until needed for further processing.

Small RnA library construction and sequencing. Small RNA libraries were prepared using the 
Illumina® TruSeq® Small RNA Library Prep Kit (Illumina) with RNA isolated from the milk of each cow, 
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according to the manufacturer’s instructions, with PCR amplification up to 15 cycles, by the INRA @BRIDGe 
platform (Jouy-en-Josas, France).

Single-read sequencing of libraries was carried out on two lanes on an Illumina HiSeq 4000 sequencer by the 
GenomEast Platform (IGMBC, Illkirch, France). RNA sequencing data were subsequently deposited in the Gene 
Expression Omnibus (GEO): GSE134670.

computational analysis of sequencing data. After cleaning adapters and filtering for their size (17–28 nt)  
with Cutadapt51, the RNA-seq data were analysed using miRDeep2 software52 as described in Le Guillou et al.32, 
with the bovine reference genome bosTau8 and miRBase release 22 (all species)29. The quantification results gen-
erated by the quantifier.pl miRDeep2 module were filtered with a custom Perl script parse_miRDeep2_outputs.
pl (https://forgemia.inra.fr/sylvain.marthey/paqmir/blob/master/paqmir_postprocess_quantifier/parse_miRD-
eep2_output.pl) to eliminate any redundancy between mature microRNAs by assigning them to the precursors in 
the following order of priority: (1) mature known in the bovine species, (2) mature known in another species, and 
(3) mature predicted unknown. Additionally, microRNAs of the last two categories were searched with the new 
RumimiR database (v. June 2019)30 in order to identify ruminant microRNAs already described in the literature 
but not in the last version of miRBase (v.22), and this information was included for the annotation of quanti-
fied microRNAs. Predicted microRNAs were blasted against non-coding RNA (lncRNA, rRNA, tRNA, snoRNA) 
databases using RNAcentral (v.11)53.

Statistical analysis. Differences in dairy traits recorded between experimental animals were compared 
using nonparametric Mann and Whitney statistical analyses, with Microsoft Excel software. Tests results were 
considered to be statistically significant when p-values were smaller than 0.05.

Prior to the statistical analysis of sequencing data, the filtering method described by Rau et al.31 was used to 
remove microRNAs that appeared to generate an uninformative signal. This method aims to identify the thresh-
old that maximizes the filtering similarity among biological replicates, or in other words that where most genes 
tend to have either normalized counts lower than or equal to the cut-off point in all samples (i.e. filtered genes) or 
higher than the cut-off point in at least one sample (i.e. non-filtered genes). Tests for differential expression were 
only applied to microRNAs whose maximal count across all samples was higher than its threshold. This method 
was implemented under the Bioconductor HTSFilter package, V1.24.0031. The threshold value was found to be 
equal to 168 reads.

A principal component analysis of these data was performed using R software v3.5.1 (R Development Core 
Team, 2018, http://www.R-project.org) with the ade4 package v1.7.1354, followed by a differential expression anal-
ysis between milk miRNomes of the two breeds or the two age-groups with the Limma package, v3.37.1055. After 
a data normalization procedure with the TMM method56, a voom transformation (mean-variance modelling at 
the observational level), which computes (log-) counts per million using the effective library size, was intended 
to process RNA-Seq data prior to linear modelling in Limma. Then, in Limma, the lmFit function was used 
to fit row-wise linear models and fold changes were estimated using an empirical Bayes shrinkage procedure. 
The p-values were adjusted for multiple testing using the Benjamini and Hochberg method57, and those with an 
adjusted p-value < 0.05 were considered to be significant.

The same statistical analysis processes were also performed within each breed in order to evaluate the impact 
of intra-breed age. The threshold values estimated with HTSFilter are equal to 119 and 236 reads in Holstein and 
Normande, respectively.

Cluster analysis according to pairwise Pearson correlations between the sequencing counts of the significantly 
different microRNAs were performed using Heatmapper58.

pathway analysis of microRnA target genes. The pathway analysis of genes targeted by several 
microRNAs was performed using DIANA miRPath v.3.059. Targets are listed from DIANA-TarBase (v.7)60, a 
database devoted to the indexing of experimentally supported microRNA targets. KEGG analysis61 was per-
formed using the pathway union option, FDR correction, enrichment analysis method using the Fisher’s exact 
test (hypergeometric distribution) with a p-value threshold equal to 0.05.

For dedicated analysis, targets of individual microRNAs were predicted using TargetScan (v.7.2)62 and their 
functional analysis was performed using DAVID Bioinformatics Tools (v.6.8)63,64.
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