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Increasing Recombinant Strains
Emerged in Norovirus Outbreaks in
Jiangsu, China: 2015-2018

Jianguang Ful27, Changjun Bao?7, Xiang Huo?, Jianli Hu?, Chao Shi?, Qin Lin* Jun Zhang®,
Jing Ai** & Zheng Xing%%*

From January 2015 to December 2018, 213 norovirus outbreaks with 3,951 patients were reported in
Jiangsu, China. Based on viral RdRp and VP1 genes, eight genotypes, GII.2[P16] (144, 67.6%), GII.3[P12]
(21, 9.9%), GII.6[P7] (5, 2.3%), GII.14[P7] (4, 1.9%), Gll.4 Sydney[P31] (3, 1.4%), GII.1[P33] (1, 0.5%),
GII.2[P2] (3, 1.4%), and GII.17[P17] (16, 7.5%) were identified throughout the study period. These
genotypes were further regrouped as GII.R (Recombinant) and Gll.Non-R (Non-recombinant) strains.

In this report we showed that GII.R strains were responsible for at least 178 (83.6%) of 213 norovirus-
positive outbreaks with a peak in 2017 and 2018. Most norovirus outbreaks occurred in primary schools
and 94 of 109 (86.2%) outbreaks in primary schools were caused by GII.R, while GII.Non-R and GII.NT
(not typed) strains accounted for 6 (5.5%) and 9 (8.3%) norovirus outbreaks, respectively. The SimPlot
analysis showed recombination breakpoints near the ORF1/2 junction for all six recombinant strains.
The recombination breakpoints were detected at positions varying from nucleotides 5009 to 5111,
localized in the ORF1 region for four strains (GlI.2[P16], GII.3[P12], GII.6[P7], and GII.14[P7]) and in

the ORF2 region for the other (Gll.4 Sydney[P31] and GII.1[P33]). We identified four clusters, Cluster |
through 1V, in the GII.P7 RdRp gene by phylogenetic analysis and the GIl.14[P7] variants reported here
belonged to Cluster IV in the RdRp tree. The HBGA binding site of all known GllI.14 strains remained
conserved with several point mutations found in the predicted conformational epitopes. In conclusion,
gastroenteritis outbreaks caused by noroviruses increased rapidly in the last years and these viruses
were classified into eight genotypes. Emerging recombinant noroviral strains have become a major
concern and challenge to public health.

Norovirus has been recognized as the leading cause of acute nonbacterial gastroenteritis outbreaks worldwide'.
Human noroviruses are classified into at least five genogroups (GI, GIIL, GIV, GVIII and GIX) which are further
subdivided into 35 genotypes>®. The norovirus genome consists of a 7.5kb single-stranded and positive-polarity
RNA segment encoding three open reading frames (ORFs). ORF1 encodes non-structural proteins including the
viral RNA-dependent RNA polymerase (RdRp) and ORF2 and ORF3 encode structural proteins VP1 and VP2,
respectively®. VP1 is composed of shell (S) and protruding (P) domains and the P domain contains both the anti-
genic sites as well as histo-blood group antigen (HBGA) binding sites>®.

The epidemiology of norovirus is strongly influenced by norovirus evolution through recombination or accu-
mulation of mutations’. Recombination often occurs at the ORF1/ORF2 junction that leads to new combina-
tions of capsid and RdRp types, further increasing genetic diversity®. These new recombinant strains might have
increased fitness and transmissibility over their parental strains®. The same capsid genotype can be associated
with different RARp genotypes, which may offer a temporary selective advantage through altering the efficiency
of virus replication® To better understand epidemiologic and genotypic trends of evolving norovirus recombinant
strains in the field, we examined and analyzed norovirus outbreak data and strains collected between January
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Figure 1. Norovirus outbreaks in Jiangsu, China, 2015-2018. (a) Laboratory confirmed number of monthly
norovirus outbreaks. (b) Distribution of norovirus genotypes detected in norovirus outbreaks.

2015 and December 2018 in Jiangsu China. Our analysis showed that recombinant strains increased significantly
in norovirus outbreaks between 2015 and 2018 and the GIL.2[P16] recombinant strains were responsible for most
outbreaks. Recombination appeared to be main force driving norovirus evolution in the field in the recent years.

Results

Epidemiological features. A total of 213 norovirus outbreaks with 3,951 patients were reported to the
Jiangsu CDC from January 2015 to December 2018. Of the 213 outbreaks, 19 (8.9%) occurred in 2015, 9 (4.2%)
in 2016, 92 (43.2%) in 2017 and 93 (43.7%) in 2018; 43 (20.8%) were reported in kindergartens, 109 (51.2%)
in primary schools, 38 (17.8%) in middle schools, 11 (5.1%) in secondary schools and 11 (5.1%) in other set-
tings; 68 (31.9%) occurred in spring, 5 (2.4%) in summer, 85 (39.9%) in autumn and 55 (25.8%) in winter; 2181
(55.2%) cases were males and 1770 (44.8%) were females. Most outbreaks occurred in the period of season tran-
sitions, such as from autumn to winter (November and December) and from winter to spring (February and
March). Peaks of culminative outbreaks were observed in March and November whereas no outbreak occurred
in July and August, likely due to summer recesses for schools. There were many fewer outbreaks in 2015 and 2016
with the fewest reported in 2016 when cases were reported only in March, October, and December. However,
rapid increase of outbreaks in number occurred since February 2017 with most cases reported in that spring.
Interestingly in 2018, the cases were fewer in spring and the major peaks of outbreaks occurred in early and late
autumn (from October to November). Thus, even though the trend remained similar, the outbreaks in number
and peak time differed greatly each year from 2015 through 2018 (Fig. 1a). In addition, there were 7 genogroup
I norovirus outbreaks that occurred during this period but were not included in this analysis due to failure to
sequencing their RdRp genotypes.

Geographic distribution of the outbreaks is shown in Fig. 2. About 170 (79.8%) outbreaks occurred in four
prefecture-level cities in the southwest (Nanjing, Wuxi, Changzhou, and Yangzhou) regions. In contrast, 37
(17.4%) outbreaks were reported in the east regions and only 6 (2.8%) occurred in three cities (Xuzhou, Sugian,
and Huai’an) in the northwest regions (Fig. 2).

Characteristics of the norovirus outbreaks by genotype. Among 213 outbreaks caused by geno-
group II norovirus, 197 (92.5%) were genotyped and 16 (7.5%) were not (GILNT). Based on the RdRp and VP1
sequences, eight genotypes were identified throughout the study period, which included GII.2[P16] (144, 67.6%),
GIL3[P12] (21, 9.9%), GIL6[P7] (5, 2.3%), GIL.14[P7] (4, 1.9%), GIL.4 Sydney[P31] (3, 1.4%), GIL.1[P33] (1,
0.5%), GIL2[P2] (3, 1.4%), and GIL17[P17] (16, 7.5%) (Fig. 1b).

To characterize the norovirus outbreaks caused by recombinant strains, eight genotypes were regrouped
based on GIL.R (Recombinant) or GII.Non-R (Non-recombinant) strains. Six GII.R strains were identified and
comprised of GII.2[P16], GII.3[P12], GIL.6[P7], GII.14[P7], GIL.4 Sydney[P31], and GII.1[P33]. The GIL.Non-R
strains included the genotypes of GII.2[P2] and GII.17[P17]. Prevalence of GIL.R-caused outbreaks increased
significantly in recent years from 3.9% (7/178) in 2015 to 48.3% (86/178) in 2017 and GIL.R was responsible for
at least 178 (83.6%) of 213 norovirus-positive outbreaks with a peak in 2017 and 2018 (Table 1). The number of
patients in outbreaks caused by GIL.R was 3,181 (80.5%) with a median of 19.5 patients per outbreak.

As shown in Table 1, GILR strains were the dominant epidemic strains across all settings. Other than the GILR
strains, GII.Non-R and GILNT strains had similar prevalence rates in kindergartens and primary schools, but
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Figure 2. Spatial distribution of norovirus outbreaks in Jiangsu, China, 2015-2018. The outbreaks were shown
by geographic locations. The number of the outbreaks was reflected with various colors.

GII.Recombinant GII.Non-Rec GILNT No.
No. (%) No. (%) (%) p-value
Years
2015 7(36.9) 10 (52.6) 2(10.5)
2016 5(55.5) 2(22.2) 2(22.2)
p<0.001
2017 86(93.4) 6(6.6) 0
2018 80 (86.0) 1(1.1) 12 (12.9)
Number
No. of outbreaks 178 (83.6) 19 (8.9) 16 (7.5)
Median no. of cases per p=0.033
sutbreak (1OR) 19.5 (10-38.3) 15(7.5-20.8) | 6.5(5-10)
Settings
Kindergartens 41(93.2) 1(2.3) 2 (4.5)
Primary schools 94 (86.2) 6 (5.5) 9(8.3)
Middle schools 30(78.9) 6(15.8) 2(5.3) p=0.011
Secondary schools 8(72.7) 1(9.1) 2(18.2)
Other settings 5(45.5) 5(45.5) 1(9.1)
Season
Spring, Mar-May 51 (75.0) 12(17.6) 5(7.4)
Summer, Jun-Aug 4 (80.0) 1(20.0) 0
p<0.001
Autumn, Sep-Nov 77 (90.6) 3(3.5) 5(5.9)
Winter, Dec-Feb 46 (83.6) 3(5.5) 6(10.9)
Sex
Male cases 1743 (79.9) 335(15.4) 103 (4.7)
p=0.556
Female cases 1438 (81.2) 251 (14.2) 81 (4.6)

Table 1. Analysis of characteristics associated with GII.Recombinant, GII.Non-Rec and GILNT outbreaks from
2015 to 2018 in Jiangsu, China. Categorical data are presented as frequencies with percentages; case numbers
are presented as the median and interquartile range (IQR); for categorical data, differences among groups were
examined using the chi-square test or Fisher’s exact probability test. For continuous data, Kruskal-Wallis Test
was used to determine differences among groups.
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Figure 3. Phylogenetic analyses of the recombinant strain sequences based on partial RdRp and full-length
capsid regions (VP1). (a) Phylogenetic tree of a 750 bp region of RdRp. (b) Phylogenetic tree of complete

VPLI. The trees were constructed using the Maximum Likelihood analysis and the evolutionary distances

were computed using the Kimura 2-parameterpG method available in MEGA 7.0. Bootstrap values (>70%)
are shown as percentages derived from 1,000 samplings at the nodes of the tree. The scale bars represent the
number of nucleotide substitutions per site. The new norovirus strains reported in this study are indicated with
solid black diamonds.

GILNon-R had higher prevalence rates in middle schools than GIL.NT. GII.Non-R strains were also the domi-
nant epidemic ones in other settings. Most norovirus outbreaks occurred in primary schools. GILR strains were
responsible for 94 of 109 (86.2%) of norovirus outbreaks in primary schools (Table 1), while GII.Non-R and GII.
NT strains were responsible for only 6 (5.5%) and 9 (8.3%) norovirus outbreaks, respectively. Seasonally, GIL.R
strains were the main genotypes in all seasons with a peak detection rate in autumn, while the peak for GIL.Non-R
strains were in spring. Of the 3,951 norovirus-positive cases, the number of male cases is higher than that of
female cases in each group, although the difference appeared not statistically significant.

Molecular phylogenetic characteristics of recombinant noroviruses. To characterize the potential
recombination events of the GIIL.R strains, a region of 1095bp in the ORF1/ORF2 junction of the viral genome
was amplified by a nested PCR. The sequences were typed by using the calicivirus typing tool (https://norovirus.
ng.philab.cdc.gov). The phylogenetic tree was constructed based on partial RARp gene (750bp) and capsid gene
(365bp) using the Maximum Likelihood method (Fig. 3a,b). As shown in Fig. 3, six strains had discordant capsid
and polymerase genotypes and were considered intergenotype recombinant strains.

Since the length of the amplified RdRp fragments from the six recombinant strains was 750 bp long and the
corresponding ORF1/2 overlapping regions were 731 to 750 bp, the recombination breakpoints would be near
the ORF1/2 junction for all six strains as indicated by the SimPlot analysis (Fig. 4). In fact, the recombination
breakpoints were identified at positions varying from nucleotides 641 to 761, corresponding to the nucleotides
positioned at 5009 to 5111 in the whole viral genome, localized in the ORF1 region for four strains (GIL.2[P16],
GIL.3[P12], GIL.6[P7], and GII.14[P7]) and in the ORF2 for the other two strains (GII.4 Sydney[P31] and
GIL1[P33]).

Phylogeography of Gll.14[P7] genotypes. Of the six recombinant strains, GI1.14[P7] was further ana-
lyzed because, unlike other strains, it was a rare genotype which did not have an RdRp genotype that belongs to
any known RdRp genotypes. According to the phylogenetic analysis, sequences of GII.14[P7] were grouped into
four major clusters based on their RARp genes (Fig. 5).

In detail, as for the RdRp gene, the GII.14[P7] variants identified in the period from 2006 to 2008 fell in
Cluster II. The GIL.6[P7] variants originating from 2012 to 2016 and from 2002 to 2012 fell in Cluster I and
I11, respectively. The GII.7[P7] variants and the GII.14[P7] variants from 2013 to 2017 belonged to Cluster IV
(Fig. 5a). The GII.14[P7] variant reported here from Jiangsu province was in Cluster IV based on the RdRp trees.
As for the VP1 gene, several clusters were observed in the tree, but they did not obtain enough bootstrap support
(showed bootstrap support of <70%). The Jiangsu variant was in the same lineage with variants from 2016 to
2017 (Fig. 5b).

Even though the complete VP1 gene of the GII.14[P7] variant in this study has been sequenced, further anal-
ysis with VP1 was limited because only a few complete VP1 genes of the GII.14[P7] variants, which were also
reported previously within a short period of time, were available in GenBank. On the other hand, three HBGA
binding sites of all known GII.14 strains remained conserved, while several amino acid mutations in the predicted
conformational epitopes were found! as shown in Table 2. However, a single amino acid change (aa373, D-N)
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Figure 4. The SimPlot analysis of the recombinant strain sequences. SimPlot was constructed using a Simplot
software version 3.5 with a slide window width of 200 bp and a step size of 20 bp. At each position of the window,
the query sequence was compared to each of the reference strains. The X-axis indicates the nucleotide positions
in the multiple alignments of the NoV sequences; and the Y-axis indicates nucleotide identities (%) between the
query sequence and the NoV reference strains.

found peripheral to the HBGA-binding site II, which is also located in the predicted conformational epitopes,
may have an important effect on the viral antigenicity.

Discussion

Recombination of human noroviruses is an important mechanism to generate genetic diversity and recombi-
nant strains are frequently detected, particularly between pandemic peaks'!. From January 2015 to December
2018, norovirus outbreaks caused by recombinant strains increased rapidly in number with a peak in 2017
and 2018. Most outbreaks were attributed to the emergence of GII.2[P16] variants, which were responsible for
67.6% (144/213) of all norovirus outbreaks. During the winter of 2016-2017, the GIL.2[P16] strain suddenly
emerged and rapidly became the predominant genotype throughout mainland China and Japan'>**. During the
same period, however, GII.4 Sydney[P16] was the predominant strain in the United States, Australia, and New
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Figure 5. Phylogenetic analyses of the GII.14[P7] sequences based on partial RdRp and VP1. (a) Phylogenetic
tree of a 313 bp region of RdRp. (b) Phylogenetic tree of a 282 bp region of VP1. The trees were constructed
using the Maximum Likelihood analysis and the evolutionary distances were computed using the Kimura
2-parameterpG method available in MEGA 7.0. Bootstrap values (>>70%) are shown as percentages derived
from 1,000 samplings at the nodes of the tree. The scale bars represent the number of nucleotide substitutions
per site. The new norovirus strains reported in this study are indicated with solid black diamond.
HBGA Binding Sites Predicted Conformational Epitopes
Site I Site IT Site ITI
GII.14 strains (aa347) (aa374) (aa439) aa309 aa365 aad57
JN699038 CHN/1978 TRAH SNDF AGGH LDGSPIDPTDDVPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQESAPSQS
AY130761 USA/1999 TRAH SDDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSDDFDLHDPTKFTP EHFYQEAAPSQS
EF547404 JPN/2001 TRAH SGDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSGDFDLHDPTKFTP EHFYQEAAPSQS
EF670650 CHN/2006 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS
GQ856465 CHN/2007 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS
GU017901 JPN/2008 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS
LC133340 JPN/2013 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS
JSOB/CZ0907/2017 TRAH SNDF AGGH LDGSPIDPTDDMPAPLGTP IGQVRFKSSSNDFDLHDPTKFTP EHFYQEAAPSQS

Table 2. The sequence analysis of HBGA binding sites and predicted conformational epitopes of GII.14 VP1
protein. The HBGA-binding interfaces are composed of three amino acid motifs that are indicated with sites
L, I1, and I1I. The predicted conformational epitopes are also composed of three amino acid components with
residues, bold and underlined, that indicate changes. Numbers indicate the starting position of amino acid
components, which is located on the norovirus HK74 genome (GenBank accession No. JN699038).

Zealand'"'. GIL.P16 polymerases have also been found to recombine with GII.3 and GII.13 capsids, but the P16
polymerase sequence associated with GIL.2 capsids is almost identical to the P16 sequences that harbor the GIL.4
Sydney capsids''*'>. Emergence of GIL.P16 strains indicates that the viral RNA polymerase confirms that ORF1
sequences play a more important role in predominance of certain but not all emerging recombinant genotypes.
To understand how recombination occurred among norovirus, more analyses have been carried out on GII.4
and GII.3 strains for rare occurrence of recombination events in the past. The GIL.4 norovirus had been the pre-
dominantly detected variant worldwide since 1995. Its capsid protein continuously underwent epochal evolution
by emergence of one antigenically distinct GII.4 strain approximately every 3-5 years®!*. However, this trend
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in antigenic evolution did not continue with the GII.4 Sydney[P16] viruses that emerged in 2015. The antigenic
domains in the capsid did not evolve with any amino acid changes between the GII.4 Sydney[P16] strains and
GI1.4 Sydney[P31] strains, although the VP1 sequences of GIL.4 Sydney[P16] strains formed a new cluster!!:#16,
In contrast, GIL3 strains evolved earlier through recombination, which became common genotypes in sporadic
infection'” and ranked only second to the annual GII.4 epidemic strains in China'®. In this study, GIL.3 was also
the second genotype in number causing the outbreaks. Since 2000, most GII.3 noroviruses have become recom-
binant strains, which possessed a non-GII.3 RdRp genotype. The common types of polymerase recombinants
with GIL3 were GII.P12, GIL.P16, and GII.P21 (formerly termed GIL.Pb)'"'. The recombinant strains increased
circulation, suggesting that recombination may have contributed to viral immune escape or conferred higher
virological fitness' for maintaining the fitted strains or genotypes in human population.

Schools were the main sites for outbreaks, especially in primary schools, which was proportionally higher
than the others significantly. There was no outbreak in July and August due to schools’ summer recesses, similar
to those previously reported in Shanghai, China, where most outbreaks occurred in kindergartens (48.3%) and
primary schools (45.0%). In contrast in Australia, Europe, and the United States, most outbreaks occurred in
long-term care facilities, followed by hospitals or restaurants, while outbreaks in schools accounted for only a
small fraction. The GIIL.4 viruses, identified as the most predominant genotypes, were more common in outbreaks
in health-care facilities compared to other genotypes®!*!6.

Noroviruses are classified into genogroups and genotypes based on amino acid homology in the RdRp and
VP1 proteins and some genotypes consist of various subclusters (such as GII.3, GII.4 and GII.6). However, no
specific criteria have been applied to classify GII.14[P7] strains within variant types**. In this study, we subdi-
vided the GII.14[P7] strains into several clusters according to the GII.P7 and GII.14 reference strains. Generally
one VP1 genotype of noroviruses combine with one or more polymerase genotypes and the resultant strains
usually contain the original polymerase genotypes. For example, the GI1.3 VP1 genotype could combine with
several RARp genotypes, such as GII.3[P3], GIL.3[P12], GIL.3[P16], and GIL.3[P21], and the resultant recombi-
nant strains usually possess the original GIL.P3 RdRp genotypes. However, the VP1 of GII.14 genotype seems to
combine only with GIL.P7 RdRp genotype, which results in recombinant strains without possessing the original
GILP14 RdRp genotype. On the contrary, the RARp of GII.P7 could recombine with other VP1 genotypes, such as
GIL6[P7] variants, in addition to GII.14*%. Although we could find GII.P6 genotypes in RdRp region, no GIL.P14
genotypes has ever been found. Our data also show that there were several substitutions in the predicted confor-
mational epitopes compared with the ancestral strain, and one of them was peripheral to the HBGA-binding site
II. These results suggest that the recombinant strain was evolving slowly and continuously to achieve long-term
fitness and stability in the population.

In summary, this study leverages data from two surveillance systems (EPHEIM and NOSS) to provide a com-
prehensive analysis of norovirus recombinant strains from both the laboratory and epidemiologic perspectives.
The results showed that the proportion of recombinant strains increased significantly in the norovirus outbreaks
between 2015 and 2018 in Jiangsu, while the GII.2[P16] recombinant strains were accountable for the majority
of the outbreaks. Although antigenic drift and recombination are regarded as the main mechanisms for norovi-
rus evolution, constantly increasing proportion of recombinant strains seems to suggest that viruses are more
likely to evolve via recombination recently. On the other hand, we have to bear in mind the possibility that more
recombinant strains are detected nowadays probably due to improved detection protocols. The current standard
for genotyping includes polymerase and capsid genotypes, for example, while in the past years only the capsid
or polymerase region was typed by many laboratories. Retyping the strains collected in the past with the current
protocol should be able to deal with this concern unequivocally. Increased surveillance for early identification of
potential pandemic variants would provide warning to public health sectors so that they could formulate effective
preventive and control measures in time.

Methods

Sample collection and ethics statement. Two systems, the Emergent Public Health Event Information
Management System (EPHEIM) and the norovirus Outbreak Surveillance System (NOSS), had been used to
report noroviruses through outbreak-based surveillance in Jiangsu province. An outbreak was defined as to
have at least 20 cases within one week or 5 cases within three days with symptoms including vomiting and/or
diarrhea. Patient samples positive for norovirus were submitted to the laboratory of Jiangsu provincial Center
for Disease Control and Prevention (CDC) for further analysis. To characterize temporal and spatial distribu-
tion of outbreaks, hierarchical mapping was carried out with ArcGIS software (version 10.0; ESRI, Redlands,
CA). This study was approved by the Institutional Review Board of Jiangsu CDC with the approval protocol No.
JSCDCLWLL2019002. Written informed consent was obtained according to the guidelines of the National Ethics
Regulation Committee.

Norovirus genotyping. Norovirus-positive samples were genotyped in both the ORF1 (RdRp) and ORF2
(capsid VP1) regions. A region of 1,095bp in the ORF1/ORF2 junction of the viral genome was obtained by
RT-PCR using a semi-nested specific primer set as previously described?. The genotypes were determined by
using the norovirus automated genotyping tool (http://www.rivm.nl/mpf/norovirus/typingtool) and human cal-
icivirus typing tool (https://norovirus.ng.philab.cdc.gov).

The complete VP1 genomic fragments (1.7kb) of the six recombinant strains were amplified with a
semi-nested PCR GII-specific primer set (COG-2F/VN3T20 in the first-round PCR and G2SKF/VN3T20 for the
second-round PCR) as previously described?. Next, the ORF1/ORF2 junction fragment and the complete VP1
genomic fragment were PCR-ligated through splicing into a 2.4 kb genomic fragment which contained a complete
capsid sequence and partial RARp sequence. All PCR products were purified and subsequently sent to the Sangon
Biotech (Shanghai, China) Company for Sanger sequencing.
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Sequences analysis. All nucleotide and amino acid (aa) sequence alignments were performed using Bioedit
and MEGA 7.0 software?*. Phylogenetic trees were constructed using the Maximum Likelihood algorithm with
1,000 bootstrap replicates and a Kimura2-parameter model in MEGA 7.0 with norovirus reference sequences
obtained from the GenBank database. Nucleotide sequences obtained from clinical samples were deposited in
GenBank under the accession numbers from MK614059 to MK614064.

In order to verify the recombination event, the 2.4 kb genomic fragments, which were constructed by PCR as
mentioned earlier and contained the ORF1/ORF?2 junction region, were analyzed along with the reference strains
obtained from GenBank by using a Simplot software v.3.5.1. The SimPlot analysis was performed by setting the
window width and the step size to 200 bp and 20 bp, respectively.

Statistical analysis. Categorical data were presented as frequencies with percentages. Case numbers were
presented as the median and interquartile range (IQR). For categorical data, differences among groups were
examined using the chi-square test or Fisher’s exact probability test. For continuous data, Kruskal-Wallis Test
was used to determine differences among groups. p < 0.05 was considered to indicate a statistically significant
difference.
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