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increasing Recombinant Strains 
emerged in norovirus outbreaks in 
Jiangsu, China: 2015–2018
Jianguang fu1,2,7, changjun Bao2,7, Xiang Huo2, Jianli Hu2, chao Shi3, Qin Lin4, Jun Zhang5, 
Jing Ai2* & Zheng Xing1,6*

From January 2015 to December 2018, 213 norovirus outbreaks with 3,951 patients were reported in 
Jiangsu, China. Based on viral RdRp and VP1 genes, eight genotypes, GII.2[P16] (144, 67.6%), GII.3[P12] 
(21, 9.9%), GII.6[P7] (5, 2.3%), GII.14[P7] (4, 1.9%), GII.4 Sydney[P31] (3, 1.4%), GII.1[P33] (1, 0.5%), 
GII.2[P2] (3, 1.4%), and GII.17[P17] (16, 7.5%) were identified throughout the study period. These 
genotypes were further regrouped as GII.R (Recombinant) and GII.Non-R (Non-recombinant) strains. 
In this report we showed that GII.R strains were responsible for at least 178 (83.6%) of 213 norovirus-
positive outbreaks with a peak in 2017 and 2018. Most norovirus outbreaks occurred in primary schools 
and 94 of 109 (86.2%) outbreaks in primary schools were caused by GII.R, while GII.Non-R and GII.NT 
(not typed) strains accounted for 6 (5.5%) and 9 (8.3%) norovirus outbreaks, respectively. The SimPlot 
analysis showed recombination breakpoints near the ORF1/2 junction for all six recombinant strains. 
The recombination breakpoints were detected at positions varying from nucleotides 5009 to 5111, 
localized in the ORF1 region for four strains (GII.2[P16], GII.3[P12], GII.6[P7], and GII.14[P7]) and in 
the ORF2 region for the other (GII.4 Sydney[P31] and GII.1[P33]). We identified four clusters, Cluster I 
through IV, in the GII.P7 RdRp gene by phylogenetic analysis and the GII.14[P7] variants reported here 
belonged to Cluster IV in the RdRp tree. The HBGA binding site of all known GII.14 strains remained 
conserved with several point mutations found in the predicted conformational epitopes. In conclusion, 
gastroenteritis outbreaks caused by noroviruses increased rapidly in the last years and these viruses 
were classified into eight genotypes. Emerging recombinant noroviral strains have become a major 
concern and challenge to public health.

Norovirus has been recognized as the leading cause of acute nonbacterial gastroenteritis outbreaks worldwide1. 
Human noroviruses are classified into at least five genogroups (GI, GII, GIV, GVIII and GIX) which are further 
subdivided into 35 genotypes2,3. The norovirus genome consists of a 7.5 kb single-stranded and positive-polarity 
RNA segment encoding three open reading frames (ORFs). ORF1 encodes non-structural proteins including the 
viral RNA-dependent RNA polymerase (RdRp) and ORF2 and ORF3 encode structural proteins VP1 and VP2, 
respectively4. VP1 is composed of shell (S) and protruding (P) domains and the P domain contains both the anti-
genic sites as well as histo-blood group antigen (HBGA) binding sites5,6.

The epidemiology of norovirus is strongly influenced by norovirus evolution through recombination or accu-
mulation of mutations7. Recombination often occurs at the ORF1/ORF2 junction that leads to new combina-
tions of capsid and RdRp types, further increasing genetic diversity8. These new recombinant strains might have 
increased fitness and transmissibility over their parental strains9. The same capsid genotype can be associated 
with different RdRp genotypes, which may offer a temporary selective advantage through altering the efficiency 
of virus replication2. To better understand epidemiologic and genotypic trends of evolving norovirus recombinant 
strains in the field, we examined and analyzed norovirus outbreak data and strains collected between January 
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2015 and December 2018 in Jiangsu China. Our analysis showed that recombinant strains increased significantly 
in norovirus outbreaks between 2015 and 2018 and the GII.2[P16] recombinant strains were responsible for most 
outbreaks. Recombination appeared to be main force driving norovirus evolution in the field in the recent years.

Results
Epidemiological features. A total of 213 norovirus outbreaks with 3,951 patients were reported to the 
Jiangsu CDC from January 2015 to December 2018. Of the 213 outbreaks, 19 (8.9%) occurred in 2015, 9 (4.2%) 
in 2016, 92 (43.2%) in 2017 and 93 (43.7%) in 2018; 43 (20.8%) were reported in kindergartens, 109 (51.2%) 
in primary schools, 38 (17.8%) in middle schools, 11 (5.1%) in secondary schools and 11 (5.1%) in other set-
tings; 68 (31.9%) occurred in spring, 5 (2.4%) in summer, 85 (39.9%) in autumn and 55 (25.8%) in winter; 2181 
(55.2%) cases were males and 1770 (44.8%) were females. Most outbreaks occurred in the period of season tran-
sitions, such as from autumn to winter (November and December) and from winter to spring (February and 
March). Peaks of culminative outbreaks were observed in March and November whereas no outbreak occurred 
in July and August, likely due to summer recesses for schools. There were many fewer outbreaks in 2015 and 2016 
with the fewest reported in 2016 when cases were reported only in March, October, and December. However, 
rapid increase of outbreaks in number occurred since February 2017 with most cases reported in that spring. 
Interestingly in 2018, the cases were fewer in spring and the major peaks of outbreaks occurred in early and late 
autumn (from October to November). Thus, even though the trend remained similar, the outbreaks in number 
and peak time differed greatly each year from 2015 through 2018 (Fig. 1a). In addition, there were 7 genogroup 
I norovirus outbreaks that occurred during this period but were not included in this analysis due to failure to 
sequencing their RdRp genotypes.

Geographic distribution of the outbreaks is shown in Fig. 2. About 170 (79.8%) outbreaks occurred in four 
prefecture-level cities in the southwest (Nanjing, Wuxi, Changzhou, and Yangzhou) regions. In contrast, 37 
(17.4%) outbreaks were reported in the east regions and only 6 (2.8%) occurred in three cities (Xuzhou, Suqian, 
and Huai’an) in the northwest regions (Fig. 2).

Characteristics of the norovirus outbreaks by genotype. Among 213 outbreaks caused by geno-
group II norovirus, 197 (92.5%) were genotyped and 16 (7.5%) were not (GII.NT). Based on the RdRp and VP1 
sequences, eight genotypes were identified throughout the study period, which included GII.2[P16] (144, 67.6%), 
GII.3[P12] (21, 9.9%), GII.6[P7] (5, 2.3%), GII.14[P7] (4, 1.9%), GII.4 Sydney[P31] (3, 1.4%), GII.1[P33] (1, 
0.5%), GII.2[P2] (3, 1.4%), and GII.17[P17] (16, 7.5%) (Fig. 1b).

To characterize the norovirus outbreaks caused by recombinant strains, eight genotypes were regrouped 
based on GII.R (Recombinant) or GII.Non-R (Non-recombinant) strains. Six GII.R strains were identified and 
comprised of GII.2[P16], GII.3[P12], GII.6[P7], GII.14[P7], GII.4 Sydney[P31], and GII.1[P33]. The GII.Non-R 
strains included the genotypes of GII.2[P2] and GII.17[P17]. Prevalence of GII.R-caused outbreaks increased 
significantly in recent years from 3.9% (7/178) in 2015 to 48.3% (86/178) in 2017 and GII.R was responsible for 
at least 178 (83.6%) of 213 norovirus-positive outbreaks with a peak in 2017 and 2018 (Table 1). The number of 
patients in outbreaks caused by GII.R was 3,181 (80.5%) with a median of 19.5 patients per outbreak.

As shown in Table 1, GII.R strains were the dominant epidemic strains across all settings. Other than the GII.R 
strains, GII.Non-R and GII.NT strains had similar prevalence rates in kindergartens and primary schools, but 

Figure 1. Norovirus outbreaks in Jiangsu, China, 2015–2018. (a) Laboratory confirmed number of monthly 
norovirus outbreaks. (b) Distribution of norovirus genotypes detected in norovirus outbreaks.
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Figure 2. Spatial distribution of norovirus outbreaks in Jiangsu, China, 2015–2018. The outbreaks were shown 
by geographic locations. The number of the outbreaks was reflected with various colors.

GII.Recombinant 
No. (%)

GII.Non-Rec 
No. (%)

GII.NT No. 
(%) p-value

Years

2015 7 (36.9) 10 (52.6) 2 (10.5)

p < 0.001
2016 5 (55.5) 2 (22.2) 2 (22.2)

2017 86 (93.4) 6 (6.6) 0

2018 80 (86.0) 1 (1.1) 12 (12.9)

Number

No. of outbreaks 178 (83.6) 19 (8.9) 16 (7.5)
p = 0.033Median no. of cases per 

outbreak (IQR) 19.5 (10–38.3) 15 (7.5–20.8) 6.5 (5–10)

Settings

Kindergartens 41 (93.2) 1 (2.3) 2 (4.5)

p = 0.011

Primary schools 94 (86.2) 6 (5.5) 9 (8.3)

Middle schools 30 (78.9) 6 (15.8) 2 (5.3)

Secondary schools 8 (72.7) 1 (9.1) 2 (18.2)

Other settings 5 (45.5) 5 (45.5) 1 (9.1)

Season

Spring, Mar-May 51 (75.0) 12 (17.6) 5 (7.4)

p < 0.001
Summer, Jun-Aug 4 (80.0) 1 (20.0) 0

Autumn, Sep-Nov 77 (90.6) 3 (3.5) 5 (5.9)

Winter, Dec-Feb 46 (83.6) 3 (5.5) 6 (10.9)

Sex

Male cases 1743 (79.9) 335 (15.4) 103 (4.7)
p = 0.556

Female cases 1438 (81.2) 251 (14.2) 81 (4.6)

Table 1. Analysis of characteristics associated with GII.Recombinant, GII.Non-Rec and GII.NT outbreaks from 
2015 to 2018 in Jiangsu, China. Categorical data are presented as frequencies with percentages; case numbers 
are presented as the median and interquartile range (IQR); for categorical data, differences among groups were 
examined using the chi-square test or Fisher’s exact probability test. For continuous data, Kruskal-Wallis Test 
was used to determine differences among groups.
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GII.Non-R had higher prevalence rates in middle schools than GII.NT. GII.Non-R strains were also the domi-
nant epidemic ones in other settings. Most norovirus outbreaks occurred in primary schools. GII.R strains were 
responsible for 94 of 109 (86.2%) of norovirus outbreaks in primary schools (Table 1), while GII.Non-R and GII.
NT strains were responsible for only 6 (5.5%) and 9 (8.3%) norovirus outbreaks, respectively. Seasonally, GII.R 
strains were the main genotypes in all seasons with a peak detection rate in autumn, while the peak for GII.Non-R 
strains were in spring. Of the 3,951 norovirus-positive cases, the number of male cases is higher than that of 
female cases in each group, although the difference appeared not statistically significant.

Molecular phylogenetic characteristics of recombinant noroviruses. To characterize the potential 
recombination events of the GII.R strains, a region of 1095 bp in the ORF1/ORF2 junction of the viral genome 
was amplified by a nested PCR. The sequences were typed by using the calicivirus typing tool (https://norovirus.
ng.philab.cdc.gov). The phylogenetic tree was constructed based on partial RdRp gene (750 bp) and capsid gene 
(365 bp) using the Maximum Likelihood method (Fig. 3a,b). As shown in Fig. 3, six strains had discordant capsid 
and polymerase genotypes and were considered intergenotype recombinant strains.

Since the length of the amplified RdRp fragments from the six recombinant strains was 750 bp long and the 
corresponding ORF1/2 overlapping regions were 731 to 750 bp, the recombination breakpoints would be near 
the ORF1/2 junction for all six strains as indicated by the SimPlot analysis (Fig. 4). In fact, the recombination 
breakpoints were identified at positions varying from nucleotides 641 to 761, corresponding to the nucleotides 
positioned at 5009 to 5111 in the whole viral genome, localized in the ORF1 region for four strains (GII.2[P16], 
GII.3[P12], GII.6[P7], and GII.14[P7]) and in the ORF2 for the other two strains (GII.4 Sydney[P31] and 
GII.1[P33]).

Phylogeography of GII.14[P7] genotypes. Of the six recombinant strains, GII.14[P7] was further ana-
lyzed because, unlike other strains, it was a rare genotype which did not have an RdRp genotype that belongs to 
any known RdRp genotypes. According to the phylogenetic analysis, sequences of GII.14[P7] were grouped into 
four major clusters based on their RdRp genes (Fig. 5).

In detail, as for the RdRp gene, the GII.14[P7] variants identified in the period from 2006 to 2008 fell in 
Cluster II. The GII.6[P7] variants originating from 2012 to 2016 and from 2002 to 2012 fell in Cluster I and 
III, respectively. The GII.7[P7] variants and the GII.14[P7] variants from 2013 to 2017 belonged to Cluster IV 
(Fig. 5a). The GII.14[P7] variant reported here from Jiangsu province was in Cluster IV based on the RdRp trees. 
As for the VP1 gene, several clusters were observed in the tree, but they did not obtain enough bootstrap support 
(showed bootstrap support of <70%). The Jiangsu variant was in the same lineage with variants from 2016 to 
2017 (Fig. 5b).

Even though the complete VP1 gene of the GII.14[P7] variant in this study has been sequenced, further anal-
ysis with VP1 was limited because only a few complete VP1 genes of the GII.14[P7] variants, which were also 
reported previously within a short period of time, were available in GenBank. On the other hand, three HBGA 
binding sites of all known GII.14 strains remained conserved, while several amino acid mutations in the predicted 
conformational epitopes were found10 as shown in Table 2. However, a single amino acid change (aa373, D-N) 

Figure 3. Phylogenetic analyses of the recombinant strain sequences based on partial RdRp and full-length 
capsid regions (VP1). (a) Phylogenetic tree of a 750 bp region of RdRp. (b) Phylogenetic tree of complete 
VP1. The trees were constructed using the Maximum Likelihood analysis and the evolutionary distances 
were computed using the Kimura 2-parameterþG method available in MEGA 7.0. Bootstrap values (>70%) 
are shown as percentages derived from 1,000 samplings at the nodes of the tree. The scale bars represent the 
number of nucleotide substitutions per site. The new norovirus strains reported in this study are indicated with 
solid black diamonds.
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found peripheral to the HBGA-binding site II, which is also located in the predicted conformational epitopes, 
may have an important effect on the viral antigenicity.

Discussion
Recombination of human noroviruses is an important mechanism to generate genetic diversity and recombi-
nant strains are frequently detected, particularly between pandemic peaks11. From January 2015 to December 
2018, norovirus outbreaks caused by recombinant strains increased rapidly in number with a peak in 2017 
and 2018. Most outbreaks were attributed to the emergence of GII.2[P16] variants, which were responsible for 
67.6% (144/213) of all norovirus outbreaks. During the winter of 2016–2017, the GII.2[P16] strain suddenly 
emerged and rapidly became the predominant genotype throughout mainland China and Japan12,13. During the 
same period, however, GII.4 Sydney[P16] was the predominant strain in the United States, Australia, and New 

Figure 4. The SimPlot analysis of the recombinant strain sequences. SimPlot was constructed using a Simplot 
software version 3.5 with a slide window width of 200 bp and a step size of 20 bp. At each position of the window, 
the query sequence was compared to each of the reference strains. The X-axis indicates the nucleotide positions 
in the multiple alignments of the NoV sequences; and the Y-axis indicates nucleotide identities (%) between the 
query sequence and the NoV reference strains.
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Zealand11,14. GII.P16 polymerases have also been found to recombine with GII.3 and GII.13 capsids, but the P16 
polymerase sequence associated with GII.2 capsids is almost identical to the P16 sequences that harbor the GII.4 
Sydney capsids11,14,15. Emergence of GII.P16 strains indicates that the viral RNA polymerase confirms that ORF1 
sequences play a more important role in predominance of certain but not all emerging recombinant genotypes.

To understand how recombination occurred among norovirus, more analyses have been carried out on GII.4 
and GII.3 strains for rare occurrence of recombination events in the past. The GII.4 norovirus had been the pre-
dominantly detected variant worldwide since 1995. Its capsid protein continuously underwent epochal evolution 
by emergence of one antigenically distinct GII.4 strain approximately every 3–5 years8,14. However, this trend 

Figure 5. Phylogenetic analyses of the GII.14[P7] sequences based on partial RdRp and VP1. (a) Phylogenetic 
tree of a 313 bp region of RdRp. (b) Phylogenetic tree of a 282 bp region of VP1. The trees were constructed 
using the Maximum Likelihood analysis and the evolutionary distances were computed using the Kimura 
2-parameterþG method available in MEGA 7.0. Bootstrap values (>70%) are shown as percentages derived 
from 1,000 samplings at the nodes of the tree. The scale bars represent the number of nucleotide substitutions 
per site. The new norovirus strains reported in this study are indicated with solid black diamond.

GII.14 strains

HBGA Binding Sites Predicted Conformational Epitopes

Site I 
(aa347)

Site II 
(aa374)

Site III 
(aa439) aa309 aa365 aa457

JN699038 CHN/1978 TRAH SNDF AGGH LDGSPIDPTDDVPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQESAPSQS

AY130761 USA/1999 TRAH SDDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSDDFDLHDPTKFTP EHFYQEAAPSQS

EF547404 JPN/2001 TRAH SGDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSGDFDLHDPTKFTP EHFYQEAAPSQS

EF670650 CHN/2006 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS

GQ856465 CHN/2007 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS

GU017901 JPN/2008 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS

LC133340 JPN/2013 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS

JSOB/CZ0907/2017 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS

Table 2. The sequence analysis of HBGA binding sites and predicted conformational epitopes of GII.14 VP1 
protein. The HBGA-binding interfaces are composed of three amino acid motifs that are indicated with sites 
I, II, and III. The predicted conformational epitopes are also composed of three amino acid components with 
residues, bold and underlined, that indicate changes. Numbers indicate the starting position of amino acid 
components, which is located on the norovirus HK74 genome (GenBank accession No. JN699038).
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in antigenic evolution did not continue with the GII.4 Sydney[P16] viruses that emerged in 2015. The antigenic 
domains in the capsid did not evolve with any amino acid changes between the GII.4 Sydney[P16] strains and 
GII.4 Sydney[P31] strains, although the VP1 sequences of GII.4 Sydney[P16] strains formed a new cluster11,14,16. 
In contrast, GII.3 strains evolved earlier through recombination, which became common genotypes in sporadic 
infection17 and ranked only second to the annual GII.4 epidemic strains in China18. In this study, GII.3 was also 
the second genotype in number causing the outbreaks. Since 2000, most GII.3 noroviruses have become recom-
binant strains, which possessed a non-GII.3 RdRp genotype. The common types of polymerase recombinants 
with GII.3 were GII.P12, GII.P16, and GII.P21 (formerly termed GII.Pb)11,19. The recombinant strains increased 
circulation, suggesting that recombination may have contributed to viral immune escape or conferred higher 
virological fitness14 for maintaining the fitted strains or genotypes in human population.

Schools were the main sites for outbreaks, especially in primary schools, which was proportionally higher 
than the others significantly. There was no outbreak in July and August due to schools’ summer recesses, similar 
to those previously reported in Shanghai, China, where most outbreaks occurred in kindergartens (48.3%) and 
primary schools (45.0%). In contrast in Australia, Europe, and the United States, most outbreaks occurred in 
long-term care facilities, followed by hospitals or restaurants, while outbreaks in schools accounted for only a 
small fraction. The GII.4 viruses, identified as the most predominant genotypes, were more common in outbreaks 
in health-care facilities compared to other genotypes9,14,16.

Noroviruses are classified into genogroups and genotypes based on amino acid homology in the RdRp and 
VP1 proteins and some genotypes consist of various subclusters (such as GII.3, GII.4 and GII.6). However, no 
specific criteria have been applied to classify GII.14[P7] strains within variant types20,21. In this study, we subdi-
vided the GII.14[P7] strains into several clusters according to the GII.P7 and GII.14 reference strains. Generally 
one VP1 genotype of noroviruses combine with one or more polymerase genotypes and the resultant strains 
usually contain the original polymerase genotypes. For example, the GII.3 VP1 genotype could combine with 
several RdRp genotypes, such as GII.3[P3], GII.3[P12], GII.3[P16], and GII.3[P21], and the resultant recombi-
nant strains usually possess the original GII.P3 RdRp genotypes. However, the VP1 of GII.14 genotype seems to 
combine only with GII.P7 RdRp genotype, which results in recombinant strains without possessing the original 
GII.P14 RdRp genotype. On the contrary, the RdRp of GII.P7 could recombine with other VP1 genotypes, such as 
GII.6[P7] variants, in addition to GII.1422. Although we could find GII.P6 genotypes in RdRp region, no GII.P14 
genotypes has ever been found. Our data also show that there were several substitutions in the predicted confor-
mational epitopes compared with the ancestral strain, and one of them was peripheral to the HBGA-binding site 
II. These results suggest that the recombinant strain was evolving slowly and continuously to achieve long-term 
fitness and stability in the population.

In summary, this study leverages data from two surveillance systems (EPHEIM and NOSS) to provide a com-
prehensive analysis of norovirus recombinant strains from both the laboratory and epidemiologic perspectives. 
The results showed that the proportion of recombinant strains increased significantly in the norovirus outbreaks 
between 2015 and 2018 in Jiangsu, while the GII.2[P16] recombinant strains were accountable for the majority 
of the outbreaks. Although antigenic drift and recombination are regarded as the main mechanisms for norovi-
rus evolution, constantly increasing proportion of recombinant strains seems to suggest that viruses are more 
likely to evolve via recombination recently. On the other hand, we have to bear in mind the possibility that more 
recombinant strains are detected nowadays probably due to improved detection protocols. The current standard 
for genotyping includes polymerase and capsid genotypes, for example, while in the past years only the capsid 
or polymerase region was typed by many laboratories. Retyping the strains collected in the past with the current 
protocol should be able to deal with this concern unequivocally. Increased surveillance for early identification of 
potential pandemic variants would provide warning to public health sectors so that they could formulate effective 
preventive and control measures in time.

Methods
Sample collection and ethics statement. Two systems, the Emergent Public Health Event Information 
Management System (EPHEIM) and the norovirus Outbreak Surveillance System (NOSS), had been used to 
report noroviruses through outbreak-based surveillance in Jiangsu province. An outbreak was defined as to 
have at least 20 cases within one week or 5 cases within three days with symptoms including vomiting and/or 
diarrhea. Patient samples positive for norovirus were submitted to the laboratory of Jiangsu provincial Center 
for Disease Control and Prevention (CDC) for further analysis. To characterize temporal and spatial distribu-
tion of outbreaks, hierarchical mapping was carried out with ArcGIS software (version 10.0; ESRI, Redlands, 
CA). This study was approved by the Institutional Review Board of Jiangsu CDC with the approval protocol No. 
JSCDCLWLL2019002. Written informed consent was obtained according to the guidelines of the National Ethics 
Regulation Committee.

Norovirus genotyping. Norovirus-positive samples were genotyped in both the ORF1 (RdRp) and ORF2 
(capsid VP1) regions. A region of 1,095 bp in the ORF1/ORF2 junction of the viral genome was obtained by 
RT-PCR using a semi-nested specific primer set as previously described23. The genotypes were determined by 
using the norovirus automated genotyping tool (http://www.rivm.nl/mpf/norovirus/typingtool) and human cal-
icivirus typing tool (https://norovirus.ng.philab.cdc.gov).

The complete VP1 genomic fragments (1.7 kb) of the six recombinant strains were amplified with a 
semi-nested PCR GII-specific primer set (COG-2F/VN3T20 in the first-round PCR and G2SKF/VN3T20 for the 
second-round PCR) as previously described23. Next, the ORF1/ORF2 junction fragment and the complete VP1 
genomic fragment were PCR-ligated through splicing into a 2.4 kb genomic fragment which contained a complete 
capsid sequence and partial RdRp sequence. All PCR products were purified and subsequently sent to the Sangon 
Biotech (Shanghai, China) Company for Sanger sequencing.

https://doi.org/10.1038/s41598-019-56544-2
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Sequences analysis. All nucleotide and amino acid (aa) sequence alignments were performed using Bioedit 
and MEGA 7.0 software24. Phylogenetic trees were constructed using the Maximum Likelihood algorithm with 
1,000 bootstrap replicates and a Kimura2-parameter model in MEGA 7.0 with norovirus reference sequences 
obtained from the GenBank database. Nucleotide sequences obtained from clinical samples were deposited in 
GenBank under the accession numbers from MK614059 to MK614064.

In order to verify the recombination event, the 2.4 kb genomic fragments, which were constructed by PCR as 
mentioned earlier and contained the ORF1/ORF2 junction region, were analyzed along with the reference strains 
obtained from GenBank by using a Simplot software v.3.5.1. The SimPlot analysis was performed by setting the 
window width and the step size to 200 bp and 20 bp, respectively.

Statistical analysis. Categorical data were presented as frequencies with percentages. Case numbers were 
presented as the median and interquartile range (IQR). For categorical data, differences among groups were 
examined using the chi-square test or Fisher’s exact probability test. For continuous data, Kruskal-Wallis Test 
was used to determine differences among groups. p < 0.05 was considered to indicate a statistically significant 
difference.
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