SCIENTIFIC REPORTS

natureresearch

OPEN

Long-range propagation of protons in single-crystal VO₂ involving structural transformation to HVO₂

Keita Muraoka & Teruo Kanki*

Vanadium dioxide (VO₂) is a strongly correlated electronic material with a metal-insulator transition (MIT) near room temperature. Ion-doping to VO₂ dramatically alters its transport properties and the MIT temperature. Recently, insulating hydrogenated VO₂ (HVO₂) accompanied by a crystal structure transformation from VO₂ was experimentally observed. Despite the important steps taken towards realizing novel applications, essential physics such as the diffusion constant of intercalated protons and the crystal transformation energy between VO₂ and HVO₂ are still lacking. In this work, we investigated the physical parameters of proton diffusion constants accompanied by VO₂ to HVO₂ crystal transformation with temperature variation and their transformation between VO₂ and HVO₂. The proton diffusion speed from HVO₂ to VO₂ was approximately two orders higher than that from VO₂ to HVO₂. The long-range propagation of protons leads to the possibility of realizing novel iontronic applications and energy devices.

Controlling the properties of strongly correlated electronic materials via carrier and impurity doping has gained significant attention over the past years. Doping has an impact on 3d-band filling, which often results in dramatic modification of the orbital states. This results in large changes of electronic properties, such as the metal-insulator transition (MIT). For example, a shift of the MIT temperature ($T_{\rm MI}$) of VO₂ via doping with a variety of elements, such as W, Mo, and Nb has been reported¹⁻⁸. This is caused by charge transfer from the impurity ions to the vanadium ions through the oxygen ions, which displaces an integral number of $3d^1$ electrons in V⁴⁺ that are Mott insulating states to $3d^{1+\delta}$, resulting in the formation of more stable metallic states. When using impurity elements with large atomic numbers of W, Mo and Nb, however, it is impossible to dynamically control the number of mobile carriers because of solid-state materials determined by an initial doping level. On the other hand, protons having strongly reductive activity in oxide materials can dynamically move via external fields and function as an electron donor. Recent work has demonstrated that dynamic proton-intercalation results in a large, reversible resistance modulation in oxide thin films, such as SrTiO₃, NdNiO₃, and VO₂ via a catalytic effect⁹⁻¹³, a non-catalytic effect^{14,15}, or an electric field¹⁶⁻²⁰. In general, the intercalation of protons in the insulating VO₂ state decreases its resistivity and it approaches a metallic state with a pseudo rutile structure^{11,19,21-24}. According to Yoon et al.¹³, heavy doping with protons using Pt catalytic nano-particles transforms VO₂ into HVO_2 under an H_2 + Ar gas atmosphere. HVO_2 has a different crystal structure from the tetragonal VO_2 , and it demonstrates typical-insulating behavior that follows the Arrhenius equation with a higher resistivity than that of VO₂. Moreover, a reversible structural deformation is possible between VO₂ in air and HVO₂ in the $H_2 + Ar$ gas atmosphere. This reversible resistance change has the potential to lead to the realization of novel ionic and/ or electronic applications. However, there is lack of information regarding essential physical parameters in this system, such as the diffusion constant of the intercalated protons in VO_2 and the crystal transformation energy between VO₂ and HVO₂.

In this work, we demonstrated the long-range propagation of protons in VO₂. This was accomplished by investigating the transient electronic transport properties during proton intercalation in VO₂ and the associated structural transformation to HVO₂ under H_2 + Ar gas atmosphere. This was followed by a return to VO₂ from HVO₂ after proton desorption under an N₂ gas atmosphere. The results showed that the diffusion constants and crystal transformation energies differed for the two states.

Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan. *email: kanki@sanken.osaka-u.ac.jp а

Figure 1. VO₂ microwire device with Pt electrode with catalytic effect and Basic transport properties of VO₂ and heavily proton intercalated VO₂. (**a**) A schematic illustration (left) and an optical microscope image (right) of a VO₂ microwire for the proton intercalation experiment. (**b**) Temperature dependence of the resistivity curves of a pristine 4- μ m-length VO₂ wire (the black solid dots) and of hydrogenated VO₂ (HVO₂) (the red solid dots). The inset shows the 1/*T* dependence of ln σ for the Arrhenius plots (**c**) The reversibility of the transport properties under H₂ + Ar or N₂ gases at 380 K.

Results

Device structures and basic transport properties. For VO₂ microwire devices prepared on TiO₂ (001) substrates, the width (*w*) was fixed at 2µm and the distance between catalytic Pt electrodes (*d*) was from 2µm to 10µm, as shown in the schematic in Fig. 1a. The optical image on the right of Fig. 1a shows a VO₂ microwire with Pt electrodes as an example. Figure 1b shows the temperature dependence of the resistivity curves in a VO₂ microwire with d = 4µm. The pristine VO₂ shows typical electronic transport properties with hysteresis due to the MIT in a N₂ gas atmosphere (solid black dots). Continuous annealing under H₂(5%) + Ar(95%) gas at 380 K for ~5 h resulted in a marked change to the insulating phase that followed the Arrhenius equation (solid red dots). The resistivity increased by ~5 orders of magnitude, which is in agreement with ref. ¹³. They determined that the heavily hydrogenated VO₂ had a structure and opened a band gap calculated by a first-principle method¹³. The band gap (E_g) of the hydrogenated HVO₂ was 0.71 eV, as derived from the inset of Fig. 1b using the equation as a pure semiconductor $\ln \sigma = -\frac{E_g}{2k_BT} + \ln \sigma_0$, where σ , σ_0 , and k_B are the conductivity of the thin film, a constant,

and the Boltzmann constant, respectively. The $E_{\rm g}$ takes the half value with the calculated bandgap of the HVO₂ with 2 electron doping unit cell in ref. ¹³. Furthermore, these results indicate that the VO₂ microwires also become fully hydrogenated VO₂ in the 4 µm gap between the Pt source and drain catalytic electrodes. Figure 1c shows the reversibility of the transport properties under H₂+Ar or N₂ gases at 380 K. The VO₂ microwire was initially metallic at 380 K in a N₂ atmosphere. As soon as H₂ gas was introduced into the measurement cell, the resistivity promptly increased with the intercalation of protons into VO₂. Eventually, the H₂ gas annealing resulted in the heavily hydrogenated VO₂, i.e., it formed the insulating HVO₂ phase. Compared with the time required for the transformation from VO₂ to HVO₂, the HVO₂ phase returned to the initial metallic VO₂ more quickly on N₂ gas annealing. This trend was in agreement with the data from ref. ¹³. The results of this experiment revealed the micro-scale diffusion of protons with a crystal change from VO₂ to HVO₂, the temperature dependence of resistance curves is almost same as the pristine curve, keeping the framework of VO₂ (Please see the section E in Supplementary Information in detail).

Analysis of the transient resistance behavior. Based on the H_2 or N_2 atmosphere dependent reversible reaction, the evolution of the proton concentration in VO₂ with time was investigated. As a boundary condition between the Pt and VO₂ interface, the chemical reaction rate as a differential equation with respect to time (*t*) was introduced according to:

$$\frac{dn_{\text{inter}}}{dt} = k_1 n_{\text{H}+} - k_2 n_{\text{inter}} \tag{1}$$

where k_1 and k_2 are the forward and reverse reaction rate constants, respectively, n_{H+} is the proton concentration at the contact area between the Pt catalytic electrodes and VO₂, and n_{inter} is the proton concentration at the VO₂ interface. From Eq. (1), the behavior of Fig. 1c can be understood. In the beginning, protons are intercalated into VO₂ at the contact points between Pt, VO₂, and the H₂ + Ar gas phase, as seen in an upper illustration of Fig. 2a, because $k_1n_{H+} > k_2n_{inter}$ and $n_{inter} = 0$ during the initial stage. The value of k_2n_{inter} gradually approaches that of k_1n_{H+} , until the two values are finally equal and reach the equilibrium state. As the H₂ + Ar gas is changed to N₂, n_{H+} approximately becomes zero, thus the protons in VO₂ are removed and the insulating HVO₂ returns to the metallic VO₂ form. This dynamic reaction at the interface was taken as a boundary condition with a dynamic time-dependence in the simulation below.

Next, we consider how the intercalated protons diffuse in VO₂. Theoretically, for ion diffusion, the ionic fluxes likely arise from a gradient in the ion concentration in the solid-state material. Thus, since n_{HVO2} is the proton ratio in a VO₂ unit cell, the hydrogen ion flux (J_{HVO2}) can be described as: $J_{\text{HVO2}} = -D\nabla n_{\text{HVO2}}$, where *D* is the diffusion coefficient. To conduct the transient state analysis, we use Fick's second law in the one dimensional case, namely, $\frac{\partial n_{\text{HVO2}}}{\partial t} = -\frac{\partial I_{\text{HVO2}}}{\partial x}$, which predicts the spatiotemporal evolution of the ion concentration. With this the following equation was obtained:

$$\frac{\partial n_{HVO2}}{\partial t} = -D \frac{\partial^2 n_{HVO2}}{\partial x^2} \cdot$$
⁽²⁾

To evaluate the spatiotemporal evolution of the proton concentration in VO_2 , numerical analysis using the finite difference method (FDM) was carried out based on the boundary condition of Eq. (1) and the transient diffusion equation of Eq. (2) (see Section A in Supplementary Information).

The inset of Fig. 2b shows the spatiotemporal mapping of the proton density in VO₂ from the simulation with $D = 150 \text{ nm}^2/\text{s}$. Here, x = 0 represents the interface of the VO₂ contacted with the Pt electrodes. We divided the 2-µm-length VO₂ wire by 100 in the FDM calculation, thus the integral *i* goes from 1 to 100 and the divided length (Δx) is 20 nm (further details in Section A of the Supplementary Information). The inset of Fig. 2b represents the proton diffusion behavior of a 4-µm-length VO₂ wire because the intercalation and diffusion behavior becomes symmetric at a 2µm distance from the Pt electrodes. Through this analysis, we can clearly understand the transient behavior of proton diffusion in the VO₂ wires.

For conversion of the proton concentration in VO_2 to resistivity, a serial resistor model was used as shown in the lower illustration of Fig. 2a, which is represented by the following equation:

$$\rho(T) = \frac{1}{100} \sum_{i=1}^{100} \rho_i(T) \tag{3}$$

The $\rho_i(T)$ can be simply defined as $(1 - n_{HVO2})\rho_i^{VO2} + n_{HVO2}\rho_i^{HVO2}(T)$, where ρ_i^{VO2} is the resistivity of metallic VO₂ and $\rho_i^{HVO2}(T)$ is the temperature dependent resistivity of the insulating HVO₂.

The ρ_i^{VO2} was fixed at 0.0008 Ω cm between 300 K and 380 K because of its nearly constant value with reference to the VO₂ resistivity curve in Fig. 1c, while $\rho_i^{HVO2}(T)$ varies with temperature. The experimental values of $\rho_i^{HVO2}(T)$ were taken at the required temperature by referring to the temperature vs resistance curve of HVO₂ in Fig. 1b. Figure 2b shows the transient resistivity behavior with time for the 4-µm-, 6-µm-, and 10-µm-length VO₂ wires at 380 K. The red dot curves show the simulation results using Eqs. (1) to (3) with the appropriately selected diffusion constant for the proton that transforms the crystal structure from VO₂ to HVO₂; $D_{\text{HVO2}}=150 \text{ nm}^2/\text{s}$ at 380 K determined by the wire lengths of VO₂ with 4µm, 6µm, and 10µm. The simulation curves could fit to the experimental curves well in their lengths. The diffusion value was compared with proton diffusion in the [001] direction of rutile-type TiO₂ without a structural transformation²⁵. It is considered that the slower diffusion constant of VO₂ [110] than that of TiO₂ [001] would be due to difference of two oxygen distance ($d_{\alpha-0}$) in [001] and

Figure 2. Transient electronic transport behaviors of VO₂ microwires in 4-µm-, 6-µm- and 10-µm-length. (a) Illustration of the chemical kinetics with forward (k_1) and reverse (k_2) reaction rate constants with the Pt catalytic effect (upper) and the serial resistor model via the FMD simulation. (b) Experimental and simulation results for the time dependence of the resistivity in 4-µm-, 6-µm-, and 10-µm-length VO₂ wires after starting hydrogen intercalation under the H₂(5%) + Ar(95%) gas atmosphere at 380 K. The inset shows the spatiotemporal map of the proton ratio for the case of $D_{HVO2} = 150 \text{ nm}^2/\text{s}$, which was the fitting value for the doted lines of the 4-µm-, 6-µm-, and 10-µm-length VO₂ wires in Fig. 2b. (c) Spatial maps of the proton ratio using $D = 150 \text{ nm}^2/\text{s}$ in the 4-µm-, 6-µm-, and 10-µm-length VO₂ wires for 4 h after start from hydrogen intercalation.

[110] directions, respectively, because the diffusion constant of protons hopping to next oxygen sites is dependent on square length of d_{o-0} . The d_{o-0} in TiO₂ [001] direction is approximately 1.48 Å²⁵, whereas the d_{o-0} in VO₂ [110] and HVO₂ [110] are approximately 2.66 Å and 2.68 Å¹³, respectively. Figure 2c shows the spatial mapping of the proton ratio using $D_{\text{HVO2}} = 150 \text{ nm}^2/\text{s}$ with 4-µm-, 6-µm-, and 10-µm-length VO₂ wires for 4 h after the start of proton intercalation. The occupancy of the protons was high at >80%/unit cell, even at the center of the 4-µm-length VO₂ wire, while the center of the 10-µm-length wire was still unoccupied by protons. The spatial density of HVO₂ clearly reflects the resistance behavior shown in Fig. 2b.

Figure 3. Transient electronic transport behaviors of the 4-µm-length VO₂ microwire at a variety of temperatures. (**a**-**d**) Time dependence of the resistivity behaviors in the 4-µm-length VO₂ wire at 320 K, 340 K, 360 K and 380 K, respectively. (**e**) the red dots represent experimental D_{HVO2} values in the VO₂ wire with structural transformation to HVO₂, estimated from the simulated fitting in Fig. 3a-d (the red dot lines). The red line is the fitting curve using Eq. (4). In comparison with the experimental D_{HVO2} , the proton diffusion constant of the parallel direction along the c axis of TiO₂ as a function of temperature in ref. ²¹ (black line). The inset shows the 1/T dependence of ln D_{HVO2} for the Arrhenius plots.

Discussion of the physical picture. Next, we estimated the activation energy $(E_{\rm HVO2})$ for the structural transformation from VO₂ to HVO₂ using the experimental results of the 4-µm-length VO₂ wire and simulation fittings. Figure 3a–d show the time dependence of the resistivity behaviors in the 4-µm-length VO₂ wire at 320 K, 340 K, 260 K, and 380 K, respectively. The simulation curves (red dot curves) were fitted by appropriately selecting the $D_{\rm HVO2}$ values. The dashed blue lines in Fig. 3a–d indicate the resistivity of HVO₂ with the measurement temperature taken from the 4-µm-length VO₂ wire in Fig. 1b. The values of the experimental resistivity at each temperature were used as the simulation values of $\rho_i^{\rm HVO2}(T)$. From these fittings, we estimated the $D_{\rm HVO2}$ values, which are 5 nm²/s at 320 K, 10 nm²/s at 340 K, 50 nm²/s at 360 K, and 150 nm²/s at 380 K, respectively. In general, the variation of the diffusion constant (*D*) with temperature takes the form of a thermally activated-type equation as below:

$$D(T) = D_0 \exp\left(-\frac{E_{\rm D}}{k_B T}\right).$$
⁽⁴⁾

where E_D is the diffusive activation energy and D_0 is the frequency factor.

Figure 3e shows temperature dependence of $D_{\rm HVO2}$. The red dots represent the experimental $D_{\rm HVO2}$ values in the VO₂ wire with structural transformation to HVO₂, estimated from the simulated red dot lines in Fig. 3a–d. The red line is the fitting curve using Eq. (4). Compared with our experimentally determined $D_{\rm HVO2}$ values, the diffusion constant of protons in the direction parallel to the *c* axis of rutile-TiO₂ (black line)¹⁸ are reasonably similar. Considering the diffusion constant of protons in TiO₂²⁵, which is same crystal structure as VO₂, and the direct observation of proton diffusion in VO₂ by a microscope¹⁵. In addition, at the section D in

Figure 4. Transient electronic transport behaviors returned from HVO₂ to VO₂. (**a**) Time dependence of normalized-resistive behaviors from HVO₂ to VO₂ under a N₂ gas atmosphere in the 4-µm-length wire at 300 K, 320 K, 340 K, 360 K, and 380 K, respectively. The red dot lines show simulation curves derived by Eqs. Eq. (1-4) including the inhabitant effect in Section B of Supplementary Information. (**b**) The 1/*T* dependence of ln D_{VO2} for the Arrhenius plots. (**c**) Schematic of the crystal transformation energies between VO₂ and HVO₂.

Supplementary Information, resistance once insulating monoclinic-state of VO₂ at 290 K decreases in an insulating monoclinic-state of VO₂ at 290 K under a $H_2(5\%) + Ar(95\%)$ gas atmosphere. This is due to carrier doping from OH group without crystal transformation, that is, carrier density increases keeping the tetragonal VO₂ structure. With further developing proton-intercalation, the heavy proton dopants promote transformation to the different crystal structure of insulating HVO_2^{13} . This transient response appears in Fig. S4. Thus, the origin of resistance changes in Figs. 2b, 3a-d and 4a can be more reasonably explained as proton diffusion in VO₂ than formation of contact resistance and/or small fractions having proton-puddles. The inset shows the 1/T dependence of $\ln D_{\rm HVO2}$ for the Arrhenius plots. Figure 3e shows 1/T dependence of the $D_{\rm HVO2}$ values derived from the fitting curves using Eq. (4). The solid red line was obtained by the least-square method. From the slope, we determined that the diffusive activation energy for transformation from VO₂ to HVO₂ was 0.61 eV. For the diffusive activation energy for the reverse transformation from HVO₂ to VO₂, we estimated the diffusion coefficients ($D_{VO2}(T)$). Figure 4a shows the transient normalized-resistance curves for the reverse HVO₂ to VO₂ transformation in a N_2 atmosphere at 300 K, 320 K, 340 K, 360 K, and 380 K, respectively. Simulation curves using the FDM calculations could be well fitted to the experimental curves by incorporating the temperature-dependent coverage of hydrogen adatoms on Pt surface²⁶ (Section B of the Supplementary Information provides further details). The D_{VO2} was 4600 nm²/s at 300 K, 10000 nm²/s at 320 K, 20000 nm²/s at 340 K, 45000 nm²/s at 360 K, and 90000 nm²/s at 380 K, which were more than two orders higher than those of D_{HVO2} . From the fitted D_{VO2} at various temperatures, the activation energy for the transformation from HVO₂ to VO₂ (E_{VO2}) was determined to be 0.37 eV, as obtained from the slope in Fig. 4b. Figure 4(c) shows the transformation energy between VO₂ and HVO₂ derived from the above data. VO₂ structure is more stable than that in HVO₂ structure.

Discussion

We clarified the physical parameters of heavily proton-intercalated VO₂ through investigation of proton diffusion. Single-crystal VO₂ thin films with a layer-by-layer growth were used to describe the crystal transformation energies from VO₂ to HVO₂ and from HVO₂ to VO₂. This was accomplished through investigation of the proton diffusion using the basic equations listed in Eq. (1) to Eq. (3). Data from in-plane poly-crystalline VO₂ thin films with grains on Al₂O₃ (0001) substrates²⁷ were not well-fitted to the ideal simulations using these equations. This was because a different crystal direction in-plane and grain boundaries disturb the ideal proton diffusion (Section C in Supplementary Information provides further details). It was found that the proton diffusion speed from HVO₂ to VO₂ was approximately two orders higher than that for VO₂ to HVO₂. The long-range micro-meter proton propagation, differences in the proton diffusion constants, and the asymmetry transformation energy between HVO₂ and VO₂ offer opportunity for the realization of novel iontronic applications and for energy devices, such as hydrogen storage.

Methods

Microwire preparation. Single crystal VO₂ thin films were epitaxially grown on TiO₂ (001) substrates using the pulsed laser deposition technique (ArF excimer laser, $\lambda = 193$ nm), with a substrate temperature of 420 °C, an oxygen pressure of 0.95 Pa, a laser repetition rate of 2 Hz, and with an energy fluency of 10 mJ/cm². A V₂O₅ pellet was used as the target. The deposition rate was ~0.3 nm/min. The thickness of the VO₂ thin films were fixed at ~10 nm. VO₂ grown on the TiO₂ (001) substrate had a tetragonal (001) plane, which could be verified by the X-ray diffraction pattern and SEM images of the VO₂ thin films prepared under the same fabrication conditions in Ref. ²⁸⁻³⁰. The films and Pt catalytic electrodes were patterned *via* photolithography. A 40-nm-thick Pt electrode was deposited on the patterned VO₂ microwires. The width (*w*) was fixed at 2 µm and the Pt electrode distance (*d*) was from 2 µm to 10 µm, as shown in the schematic in Fig. 1(a). The right image in Fig. 1a shows a VO₂ microwire with Pt electrodes as an example.

Measurements. The electronic properties of the films were measured via a two-probe method using a current-voltage source meter (2614B, Keithley Instruments) under $H_2(5\%) + Ar(95\%)$ or N_2 gas atmospheres. The current flow direction was [110] in the rutile VO₂ thin films.

Received: 28 August 2019; Accepted: 13 December 2019; Published online: 27 December 2019

References

- 1. Fisher, B. Electrical and Seebeck effect measurements in Nb-doped VO2. J. Phys. Chem. Solid. 43, 205-211 (1982).
- 2. Takahashi, I., Hibino, M. & Kudo, T. Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using Polyvanadate-based sols contacting W and Mo or W and Ti. *Jpn. J. Appl. Phys.* **40**, 1391–1395 (2001).
- 3. Shibuya, K., Kawasaki, M. & Tokura, Y. Metal-insulator transition in epitaxial $V_{1-x}W_xO_2(0 \le x \le 0.33)$ thin films. *Appl. Phys. Lett.* **96**(1-3), 022102 (2010).
- Miyazaki, K., Shibuya, K., Suzuki, M., Wado, H. & Sawa, A. Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO₂ films. *Jpn. J. Appl. Phys.* 53(1-5), 071102 (2014).
- Strelcov, E. et al. Doping-Based Stabilization of the M2 Phase in Free-Standing VO₂ Nanostructures at Room Temperature, Nano Lett. 12, 6198–6205 (2012).
- Ardakani, H. A. *et al.* Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO₂ Nanowires. *Nano Lett.* 15, 7179–7188 (2015).
- 7. Shibuya, K., Kawasaki, M. & Tokura, Y. Metal-insulator transition in epitaxial $V_{1,x}W_xO_2(0 \le x \le 0.33)$ thin films. *Appl. Phys. Lett.* **96**(1-3), 022102 (2010).
- Liu, S. J., Fang, H. W., Su, Y. T. & Hsieh, J. H. Metal-insulator transition characteristics of Mo- and Mn-doped VO₂ films fabricated by magnetron cosputtering technique. *Jpn. J. Appl. Phys.* 53(063201), 1–5 (2014).
- Takami, H., Kanki, T., Ueda, S., Kobayashi, K. & Tanaka, H. Filling-controlled Mott transition in W-doped VO₂. Phys. Rev. B 85(1-4), 205111 (2012).
- Takami, H., Kawatani, K., Kanki, T. & Tanaka, H. High Temperature-Coefficient of Resistance at Room Temperature in W-Doped VO₂ Thin Films on Al₂O₃ Substrate and Their Thickness Dependence. *Jpn. J. Appl. Phys.* 50(055804), 1–3 (2011).
- 11. Wei, J., Ji, H., Guo, W., Nevidomskyy, A. H. & Natelson, D. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. *Nature Nanotech.* 7, 357–362 (2012).
- Shi, J., Zhou, Y. & Ramanathan, S. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. *Nat. Commun.* 5(5860), 1–9 (2013).
- Yoon, H. et al. Reversible phase modulation and hydrogen storage in multivalent VO₂ epitaxial thin films. Nature Mater. 15, 1113–1120 (2016).
- 14. Chen, Y. et al. Non-catalytic hydrogenation of VO₂ in acid solution. Nat. Commun. 9(1-8), 818 (2018).
- Lin, J. et al. Hydrogen Diffusion and Stabilization in Single-Crystal VO₂ Micro/ Nanobeams by Direct Atomic Hydrogenation. Nano Lett. 14, 5445–5451 (2014).
- Ohta, H. *et al.* Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. *Nat. Commun.* 1(1-6), 118 (2010).
- Sasaki, T., Ueda, H., Kanki, T. & Tanaka, H. Electrochemical gating-induced reversible and drastic resistance switching in VO₂ nanowires. Sci. Rep. 5(1-7), 17080 (2015).
- Kanki, T. & Tanaka, H. Research Update: Nanoscale electrochemical transistors in correlated oxides. APL Mater. 5(1-11), 042303 (2017).
- Ji, H., Wei, J. & Natelson, D. Modulation of the Electrical Properties of VO₂ Nanobeams Using an Ionic Liquid as a Gating Medium. Nano Lett. 12, 2988–2992 (2012).
- Jo, M. et al. Gate-Induced Massive and Reversible Phase Transition of VO₂ Channels Using Solid-State Proton Electrolytes. Adv. Funct. Mater. 28(1-7), 1802003 (2018).
- Filinchuk, Y. et al. In Situ Diffraction Study of Catalytic Hydrogenation of VO₂: Stable Phases and Origins of Metallicity. J. Am. Chem. Soc. 136, 8100–8109 (2014).
- Hong, W.-K. et al. Hydrogen-Induced Morphotropic Phase Transformation of Single-Crystallin Vanadium Dioxide Nanobeams. Nano Lett. 13, 1822–1828 (2013).
- Lin, J. et al. Hydrogen Diffusion and Stabilization in Single-Crystal VO₂ Micro/Nanobeams by Direct Atomic Hydrogenation. Nano Lett. 14, 5445–5451 (2014).
- Warnick, H. K., Wang, B. & Pantelides, T. S. Hydrogen dynamics and metallic phase stabilization in VO₂. Appl. Phys. Lett. 104(1-4), 101913 (2014).
- 25. Bates, J. B., Wang, J. C. & Perkins, R. A. Mechanisms for hydrogen diffusion in TiO₂. Phys. Rev. B 19, 4130-4139 (1979).
- Markovic, N. M., Grgur, B. N. & Ross, P. N. Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. J. Phys. Chem. B 101, 5405–5413 (1997).
- Okimura, K. & Sakai, J. Changes in Lattice Parameters of VO₂ Films Grown on c-Plane Al₂O₃ Substrates across Metal–Insulator Transition, *Jpn. J. Appl. Phys.* 48(1-6), 045504 (2009).
- Wei, T., Kanki, T., Fujiwara, K., Chikanari, M. & Tanaka, H. Electric field-induced transport modulation in VO₂ FETs with high-k oxide/organic parylene-C hybrid gate dielectric. *Appl. Phys. Lett.* 108(1-4), 053503 (2016).
- Sohn, A., Kanki, T., Sakai, K., Tanaka, H. & Kim, D. W. Fractal Nature of Metallic and Insulating Domain Configurations in a VO₂ Thin Film Revealed by Kelvin Probe Force Microscopy. Sci. Rep. 5(1-7), 10417 (2015).
- Kawatani, K., Kanki, T. & Tanaka, H. Formation mechanism of a microscale domain and effect on transport properties in strained VO₂ thin films on TiO₂(001). *Phys. Rev. B* **90**(1-5), 054203 (2014).

Acknowledgements

The authors would like to thank S. Sakakihara for carrying out the RIE process, M. Sakuma for advice on proper device-preparation methods, Professor H. Tanaka for giving comments in this paper, and the Nanotechnology Platform Project (Nanotechnology Open Facilities in Osaka University) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) (S-18-OS-0020, F-18-OS-0024). This work was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices".

Author contributions

K.M. fabricated the devices, conducted the measurements, analyzed the data, and wrote the manuscript. T.K. planned the research direction, supervised the experiment, analyzed the data, and the main manuscript text. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-56685-4.

Correspondence and requests for materials should be addressed to T.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019