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Localized spatial distributions of 
disease phases yield long-term 
persistence of infection
promit Moitra & Sudeshna Sinha*

We explore the emergence of persistent infection in two patches where the phases of disease 
progression of the individuals is given by the well known SiRS cycle modelling non-fatal communicable 
diseases. We find that a population structured into two patches with significantly different initial states, 
yields persistent infection, though interestingly, the infection does not persist in a homogeneous 
population having the same average initial composition as the average of the initial states of the two 
patches. this holds true for inter-patch links ranging from a single connection to connections across 
the entire inter-patch boundary. So a population with spatially uniform distribution of disease phases 
leads to disease extinction, while a population spatially separated into distinct patches aids the long-
term persistence of disease. After transience, even very dissimilar patches settle down to the same 
average infected sub-population size. However the patterns of disease spreading in the patches 
remain discernibly dissimilar, with the evolution of the total number of infecteds in the two patches 
displaying distinct periodic wave forms, having markedly different amplitudes, though identical 
frequencies. We quantify the persistent infection through the size of the asymptotic infected set. We 
find that the number of inter-patch links does not affect the persistence in any significant manner. The 
most important feature determining persistence of infection is the disparity in the initial states of the 
patches, and it is clearly evident that persistence increases with increasing difference in the constitution 
of the patches. So we conclude that populations with very non-uniform distributions, where the 
individuals in different phases of disease are strongly compartmentalized spatially, lead to sustained 
persistence of disease in the entire population.

Theoretical approaches, based on mathematical analyses and numerical simulations of models, have provided 
useful tools to gauge the influence of diseases in a population1–3. For instance, there have been interesting studies 
on disease control on networks through analysis of networks of sexually transmitted disease, analysis of transmis-
sion dynamics for Zika virus on networks and disease dynamics in multihost interconnected networks4,5.

Specifically, whether or not infection persists in the long-term in a population is an issue of much significance, 
and has potentially practical consequences for designing disease control policies. Now patterns of outbreaks such 
as spiral waves6–8 and self organized states characterized by scale-invariant behaviour emerging over a wide range 
of spatial and temporal scales9, as well as models focusing on the probability of infection transmission in net-
works10–17, have been extensively investigated. However the identification of features that determine the long-term 
persistence of infection, at time-scales that are large compared to a single disease cycle, is relatively unexplored. 
So the focus of our work here will be a particular issue that has immense bearing on the broad question of per-
sistence of infection in a region: does the separation of a population into distinct sub-regions where individuals 
in different stages of the disease are spatially clustered, hinder or aid the long-term sustenance of disease? More 
generally, this line of enquiry has bearing on the broader question of how micro-structure of populations influ-
ences asymptotic macrodynamics of disease. That is, we focus on collective dynamical patterns that emerge in 
the long-term, from the interplay of local influences, such as continual self-sustained waves of infection in the 
population, along with complex temporal oscillations in the prevalence of infecteds. The results also have poten-
tial bearing on whether or not traditional analyses based on differential equations, typically built on the premise 
of well-mixed populations18, can capture all aspects of long-term persistence of infection. We will demonstrate 
in this work that our approach complements such traditional analyses, and provides additional insights deter-
mined crucially by the heterogeneity or “patchiness” of populations. This approach will shed light on important 
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phenomena that are not captured by mean densities, and are very significantly affected by patchy distributions or 
spatial clustering of individuals in different stages of the disease.

Note that the focus of our work here is distinct from studies of the effect of network modularity on disease 
spreading19. Here the underlying connectivity is not modular. Rather the population lives on a two-dimensional 
plane, with regular nearest neighbours links. However, what we consider is a structured distribution of the state 
variables, i.e. a partitioned spatial distribution of the disease phases. So we consider long-term infection persis-
tence in populations comprised of localized spatial patches with distinct distributions of the disease stages. Such 
spatial compartments can be considered as “communities”, characterized by different distributions of the disease 
stages among the individuals in each patch. The long-term impact of such initial non-uniformity in the spatial 
distribution of states is the key focus of our investigation.

Model
The SIRS cycle is one of the most successful models that have captured the essence of the epidemiology of infec-
tious diseases in mathematical terms20,21. It is particularly relevant for modelling the progression of communica-
ble diseases that are non-fatal or where the mortality rates are not significant enough to be included in the model, 
and where the immunity wanes over time so that individuals can get reinfected. This class of diseases involve a 
stage of temporary immunity, and include diseases such as tuberculosis, influenza, typhoid, tetanus, cholera and 
small pox22,23. For instance, North American influenza dynamics, in particular the H5N1 and H1N1 strains of the 
influenza virus, have been well described by the SIRS model24.

The SIRS cycle involves three distinct disease stages. To begin with, an individual is susceptible to infection. 
This stage denoted by the symbol S. When the susceptible individual comes into physical contact with another 
infected individual in its neighborhood, the susceptible person becomes infected. This infectious stage is denoted 
by the symbol I. So a susceptible individual will progress from S to I, after such a contact. Note that the contact 
with an infected individual is a stochastic process occurring with a probability determined by the composition 
of the population. After the infectious stage is a refractory stage, which represents the temporary immunity from 
the disease. It is denoted by the symbol R. In this stage, people are immune to further infection, and also do not 
have the capacity to infect other individuals in its neighbourhood. Since this immunity is only temporary, an 
individual in the refractory stage becomes susceptible again after a while. So the refractory period is followed by 
the susceptible stage again. Hence the disease progression is cyclic.

In this work the SIRS cycle will be described by a cellular automaton (CA), as proposed in ref. 25. The dis-
crete time steps in the cellular automaton model will be denoted by an integer t. The population lives on a 
2-dimensional plane, and the location of each individual is given by indices (i, j) on a 2-dimensional square lat-
tice. The phase in the disease cycle of each individual at location (i, j) is given by an integer counter τi,j(t), which 
takes values from 0, 1, …, τ0, with τ0 = τI + τR, where τI is the length of the infectious period, τR is the length of 
the refractory period, and τ0 + 1 is the total disease cycle length25–28.

The identification of the stage of disease (S, I or R) by the variable τ is given as follows:

 (i) When τi,j(t) = 0, the individual at site (i, j) is susceptible (S);
 (ii) When 1 ≤ τi,j(t) ≤ τI, the individual at site (i, j) is infected (I);
 (iii) When τi,j(t) > τI, the individual at site (i, j) is in the refractory period (R).

The dynamics of the disease phases are as follows: When phase τi,j(t) ≠ 0, i.e. the individual is either infected 
or refractory (I or R), the counter updates by 1 every time step. This goes on till the refractory period ends, after 
which the individual becomes susceptible again. This mathematically implies that when τi,j(t) = τ0, at the next 
time step it becomes zero, i.e. τi,j(t + 1) = 0. This signifies that after completion of the R stage the individual goes 
back to stage S. So the cellular automaton model of the cycle S → I → R → S is given concisely by the following 
update rules25,27:
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τ τ
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We consider the refractory stage to be longer than the infective period, i.e. τR > τI, which is a typical situation 
in many classes of disease. Specifically in this work, without significant loss of generality, we take τ = 4I , τ = 9R  
and τ0 τ τ= +I R = 13.

infection spreading. We consider that a susceptible individual (i.e. with τ = 0) will become infected if one or 
more individuals in its nearest neighbourhood is in the infected stage. So the condition for infection spreading is as 
follows: if τi,j(t) = 0 and even one neighbouring site is such that 1 ≤ τx,y(t) ≤ τI, then τi,j(t + 1) = 1. Here {x, y} are 
the site indices of the four nearest neighbours of site (i, j) on the 2-dimensional lattice: (i − 1, j), (i + 1, j), (i, j − 1) 
and (i, j + 1). The initial fraction of infecteds, susceptibles and refractory individuals in a patch is denoted by I0, S0 
and R0 respectively. In this work the full range of I0 is explored, with S0 = R0.

A significant feature of the disease dynamics here is the interplay of stochastic and deterministic processes. 
The transition from susceptible to infected, is governed by the disease stages of the individals in the neighbour-
hood, and so it depends crucially on the specific random initial configuration of the different disease phases 
amongst the individuals. Since the pattern of disease progression is determined by the random initial state, dif-
ferent probability distributions of disease phases in the population may yield significantly different long-term 
dynamics. However the disease cycle, once initiated, is completely deterministic, going over the infective and 
refractory periods in τ0 time steps and returning back to the susceptible stage. Since the SIRS cellular automata 
has a finite state space, the full state of a population under disease progression is necessarily recurrent. When all 
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individuals are susceptible, the infection dies out, i.e. all susceptibles is an absorbing state of the system29. Lastly 
note a significant difference from certain earlier models here. In our system, no set of agents are kept artificially in 
the infected state as in refs. 25,26, and so there is the possibility of complete extinction of disease.

We now investigate the spread of infection in a group of spatially distributed individuals, where at the indi-
vidual level the disease progresses in accordance with the SIRS cycle given above. In this work we focus on an 
unexplored aspect of such systems, namely we attempt to ascertain the dependence of the persistence of infection 
on the structure of the population. So the specific question of relevance here will be the correlation between sus-
tained long-time persistence of disease in the two patches and the difference in the initial states of the two patches. 
That is, we will investigate the dependence of infection persistence (if any) on the initial differences between the 
patches constituting the population.

In particular, we consider a population of individuals in two distinct patches. Each patch is a 2-dimensional 
N × N lattice where every node, representing an individual, has 4 nearest neighbors. Within each patch, the 
phases of the disease cycle are randomly distributed among individuals such that the distributions of infecteds, 
susceptibles and refractory individuals are spatially uniform over the lattice constituting each spatial patch. The 
boundaries of the patches are fixed, with no interactions outside the patch. So each population patch mimics a 
closed region, such as an island or an isolated habitat.

We first recall the principal results for a single patch where the disease phases have a uniform random distri-
bution27. Here persistent infection emerges only when the initial population consists of an admixture of suscepti-
ble and refractory individuals, and there is atleast one infectious seed. There is a window of persistence in I0, with 
I0 → 0 at the lower end of this window, i.e. when the initial population has a uniform distribution of susceptible 
and refractory individuals, a single contagious agent can give rise to sustained infection. On the other hand there 
is a critical fraction of initial infecteds I0 ( . .–~0 2 0 3) beyond which the system cannot sustain infection in the 
long-term. So counter-intuitively too many initial infecteds (approximately more than a third of the population) 
also leads to extinction of the infection.

Now we consider two such patches, with each patch characterized by distributions of infected, susceptible and 
refractory individuals, which can be very different. Such a separation in terms of the initial composition provides 
insight for situations where the spatial distribution of the disease phases have become highly non-uniform, and 
this could occur for instance in cases of attempted containment or movement restrictions. The patches are con-
nected through a small number of links. The connections between the two patches may be spatially adjacent or 
randomly located. The fraction of inter-patch links along the adjoining edges of the patches is denoted by fic. This 
quantity is analogous to a connection density between the patches, and reflects the probability that individuals 
from a patch can interact, through contact, migration or transport across the boundary, with a set of individuals 
in the other patch. In this work we will consider a wide range of connection densities, from one or two connec-
tions, to links along the entire edge of the boundary between the patches. The central results of our work here, 
based on order parameters obtained by averaging over space and time, do not depend on the location of the links.

Spatiotemporal patterns of Disease Spreading
We first study the spatiotemporal patterns of the spread of infection in the two patches connected via a few links 
along an adjoining edge. With no loss of generality, we display results for two patches of size 100 × 100.

In order to explore the effect of the non-uniformity of the patches on persistence of disease, which is the prin-
cipal focus of our investigation, we consider the patches to have varying initial fractions of susceptibles S i

0
( ), 

infecteds I i
0
( ) and refractory individuals R i

0
( ), where i = 1,2 is the index of the community. That is, the patches are 

comprised of random admixtures of infected, susceptible and refractory individuals, which may differ on an 
average, in varying degrees. So the patches are distinct in terms of the disease stages of the individuals present in 
the patch, and the non-uniformity of the patches is in the distribution of the state variables in the patch.

Specifically we explore the number of infecteds in the emergent state of the entire population, under varying 
differences in the initial states of the patches. That is, we investigate the long-term presence of infection in both 
patches under progressively increasing difference in the initial states of the patches. Representative results are 
displayed in Figs. 1 and 2. Figure 1 shows the infection spreading patterns for two patches, where the initial frac-
tion of infecteds is = .I 0 10

(1)  in one patch and = .I 0 90
(2)  in the other. As a reference Fig. 2 shows the infection 

spreading patterns for two patches, where the initial composition is identical. Note that the average initial frac-
tions of infected, susceptibles and refractory individuals is the same in both systems, i.e = .I 0 10

(1)  in Fig. 2 is equal 
to +I I( )

2
0
(1)

0
(2)

 in Fig. 1. So the populations in the two figures do not differ on an average. However, the populations 
are very different in terms of the “patchiness” of the spatial distribution of the infecteds. In Fig. 1 the patches are 
significantly different in initial composition and so the system as a whole is strongly non-uniform, while in Fig. 2 
the disease phases are uniformly distributed across the population and there is no difference in the state distribu-
tions of the two spatial patches. It is clearly evident then from Fig. 1 vis-a-vis Fig. 2, that populations partitioned 
into distinct patches yield long-term persistence of disease, while a population with uniformly distributed individuals 
in different stages of disease, results in the extinction of the infection from the entire population.

Specifically then, we reiterate, persistent infection refers to the situation where infection is always present 
somewhere in the spatial patch, at all points in time, for time-scales that are several orders of magnitude larger 
than a disease cycle. So when infection is persistent, it never dies out, in the very long times over which the system 
is monitored, and some level of infection is always maintained in the system. Further the complicated patterns 
of disease-spreading repeat over time, resulting in complex periodic oscillations in the population of infected 
individuals, which never goes to zero. In contrast, when the infection does not persist, the number of infecteds in 
the entire system quickly goes to zero, and remains zero for all time henceforth, in the absence of external pertur-
bations. So the pattern of disease progression is determined by the random initial state, and different spatial dis-
tributions of disease phases in the initial population yield different long-term dynamics. However, if persistently 
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infected, each individual has a cyclic disease progression pattern, since the disease cycle is deterministic with 
time period τ0. So in the case of persistent infection the entire population exhibits complex patterns comprised of 
cyclic patterns of the individuals whose phases are determined by the initial random spatial configuration. If one 
views the entire population as a very high-dimensional dynamical system, persistent infection arises when the 
initial state of the system is attracted to complex oscillations. On the other hand, if the initial state is attracted to 
an uniform all-susceptible state (where τ = 0 for all individuals) the infection dies out.

Figure 1. Infection spreading patterns for two patches, where the initial fraction of infecteds is = .I 0 10
(1)  in 

patch 1 and = .I 0 90
(2)  in patch 2, with the initial fraction of susceptible and refractory individuals being equal in 

both patches (i.e. =S Ri i
0
( )

0
( ) for i = 1, 2). Here τ = 4I  and τ = 9R , and the fraction of boundary sites that have 

inter-patch connections is fic = 0.1, i.e. 10 sites on an average interact with the other patch.

Figure 2. Infection spreading patterns for two patches, where the initial fraction of infecteds is = = .I I 0 50
(1)

0
(2)  

in both patches, and = = =S S R R0
(1)

0
(2)

0
(1)

0
(2). Here τ = 4I  and τ = 9R , and all sites along adjoining edge of the 

two patches have inter-patch connections (i.e. fic = 1.0).
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Figures 3 and 4 shows the time evolution of the fraction of infected individuals in the two patches for the case 
of patches with identical average initial states, and for patches with very different initial states. It is clear from 
the time series that when the initial state of the patches are close, the wave forms are similar in both amplitude 
and frequency. However, when the initial states of the patches are markedly different, the time evolution of the 
infected sub-set has very different amplitude, though same frequency. Interestingly, the average fraction of infecteds 
is the same in both patches, though the pattern of evolution is significantly different. The patch which had a much 
higher initial fraction of infecteds evolves to an oscillatory pattern with very low amplitude around the average 
value of close to 1/3, while the fraction of infecteds in the patch with low initial fraction of infecteds oscillates with 

Figure 3. Time evolution of the fraction of infected individuals It
(i) in two patches, of size N = 100 × 100, where 

the initial fraction of infecteds is (left) = = .I I 0 550
(1)

0
(2)  and (right) = .I 0 10

(1)  and = .I 1 00
(2)  (with =S Ri i

0
( )

0
( ) for 

i = 1,2). On an average two boundary sites have inter-patch connections (i.e. fic = 0.02). Note that in the left 
panel we have identically distributed patches, with the same average number of infecteds as the average of the 
two patches in the right panel, i.e. = .+ 0 55I I( )

2
0
(1)

0
(2)

 in both panels. Clearly, the infected fraction rapidly goes to 
zero when the phases of disease are uniformly distributed among the patches, while persistent infection 
emerges, with average infected fraction around 0.3, when the patches have very different local compositions, 
even though the average composition of the entire population is identical for both cases. Note that we have 
followed the system up to 104 time steps, and these temporal trends hold even when the system is tracked to 
time-scales an order to magnitude larger than the ones presented here.

Figure 4. Time evolution of the fraction of infected individuals It
i( ) in two patches, of size N = 100 × 100, where 

the initial fraction of infecteds is (left) = = .I I 0 550
(1)

0
(2)  and (right) = .I 0 10

(1)  and = .I 1 00
(2)  (with =S Ri i

0
( )

0
( ) 

for i = 1,2). Note that in the left panel we have identically distributed patches, with the same average number of 
infecteds as the average of the two patches in the right panel, i.e. = .+ 0 55I I( )

2
0
(1)

0
(2)

 in both panels. Here all sites 
along the adjoining edge of the patches have connections across the boundary in the other patch (i.e fic = 1), 
with the inter-patch links being spatially random. Clearly again, the infected fraction rapidly goes to zero when 
the phases of disease are uniformly distributed among the patches, while persistent infection emerges, with 
average infected fraction around 0.3, when the patches have very different local compositions, even though the 
average composition of the entire population is identical for both cases.
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large amplitude around the same mean value. So after transience, two patches with very different initial average 
composition settle down to identical average behaviour. Nevertheless, the local evolution of infection bears a 
discernible mark of the distinct initial states. So while the average number of infecteds of the two distinct patches 
evolve to the same mean value, the amplitudes of the oscillations about the mean are significantly different.

So if a patch has an initial composition such that in isolation infection persists in it, on coupling with any other 
patch it exhibits the same behaviour, i.e. infection will be sustained in the patch irrespective of the composition 
of the coupled patch and the density of inter-patch links. However, if a patch does not sustain infection in the 
long-term, then on coupling with another patch two scenarios emerge. First, if the other patch too cannot yield 
persistent infection in isolation, then on coupling the infection dies out in both patches. But remarkably, if the 
second patch has sustained infection when isolated, it will drive the infection to persist in the long-term in both 
patches. This is interesting, as the same would not occur if one had two patches with the same distribution, having 
the same average composition as the case of the two distinct patches. In case of uniform distribution of disease 
phases in the patches, and consequently homogeneous distribution in the full population, the infection would die 
out in both patches. Only when the patches are sufficiently different does the entire system sustain infection in the 
long run. This suggests the first important result: well-mixed populations, though commonly used as models, cannot 
capture the long-term persistence of infection in a region.

Dependence of the persistence order parameter on Heterogeneity
In order to quantify the long-term persistence of disease we use a persistence order parameter 〈〈It〉〉 defined in 
refs. 27,30. This quantity is the fraction of infected individuals in the entire population, averaged over time of the 
order of several disease cycles (after long transients), and further averaged over a large sample of random initial 
conditions. This quantity indicates the absence of infection in the long-term when it is equal to zero, and indicates 
sustained presence of infection when non-zero. So it can serve as a good indicator of long-term persistence of 
infection in a population, and can help in quantitatively identifying transitions to persistent infection.

We first consider the initial infected fraction I0
(1) of one patch to be ⁎I0  = 0.1. This implies that initially, 10% of 

the population in the patch is infected. The fractions S0 = R0 for both patches, unless otherwise specified. Now, if 
this patch was considered independent of the second patch, this fraction of initial infecteds ⁎I0  would yield persis-
tent infection27. The initial infected fraction of the second patch I0

(2)) is varied as + Δ⁎I0 . So Δ serves as an useful 
parameter reflecting the difference between the initial fractions of infected individuals present in the patches, and 
is indicative of the localized structure of the spatial distribution of disease stages in the population. In particular, 
in our representative examples, Δ ∈ [0.0, 0.9]. This provides us a parameter reflecting the spatial compartmental-
ization, or non-uniformity, of the disease phases within the system. Larger Δ indicates a more non-uniform 
spatial distribution, with the constituent patches being more diverse.

We now estimate the time and ensemble averaged persistence order parameter 〈〈It〉〉, i.e. the asymptotic frac-
tion of persistent infected individuals in the entire population comprised of the two patches. As mentioned ear-
lier, this quantity signals the absence of infection in the long-term when it is equal to zero, and indicates sustained 
presence of infection when non-zero. Figure 5 shows the dependence of 〈〈It〉〉 on increasing differences between 
the initial states of the two patches Δ. We scan the full range of Δ between 0 to 0.9. When Δ = 0, both patches 

Figure 5. Dependence of the persistence order parameter 〈〈It〉〉 of patch 2 (i.e. average asymptotic fraction of 
infected individuals in the second patch) on parameter Δ (which quantifies the difference in the initial 
composition of the patches). Here the initial infecteds = ⁎I I0

(1)
0  and = + Δ⁎I I0

(2)
0 , patch size is 100 × 100 and 

the fraction of boundary sites with inter-patch connections is: fic = 0.02 (blue), 0.5 (yellow) and 1.0 (green). The 
red dotted curve shows the variation of persistence order parameter 〈〈It〉〉 for the reference case where the two 
patches were not segmented, and behave as a single uniform patch, with the infected individuals initially 
distributed uniformly, with = = 〈 〉 = + Δ⁎I I I I0

(1)
0
(2)

0 0 2
.
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have equal initial fractions of infected individuals = = = .⁎I I I( 0 1)0
(1)

0
(2)

0 , and so the spatial distribution of dis-
ease phases of the entire population is uniform, and the system is effectively a single patch. When Δ is very large, 
for instance equal to 0.8, = + Δ= . + . = .⁎I I 0 1 0 8 0 90

(2)
0 . This implies that the second patch has a much higher 

density of infected individuals than the first one, thus yielding an exceedingly non-uniform spatial distribution of 
disease phases in the system. The question we focus on here is the correlation between this spatial heterogeneity 
in disease stages and the long-term behaviour of the coupled patches, specifically in terms of the sustained pres-
ence of disease and the patterns of infection spreading.

Also note that as Δ is varied, the average fraction of initially infected individuals in the full system, comprised of 
both the patches, also changes. In particular, as we vary Δ from 0.0 to 0.9, with = .I 0 10

(1) , I0
(2) varies from 0.1 to 1.0. 

This implies that the collective average infected fraction of the two patches 〈 〉 = = = ++ + + Δ Δ⁎⁎ ⁎
I II I I I

0 2 2 0 2
0
(1)

0
(2)

0 0 , 
varies from (0.1 + 0.1)/2 = 0.1 to (0.1 + 1.0)/2 = 0.55. In order to establish that the emergent patterns of infection in 
the two coupled patches, depend on the initial spatial non-uniformity of the individual disease phases, and not on 
the collective average infection initially present in the patches, it is illustrative to compare our observations in two 
contrasting conditions. As a reference for comparison (as we had done earlier in Figs. 1 and 2), we first find the 
asymptotic fraction of infecteds in the entire population, 〈〈It〉〉, for a population comprised of two patches whose 
average initial state is identical, i.e. there is spatial uniformity (on an average) in the entire population. Further we 
consider the initial infected fraction for the reference case to be the same as the average value of the infecteds in the 
non-uniform case, i.e. = = + Δ⁎I I I /20

(1)
0
(2)

0  for the reference case. Since this case considers uniform distribution 
over both patches, with the same average value of infecteds as the non-uniform cases, it provides a good baseline to 
identify features arising solely from the non-uniformity of spatial distributions, and not average properties.

So by comparing the results arising in the case of two distinct patches, with the reference curve for the uniform 
case, we can establish the marked impact of spatial non-uniformity on the long-term persistence of infection (cf. 
Fig. 5). It is clearly evident from the figure that when the initial spatial distribution of infected individuals in the 
two patches is significantly different, the infection is persistently present in both the patches, for all initial condi-
tions. The contrast with the case of one uniform patch is evident through the reference curve, where the persis-
tence of infection drops drastically as the fraction of initial infecteds + Δ⁎I0 2

 increases. However, when the two 
patches have distinct densities of initial infection as in Fig. 1, with the sum total of infecteds in the two patches 
being the same as in the reference system on average, the infection sustains itself in both the patches. Thus we can 
conclude that the presence of infection in the long-run originates due to the non-uniform spatial distribution of 
the disease phases in the two patches, and not due to the variation in the overall average initial infection present 
in the system.

Figure 6 shows the dependence of the average difference in amplitudes of the emergent oscillations in the size 
of the infected sub-population in the two patches 〈ΔA〉, on the difference in the initial composition of the 
patches, quantified by parameter Δ. As in Fig. 5, here the initial infecteds = ⁎I I0

(0)
0  and = + Δ⁎I I0

(2)
0 . Different 

fractions fic of boundary sites with inter-patch connections are investigated. It is clear that there is a sharp transi-
tion to a large amplitude difference in the oscillatory patterns of the two patches as Δ → 0. This suggests that the 
smallest non-uniformity in the constituent patches yields distinct temporal patterns, even though the average 
quantities (such as the average number of infecteds, susceptibles and refractory individuals) evolve to same values 
in the two patches after short transience. So, as evident through the spatiotemporal spreading patterns in Fig. 1, 

Figure 6. Dependence of the average difference in amplitudes of the emergent oscillations in the infected sub-
population of the two patches 〈ΔA〉, on Δ (which quantifies the difference in the initial composition of the 
patches). Here the initial infecteds = ⁎I I0

(0)
0  and = + Δ⁎I I0

(2)
0 , patch size is 100 × 100, and the fraction of 

boundary sites with inter-patch connections fic is 0.02, 0.5 and 1.0.
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the initial differences in the constitution of the patches is clearly discernible even at long-times, in spite of the homog-
enization of the average composition of the communities.

Figure 7 shows the dependence of the persistence order parameter 〈〈It〉〉 of patch 2 (i.e. average asymptotic 
fraction of infected individuals in the second patch) on parameter Δ, where the initial infecteds of the two patches 
is given in terms of Δ as follows: = − Δ⁎I I0

(1)
0 2

 and = + Δ⁎I I0
(2)

0 2
, with ⁎I0  = 0.5. So Δ is a parameter that quan-

tifies the difference in the initial composition of the patches, while maintaining the same average fractions of 
disease phases in the entire population, i.e. − = ΔI I0

(2)
0
(1) , with = .+ 0 5I I( )

2
0
(1)

0
(2)

 across all Δ. Results from differ-
ent patch sizes are shown, ranging from patches of size 25 × 25 to 200 × 200. Since the persistence of infection 
does not depend in any significant way on the densities of inter-patch links, and the transition curve is almost 
invariant under variation of fic, only the illustrative value of fic = 1 is displayed in the figure. The first striking fea-
ture is that there is a sharp transition to persistent infection when the difference between the patches is sufficiently 
large. The data from different patch sizes and inter-patch connectivities all fit a sigmoidal form well, i.e. the 
dependence of the persistence order parameter on Δ goes as

〈〈 〉〉 =
+ − Δ−Δ

I I
e1t

max
b( )/mid

Here Imax gives the value of the persistence order parameter 〈〈It〉〉 where the curve saturates after the transition, 
Δmid indicates the value of Δ where the transition curve crosses the midpoint value of 〈〈It〉〉, and b reflects how 
steeply the transition curve rises, with small b indicating a very sharp rise. Our best fits to this form yield b = 0.07 
clearly indicating a sharp transition. Imax = 0.28 for all system sizes and inter-patch connection densities, and 
indicates that in the state with persistent infection, the fraction of infecteds is close to 1/3. The value of Δmid 
reflects the minimum degree of non-uniformity of the patches necessary to yield a transition to the persistent 
state. We observe that the value Δmid goes to zero as a power law, as system size N increases: Δ − .~ Nmid

0 4. This 
observation implies that larger patches yield persistent infection at smaller Δ, and suggests that one obtains per-
sistent infection for very small differences in the constituent patches when the patches are very large.

conclusion
In summary,we have explored the long-term persistence of infection qualitatively and quantitatively in two 
patches, where the disease progression of the individuals was given by the SIRS model and an individual became 
infected on contact with another infected individual. Such weakly connected islands or patches of habitats can 
provide a test-bed to study the sustenance of disease in adjacent regions31.

Our central result is the following: if a population is structured into distinct patches, the infection will persist. 
This is in contrast to the situation where there is a uniform admixture of infected, refractory and susceptible 
individuals in a region, in which case there will be rapid transient waves of infection that will quickly die out. 
While there is not enough controlled data currently to apply the model directly to real-life, we anticipate that such 
numerical simulations will provide incentive to study the persistence of infection in controlled spatial patches.

Figure 7. Dependence of the persistence order parameter 〈〈It〉〉 of patch 2 on parameter Δ, which determines 
the initial infecteds of the two patches as follows: = − ∆⁎I I0

(1)
0 2

 and = + Δ⁎I I0
(2)

0 2
, with ⁎I0  = 0.5. So Δ is a 

parameter that quantifies the difference in the initial composition of the patches, while maintaining the same 
average fractions of disease phases in the entire population, i.e. I0

(2) − I0
(1) = Δ, with = .+ 0 5I I( )

2
0
(1)

0
(2)

 across all Δ. 
Here patch size N varies from 25 to 200, and fic = 1. The data is fitted to the sigmoidal logistic function 

+ − ∆−∆

I

e1
max

mid b( )/
, with the following best fit values: Imax = 0.28, b = 0.07, and Δmid = 0.61 for N = 25, Δmid = 0.48 for 

N = 50, Δmid = 0.36 for N = 100, Δmid = 0.27 for N = 200.
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Importantly, from the perspective of theoretical modelling, a consequence of our results is the following: we 
have established that the long-term persistence of infection is crucially dependent on the spatial structure and 
variability of the initial distribution of disease phases, and is not merely determined by the average properties. 
This implies that descriptions of disease spreading that are relevant to well-mixed populations, such as the widely 
employed differential equation based models, does not adequately capture infection persistence in a region, thus 
providing impetus to go beyond spatially averaged models.
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