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Human β-defensin-3 reduces 
excessive autophagy in intestinal 
epithelial cells and in experimental 
necrotizing enterocolitis
Liping chen1, Zhibao Lv1*, Zhimei Gao2, Guijie Ge1, Xueli Wang3, Junmei Zhou2 & 
Qingfeng Sheng1*

Necrotizing enterocolitis (NEC) is a leading cause of mortality in preterm newborns. Intestinal barrier 
dysfunction is one key event in NEC pathogenesis. Human β-defensin-3 (hBD3), one member of 
cationic host defence peptides, was reported to reduce the development of necrotizing enterocolitis 
in a neonatal rat model. And autophagy was induced in the intestine of human and animals with 
NEC. We hypothesized that regulation of autophagy might play a critical role in hBD3-mediated 
protection against NEC injury. Autophagy activity was evaluated both in intestinal epithelial cells and 
in NEC models. Newborn Sprague-Dawley rats were divided randomly into four groups: Control + nS, 
Control + rapamycin, NEC + nS, and nec + hBD3. Body weight, histological score, survival time, 
enterocyte migration and mucosal barrier were recorded. Our results showed that hBD3 pretreatment 
could effectively inhibit autophagy activity in cultured IEC-6 and Caco2 enterocytes, and CXCR4 
might be involved in hBD3-mediated autophagy suppression. Moreover, hBD3-induced inhibition of 
autophagy significantly promoted the intestinal epithelial cell migration by wound healing assay and 
transwell migration assay. In the rat model of NEC, hBD3 could noticeably reduce the expression of 
autophagy-activated proteins, down-regulate the expression of inflammatory mediators, and promote 
the mucosal integrity. Our data suggest an additional role of hBD3-mediated protection against 
intestinal mucosal injury: inhibition of over-activated autophagy in enterocytes.

Necrotizing enterocolitis (NEC) is a digestive system disease which seriously threatens newborns as a result of 
multiple factors, such as premature birth, intestinal dysbacteriosis, formula feeding, and genetic predisposition1,2. 
Despite advancements in neonatal medicine, the mortality associated with NEC still ranges from 20% to 30%3. Even 
though many risk factors have been proved to be relevant4,5, the exact etiology and pathogenesis of NEC remain 
unknown6. Intestinal barrier dysfunction in premature newborns is one key cause leading to the onset of NEC.

Autophagy is an intracellular degrading and recycling pathway of proteins and organelles that relies on lys-
osomes, and is involved in many important biological processes, such as cell survival, cytoskeleton remodeling, 
antigen presentation, etc.7,8. Recent evidence has shown that uncontrolled activation of autophagy has been iden-
tified as a risk factor for the development of NEC9. Excessive activation of autophagy could damage intestinal 
barrier and increase permeability through degradation of tight junction protein such as claudin-210. Moreover, 
rapamycin (a classic autophagy inducer) has been confirmed to significantly inhibit the migration of several cell 
types including intestinal epithelial cells both in vitro and in vivo11, which suggests that autophagy participates 
in the repair process of intestinal mucosal barrier and plays an important role in maintaining the integrity of 
intestinal mucosal barrier.

Human beta-defensin-3 (hBD3, OMIM: 606611), first detected in lesion tissues of psoriatic patients in 2001, is 
a cationic antibacterial peptide with antimicrobial activity and immune modulation linking innate and adaptive 
immunity12,13. Jenke et al.14 reported low beta defensin expression in severe NEC. In addition, we have previously 
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reported that hBD3 treatment can significantly induce intestinal epithelial cell migration and reduce the severity 
and mortality of NEC model in neonatal rats15. However, the underlying mechanism has not been elucidated clearly.

We now hypothesized that regulation of autophagy played a critical role in hBD3-mediated protection against 
NEC injury. Consequently, the present study was designed to shed light on the effect of hBD3 on autophagy both 
in intestinal epithelial cells and in experimental NEC model.

Results
Pharmacologic induction of autophagy in intestinal epithelial cells. In order to detect the optimal 
concentration and incubation period, intestinal epithelial cells IEC-6 and Caco2 were respectively incubated 
with rapamycin (a classic autophagy inducer) for the indicated concentrations and periods over a broad range. 
After the rapamycin administration, the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) 
to LC3-II, as the hallmark of autophagy, was increased both in Caco2 and IEC-6 cells. Beclin1, another essential 
protein as a way to monitor autophagy, was also increased after rapamycin treatment. In addition, p62 (also 
known as sequestosome-1), which serves as a link between LC3 and ubiquitinated substrates, was decreased in 
rapamycin-treated cells. According to the expression of autophagy-related proteins, the autophagy flux in Caco2 
increased significantly after being incubated with 50 nM rapamycin for 24 h (Fig. 1A–C,E). Accordingly, the auto-
phagy in IEC-6 was effectively induced by rapamycin at the concentration of 200 nM for 24 h (Fig. 1A,B,D,F).

hBD3 inhibited autophagy in intestinal epithelial cells. Wu et al. reported that beta-defensin-3 could 
suppress autophagy in macrophages16. Thus, we studied the effects of hBD3 on the autophagic process in the 
intestinal epithelial cells. The expression of Beclin1 and LC3-II/LC3-I ratio increased and protein p62 decreased 
with the treatment of rapamycin when compared with unstimulated control. A reversion of protein expression 
mentioned above was observed after the pretreatment of hBD3 at the concentration of 5 μg/ml for 12 h (Figs. 2A 
and 3B). The expression of p62 was also decreased by immunofluorescence, which was accordant with western 
blotting (Fig. 2B). Ad-mRFP-GFP-LC3 was used to monitor autophagic flux based on the different pH stabilities 
of mRFP and GFP, as the GFP signal would be quenched by the acidic environment of the lysosome. Therefore, 
autophagosomes were represented by the yellow merged dots (mRFP+ GFP+), while the autophagic flux indicated 
by the formation of autolysosomes was reflected by the red dots (mRFP+ GFP−). Our results demonstrated a 
significant decrease of mRFP-GFP colocalization dots and free red dots after hBD3 treatment compared with the 
autophagy induction group, confirming its inhibition of autophagic flux in IEC-6 cells (Fig. 2C–E). Transmission 
electron microscopy (TEM) was used to monitor the ultrastructure of IEC-6 and Caco2 cells. After the rapamy-
cin exposure, degradative autophagic vacuoles (AVd) were markedly accumulated, while hBD3 treatment could 
decrease the formation of AVd (Fig. 2F). Taken together, hBD3 treatment could inhibit excessive autophagy in 
cultured intestinal epithelial cell.

Involvement of CXCR4 in hBD3-mediated autophagy suppression. It has been reported that 
CXCR4 was involved in mTOR-dependent migration of gastric carcinoma cells17. Moreover, structural analy-
sis revealed similarities between hBD3 and SDF-1α, natural ligand of CXCR418,19. In order to confirm the role 
of CXCR4 signaling pathway in the process of hBD3-mediated autophagy suppression in enterocytes, CXCR4 
inhibitor (AMD3100) and specific CXCR4 small interfering RNA (siRNA) were used to pretreat the intestinal 
epithelial cells. Compared with hBD3 treatment group, the autophagy-associated proteins Beclin1 and LC3-II/
LC3-I ratio increased after incubation with 10 uM AMD3100 for 24 h, while protein p62, p-AKT and p-mTOR 
were showed in decline expression (Fig. 3A,B). Moreover, IEC-6 and Caco2 cells were transfected with CXCR4 
siRNA to further confirm the results caused by CXCR4 inhibition. The knockdown efficiency of CXCR4 siRNA 
was approximately 60% and resulted in a remarkable reduction in CXCR4 expression compared with control 
siRNA (Fig. 3C,D). After being transfected with CXCR4 siRNA for 36 h, the expression of autophagy-associated 
proteins was evaluated and the results showed that the effects on protein expression induced by transfection of 
CXCR4 siRNA were more significant than that of inhibitor AMD3100 (Fig. 3E,F). Together, these findings indi-
cated that the CXCR4 might be involved in the hBD3-induced autophagy inhibition.

hBD3-mediated autophagy suppression attenuated the inhibition of intestinal epithelial cell 
migration. Decreased mucosal barrier repairing capacity in neonates, especially in premature infants, is 
one major risk factor of necrotizing enterocolitis. Therefore, wound healing assay and transwell migration assay 
were conducted to measure the migration ability of IEC-6 cells in different groups. In our study, the migration 
distance of IEC-6 cells was significantly decreased in the group incubated with rapamycin compared with the 
unstimulated control. However, pretreatment of hBD3 could noticeably reverse the inhibition effect of rapamycin 
(Fig. 4A,B). The results of the transwell migration assay were consistent with the wound healing assay with the 
TGF-β1 as the positive control (Fig. 4C,D). IEC-6 cells were transfected with ATG7 siRNA to confirm the effect 
of hBD3-mediated autophagy suppression on the migration of intestinal epithelial cells. Knockdown efficiency of 
ATG7 siRNA was more than 65% and markedly down-regulated the protein expression of ATG7 compared with 
control siRNA (Fig. 4E,F). The migration distance of IEC-6 cells transfected with ATG7 siRNA increased obvi-
ously compared with autophagy induction group no matter whether hBD3 incubation or not, which indicated 
that hBD3 did regulate intestinal epithelial cell migration by inhibiting autophagy (Fig. 4G,H).

It has been reported that the Rho signaling pathway played an important role in the regulation of cell migra-
tion20. Thus, we first examined the protein expression of activated Rho (Rho-GTP) with GTP as the positive 
control and GDP as the negative control. Autophagy induced by rapamycin down-regulated the activation of 
Rho, while hBD3 markedly increased the conversion from Rho-GDP to Rho-GTP (Fig. 5A,C). In addition, the 
downstream effectors were also assessed. Phosphorylation of Myosin Light Chain 2 (MLC2) was detected by 
western blotting which demonstrated that hBD3 up-regulated the phosphorylation of MLC2 compared with the 
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autophagy induction group (Fig. 5B,D). The accumulation of F-actin in IEC-6 and Caco2 cells incubated with flu-
orescein isothiocyanate labeled phalloidin was monitored. hBD3 could effectively attenuate the inhibition effect 
of rapamycin (Fig. 5E).

Taken together, we concluded that autophagy inhibited the migration of intestinal epithelial cells and hBD3 
treatment could significantly mitigate the inhibition effect induced by autophagy, which was confirmed to be 
associated with the Rho activation, MLC2 phosphorylation and F-actin accumulation.

Preliminary evaluation of hBD3-mediated autophagy inhibition in rat NEC model. Sprague–
Dawley neonatal rats were divided randomly into four groups: Control + NS, rapamycin, NEC + NS and 
NEC + hBD3. The rat NEC model was further optimized in our study, including hypertonic formula feeding 
combined with asphyxia-cold stress exposure15,21,22, to better stimulate clinical development of NEC. The effect 

Figure 1. Induction of autophagy in intestinal epithelial cells. The optimal concentration (A) and time (B) 
of rapamycin on Caco2 and IEC-6 were respectively detected. Cell lysates were prepared and analyzed by 
western blotting for the expression of autophagy related proteins LC3, p62 and Beclin1. GAPDH was used as a 
normalization control. The LC3II/LC3I ratio of Caco2 increased significantly after 24 h incubation with 50 nM 
rapamycin (C,E), accordingly, 24 h treatment with 200 nM rapamycin could successfully induce autophagy of 
IEC-6 (D,F). Data was presented as mean ± SD for three independent experiments. **p < 0.01, ***p < 0.001.
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of hBD3 on autophagy in the ileum was assessed first. The conversion of LC3-I to LC3-II and protein expression 
of Beclin1 were significantly increased in group rapamycin and group NEC + NS, while the protein expression 
of p62 was unchanged significantly. Autophagic activity was down-regulated after hBD3 treatment (Fig. 6A). 
The results of our study showed that body weight of the formula-fed rats was markedly lower than that of the 
mother-fed rats. Rats in group NEC suffered obvious weight loss, however, the body weight increased to some 
extent after hBD3 intervention and the difference was statistically significant (P = 0.007, Supplemental Fig. 1 and 
Table S1). The survival rate of rats was significantly decreased from 100% in control group to 42% in NEC group, 
which could be effectively improved by the treatment of hBD3 (P < 0.001, Fig. 6B and Table S2). All pups were 
sacrificed and the entire digestive tract was displayed to present the macroscopic changes among different groups. 

Figure 2. hBD3 inhibited autophagy in intestinal epithelial cells. The intestinal epithelial cells were respectively 
incubated with rapamycin (200 nM for IEC-6 or 50 nM for Caco2, 24 h) or hBD3 (5 μg/ml, 12 h) as indicated. 
The expression of p62, Beclin1 and LC3 in each group was determined by western blotting (A), and p62 levels 
of IEC-6 were also assessed by immunostaining (B, scale bar, 50 μm). IEC-6 cells were infected with Ad-mRFP-
GFP-LC3(MOI = 1000) for 48 h and photographed with the confocal microscopy. Representative mRFP-LC3, 
GFP-LC3 and merge images were shown (C, scale bar, 20 μm). GFP-LC3 dots and mRFP-LC3 dots per cell 
were respectively counted (D) the number of yellow (autophagosome) and free red dots (autolysosomes) per 
cell was quantified. (E) The ultrastructure of IEC-6 and Caco2 cells was presented by TEM (F, arrows indicated 
degradative autophagic vacuoles (AVd), scale bar, 1 μm). Data was expressed as mean ± SD of three independent 
experiments. Abbreviations: hBD3, human beta defension-3; MOI, multiplicity of infection; TEM, transmission 
electron microscopy. **p < 0.01, ***p < 0.001.
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Figure 3. CXCR4 signaling pathway was involved in hBD3-mediated autophagy suppression. Intestinal 
epithelial cells IEC-6 and Caco2 were incubated with CXCR4 inhibitor AMD3100 (10 μM, 24 h), and further 
treated with rapamycin (200 nM for IEC-6 or 50 Nm for Caco2, 24 h) and hBD3 (5 μg/ml, 12 h) as indicated. 
The expression of p62, Beclin1, LC3, p-mTOR and p-AKT in each group was assessed by western blotting (A) 
the LC3II/LC3I ratio and relative expression of p-mTOR and p-AKT were analyzed (B) with total mTOR and 
AKT as a loading control. CXCR4 knockdown efficiency was monitored (C) and analyzed (D) in IEC-6 and 
Caco2, respectively. After being incubated with CXCR4 siRNA for 36 h and treated with rapamycin and hBD3 
mentioned above, cells in each group were lysed and subjected to western blotting using antibodies against p62, 
Beclin1, LC3, p-mTOR and p-AKT. (E) The LC3II/LC3I ratio and relative expression of p-mTOR and p-AKT 
were also analyzed (F) with the same methods referred to above. Data was displayed as mean ± SD from three 
independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, #p > 0.05.
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Edema and necrosis of the small intestine was observed in group NEC, which could be effectively ameliorated 
with the administration of hBD3 (Supplemental Fig. 2). Hematoxylin and eosin (H&E) staining of terminal ileum 
tissue was performed and representative images were shown (Supplemental Fig. 2). The degree of bowel damage, 

Figure 4. hBD3-mediated autophagy suppression promoted intestinal epithelial cells migration. Migration 
ability of IEC-6 was determined by wound healing assay (A, scale bar, 200 μm) and transwell migration assay 
(C, scale bar, 200 μm), and then analyzed respectively (B,D). ATG7 knockdown efficiency of IEC-6 cells was 
assessed by western blotting (E) and evaluated detailedly. (F) Migration ability of IEC-6 transfected with 
ATG7 siRNA was detected by wound healing assay (H, scale bar, 200 μm) and subsequently compared with 
other groups (G) to confirm the effect of hBD3-mediated autophagy suppression on the migration of intestinal 
epithelial cells. Data was expressed as mean ± SD from three independent experiments and representative 
images were presented. **p < 0.01, ***p < 0.001, #p > 0.05.
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evaluated by the histological scores of ileum, was reduced in group NEC + hBD3, compared with the group NEC, 
with a mean NEC score of 1.33 and 2.52, respectively (P < 0.001, Fig. 6C).

Rats in each group were intra-peritoneal injected with BrdU 18 h before sacrificed. The migration distance 
was indicated by the distance between the bottom of the small intestine crypt to the apical cell labelled BrdU, and 
the mobility were evaluated by the ratio of migration distance to intestinal villus height. Representative images 
were shown and the intestinal epithelial cells migration ability was markedly decreased in group rapamycin and 
in group NEC, which was effectively up-regulated after hBD3 administration (Fig. 6D–F). Inflammation played a 
central role in the development of NEC, we detected the inflammatory cytokine expression in ileum and in serum 
to further explore the underlying relationship between hBD3-mediated autophagy inhibition and inflammatory 
cytokine expression. In group NEC, inflammatory cytokines including IL-6, IL-10 and TNF-α were noticea-
bly increased in the ileum and serum, but the intervention of hBD3 could relatively down-regulated the indi-
cated cytokines (Supplemental Fig. 3) and then attenuated the inflammatory injury of rat NEC model. ZO-1 and 

Figure 5. hBD3 promoted intestinal epithelial cells migration via the Rho signaling pathway. Rho-GTP was 
extracted by pull-down assay and its expression levels in different groups were measured by western blotting 
(A) with the total Rho as an input control. GTP and GDP were respectively added to act as the positive and 
negative control. Relative Rho-GTP expression in each group was quantified. (C) The expression of p-MLC2 
in each group was assessed by western blotting (B) with the total MLC2 as a loading control. Relative p-MLC2 
expression in different groups were compared. (D) F-actin was stained with phalloidin- FITC and analyzed 
by fluorescence microscopy (E, scale bar, 50 μm). Data was expressed as mean ± SD from three independent 
experiments and representative images were presented. Abbreviations: GTP: guanosine triphosphate; 
GDP: guanosine diphosphate; MLC2: myosin light chain-2; FITC: fluorescein isothiocyanate. **p < 0.01, 
***p < 0.001.
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occludin were immunostained to evaluate the mucosal integrity. ZO-1 staining loss was observed in group NEC, 
which was consistent with occludin staining. The inhibition of ZO-1 and occludin expression could be prevented 
to some extent after hBD3 intervention (Fig. 6G).

Figure 6. Preliminary evaluation of hBD3-mediated autophagy inhibition in rat NEC model. The expression of 
autophagy-related proteins LC3, p62 and Beclin1 in the ileum of rats among four groups was assessed by western 
blotting, the LC3II/LC3I ratio and Beclin1 expression was analyzed. (A) Kaplan Meier survival analysis was used 
to identify the differences of survival time in groups. (B) NEC pathological score was conducted in each group by a 
pathologist independently and compared with other groups as indicated. (C) Rats were intraperitoneal injected with 
BrdU 18 h before killing and immunostained with BrdU antibody to measure the enterocyte migration (D, scale 
bar, 50 μm). The migration distance (E) and mobility (F) were evaluated. ZO-1 and occludin were immunostained 
on the sections of the terminal ileum from rats among different groups (G, scale bar, 50 μm). Data was expressed 
as mean ± SD from three independent experiments and representative images were presented. Abbreviations: 
Abbreviations: BrdU: 5-Bromo-2′-deoxyuridine, NS: Normal Saline. *p < 0.05, **p < 0.01, ***p < 0.001.
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Together, hBD3-stimulated autophagy down-regulation promoted intestinal epithelial cells migration and 
mucosal integrity, and down-regulated inflammatory cytokines expression.

Discussion
In the present study, we reported that initiation of autophagy was blocked in cultured intestinal epithelial cells 
after hBD3 treatment. Furthermore, we provided evidence that impaired enterocyte migration was ameliorated 
both in enterocytes and in a rat model of NEC by hBD3, which was associated with inhibition of excessive intes-
tinal autophagy. Our data suggested an additional role of hBD3-mediated protection against intestinal mucosal 
injury: inhibition of over-activated autophagy in small intestine.

Previous studies23–25 have demonstrated that G-protein coupled receptor CXCR4 was widely expressed in 
intestinal epithelial cells. And activation of CXCR4, by its natural ligand SDF-1α, was involved in migration of 
enterocytes and restitution of wounded barrier. In current study, we did not provide direct evidence of hBD3 
binding to CXCR4. However, similarities indicated by structural analysis between hBD3 and SDF-1α, including 
the β-sheet conformation and three N-terminal surface cationic residues, may be the molecular structure basis of 
their binding to CXCR4. The β-sheet conformation is stabilized by three intramolecular disulfide bonds among 
six conserved cysteines18. Three N-terminal surface cationic residues (i.e., K1, R8 and R12) are believed to be 
the key structure of CXCR4-SDF-1α binding19. Correspondingly, three similar cationic residues are present on 
the surface of hBD3: K8, K32, and R36. Substituting all six cysteines or all three cationic residues of hBD3 was 
reported to result in an obviously decreased combination with CXCR426. Thus, we speculated that the distinctive 
conformation was essential for hBD3-interaction with CXCR4.

Autophagy can be activated by stress such as starvation and injury to maintain cell survival by degrading harmful 
proteins and damaged organelles27–29. The process of autophagy can be divided into four stages: the formation of the 
separation membrane, the formation of autophagosomes, the fusion of autophagosomes and lysosomes, and the deg-
radation of autophagolysosomes30. Different methods were applicated to evaluate the autophagy level according to the 
guideline. The expression of autophagy-related proteins, Beclin1 and LC3-II/LC3-I ratio, noticeably increased both in 
rapamycin treated cells and in the rat NEC model, while the protein expression of p62 in ileum tissues was statistically 
insignificantly among different rat groups. One possible explanation is that p62 is a multifunctional protein regulated 
by a variety of signaling pathways, including NF-κB signaling pathway, and apoptosis pathway31–33. Because of just 
using of rapamycin in current study, only initiation of autophagy was evaluated after hBD3 treatment. Reduction in 
degradative activity as a result of a block in trafficking to lysosomes might also be involved in the process.

The destruction of mucosal integrity in neonates, especially in premature infants, is one critical cause of NEC. 
Intestinal epithelial cell migration plays a vital role in the reparative process of mucosal barrier. Cell migration 
occurs within a few hours after injury with intestinal epithelial cells losing polarity and migrating to the lesion 
through epithelial-mesenchymal transition. In children with NEC, it has been proved that the expression and dis-
tribution of genes involved in the reparative process of intestinal mucosal barrier were abnormal34. Recent research 
has revealed that autophagy induced by rapamycin noticeably inhibits the migration of intestinal epithelial cells11. 
Our results showed that impaired enterocyte migration was induced after activation of autophagy, and hBD3 
treatment promoted the migration of intestinal epithelial cells. In the early stage of autophagosome formation, 
the Atg5-Atg12 complex binds to LC3-PE complexes via the kinase Atg7 and then promotes the localization of 
LC3-PE on autophagosomes35. Thus, ATG7 is an essential part of the whole autophagy process. ATG7 siRNA was 
transfected in our study to confirm that the promotion effect of hBD3 on intestinal epithelial cell migration was 
mediated by inhibiting autophagy. The activation of Rho, a GTPase in the Ras superfamily, and its downstream 
effectors is essential in the regulation of cell migration20. Our data demonstrated that hBD3-mediated autophagy 
inhibition could significantly promote cell migration by activating Rho protein, phosphorylating MLC2 and accu-
mulating F-actin, resulting in intestinal mucosal healing. Obviously, there are other molecular mechanism under-
lying hBD3-mediated protection. For instance, recent studies suggested defensin also serves to help shape the 
composition of the intestinal microbiota36. And the effects of hBD3 on these targets deserve further investigation.

In summary, we reveled that down-regulation of excessive autophagy might be involved in hBD3-mediated 
protection, which resulted in the promotion of enterocyte migration and reduction of the severity of NEC in rat 
pup model. These results also provide evidence of therapeutic potential of host defence peptides.

Materials and Methods
Reagents and antibodies. Human β-defensin-3 (hBD3) was purchased from PEPTIDE INSTITUTE, 
INC (#4382-s, Ibaraki, Osaka, Japan). Reagents like rapamycin (#V900930), Lipopolysaccharides (LPS, #L4524), 
Chloroquine (CQ, #C6628), 5-Bromo-2′-deoxyuridine (BrdU, #B5002) were acquired from Sigma (St. Louis, 
MO, USA). Plerixafor (AMD3100) was procured from Selleckchem (#S8030, Houston, TX, USA). Reagents like 
Dulbecco’s modified eagle medium (DMEM) (#11995065), Fetal bovine serum (FBS) (#10099141), Opti-MEM® 
Reduced-Serum Medium (#31985062), 0.25% Trypsin-EDTA (#25200072), Penicillin Streptomycin (#15140122), 
Phosphate Buffered Saline (PBS) (#10010023) were obtained from Gibco (Grand Island, NY, USA). Antibodies 
against CXCR4 (#ab124824), p-AKT (Phospho- T308) (#ab38449), AKT (#ab8805), Beclin1(#ab207612), 
SQSTM1/P62 (#ab109012) were from Abcam (Cambridge, UK). Other antibodies, including anti- LC3A/B 
(#4108S), mTOR (#2972S), p-mTOR (#2971S), Myosin Light Chain 2 (MLC2, #8505T), p-Myosin Light Chain 
2 (S19) (#3671T), FAK (#13009T), p-FAK (Y576/577) (#3281T), Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH, #5174S) were purchased from Cell Signaling Technology (CST, Beverly, MA, USA).

Cell culture. Rat intestinal crypt epithelial cell line IEC-6 and human colorectal adenocarcinoma cell line 
Caco-2, provided by the Cell Resource Center of the Chinese Academy of Science (Shanghai, China), were cul-
tured in DMEM supplemented with 10% FBS and 1% Penicillin Streptomycin solution at 37 °C with humidified 
5% CO2 atmosphere.
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Protein extraction and western blotting. Western blotting was performed as described previously15,22. 
Cells were treated as required in each group and then lysed step by step in RIPA lysis buffer containing 1 mM 
phenylmethyl sulfonylfluoride (PMSF) (CST, #8553S, Beverly, MA, USA) and 1% protease inhibitor cocktail 
(Sigma, #P8340, St. Louis, MO, USA). The lysate (30 ug) was separated by 10% or 12% SDS-PAGE and trans-
ferred to PVDF membranes (Millipore, ISEQ. 00010, Billerica, MA, USA). Afterwards, the membrane was 
incubated with blocking buffer (TBS containing 0.1% Tween-20 and 5% BSA) at room temperature for 1 h. 
Subsequently, indicated primary antibodies were used to probe the membrane with gentle agitation at 4 °C over-
night. The membrane was then incubated with Peroxidase-conjugated AffiniPure Goat Anti-Rabbit IgG (H + L) 
(Jackson ImmunoResearch, #111-035-003, West Grove, PA, USA). The result of western blotting was detected by 
ImmobilonTM Western Chemiluminescent HRP Substrate (Millipore, #WBKLS0500, Billerica, MA, USA).

Transmission electron microscopy (TEM). Morphology of autophagic structures during the dynamic 
maturation process from phagophore through autolysosome was revealed by the transmission electron micros-
copy (TEM) (HITACHI, HT7700, Chiyoda, Tokyo, Japan). First, cells in each group were collected by cell scrapers 
(CORNING, #3010, Corning, NY, USA) and then fixed in 2.5% glutaraldehyde after centrifugation at 800 rpm 
for 5 min. Afterwards, cells were post-fixed with 1% Osmium tetroxide (OsO4) in 0.1 M PBS for 2 h at room tem-
perature. Dehydration, infiltration, embedment and cutting of ultrathin sections was carried out subsequently. 
After staining with uranyl acetate and lead citrate for 15 min respectively, ultrathin sections were observed and 
photographed with TEM.

RNA extraction and quantitative real-time PCR (qRT-PCR). TRIzolTM reagent (Invitrogen, 
#15596026, Waltham, MA, USA) was used to extract total RNA of rat ileum tissues in each group according to the 
instruction of the manufacturer. Afterwards, cDNA was synthesized by PrimeScriptTM RT Master Mix (Takara, 
#RR036A, Kusatsu, Shiga, Japan). Subsequently, FastStart Essential DNA Green Master (Roche Diagnostics, 
#06924204001, Indianapolis, IN, USA) was used to monitor the target gene amplification dynamically. Primer 
sequences are listed in Table S3. The relative expression of mRNA was calculated with the 2−ΔΔCt method.

Small interfering RNA (siRNA) transfection. Small interfering RNA (siRNA) products respectively tar-
geting at CXCR4 and ATG7 were procured from QIAGEN (Duesseldorf, Germany). Cells were seeded into 6-well 
culture plates at a final concentration of 2 × 105 cells/ml in DMEM and then incubated in the incubator for the 
short time until transfection. A mixture supplemented with 800 ng siRNA, 100 ul Opti-MEM® reduced-serum 
medium and 24 ul HiperFect Transfection Reagent (QIAGEN, #301705, Duesseldorf, Germany) were blended 
and incubated at room temperature for 10 min to allow the formation of transfection complexes. Complexes were 
drop-wised onto the cells and then incubated in the incubator. The efficiency of gene silencing was monitored 
by western blotting using validated antibodies 36 h after transfection. The effect of CXCR4 knockdown on hBD3 
mediated suppression of autophagy was assessed with the expression levels of autophagy associated proteins 
by western blotting. The effect of ATG7 knockdown on autophagy mediated retardation of cell migration was 
assessed with wound healing assay.

Immunofluorescence. The cells were seeded on the coverslips disinfected and sterilized thoroughly at a 
final concentration of 1 × 105 cells/ml in DMEM. When cells reached 50% confluence, following treatments in 
each group were performed at the indicated time points. The cells were then rinsed with PBS for 3 times and 
fixed with 4% paraformaldehyde for 30 min, followed by soaking the cells in absolute ethyl alcohol for 20 min. 
After being blocked with blocking buffer contained with 1% BSA, 4% normal serum, 0.4% TritonX100 and 95.6% 
PBS for 30 min, the cells were subsequently stained with the indicated primary antibodies at 4 °C overnight. 
Then, the cells were incubated with CyTM3-conjugated AffiniPure Donkey Anti-Rabbit IgG (H + L) (Jackson 
ImmunoResearch, #711-165-152, West Grove, PA, USA) for 1 h at room temperature away from light after wash-
ing the nonspecific binding antibody with PBT supplemented with 99.9% PBS and 0.1% TritonX100. Finally, the 
nuclei were labeled with 4,6-diamidino-2-phenylindole (DAPI, #32670, Sigma, St. Louis, MO, USA) for 5 min 
at room temperature, and then the cells were rinsed with PBS for 3 times. The stained cells in each group were 
observed and photographed with the fluorescent microscope (Leica, Wetzlar, Germany).

Adenovirus infection and laser confocal detection. Ad-mRFP-GTP-LC3 (HANBIO, #HB-AP2100001, 
Shanghai, China) was designed to monitor the induction of autophagy and the autophagy flux through detecting 
the degradation of GTP signal in the acidic condition of the lysosome lumen. Cells were seeded into 12-well 
culture plates at a final concentration of 1 × 105 cells/ml in DMEM. When cells reached 30% confluence, 
Ad-mRFP-GTP-LC3 (1.26 × 1010 PFU/ml) was added into each well and the multiplicity of infection (MOI) was 
1000 following the manufacturer’s instructions. Following treatments in each group were performed 48 h after 
infection. After being rinsed with PBS for 3 times and fixed with 4% paraformaldehyde for 30 min, the cells were 
observed and photographed with the confocal microscopy (NIKON ECLIPSE TI, Chiyoda-KU, Tokyo, Japan).

Wound healing assay. Cell migration was assessed by wound healing assay. The horizontal lines were evenly 
drawn on the back of the 6-well culture plate with 0.5 cm spacing. Cells were seeded into the 6-well culture plate 
at a final concentration of 5 × 105 cells/ml in DMEM. When cells reached 100% confluence, sterile micropipette 
tips were used to scratch straight lines which were perpendicular to the horizontal lines on the back of the 6-well 
culture plate on the confluent monolayer cells. The interactions were used to mark the same field of microscope 
so that the dynamical changes of cell migration could be accurately measured by photographing five designated 
interactions at different indicated time points. The cell migration results were analyzed by ImageJ software.
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Transwell migration assay. The transwell migration assay was a classical technique to quantify cell move-
ment. 100 μl cell suspension containing 1 × 105 cells in Opti-MEM® Reduced-serum Medium was placed on the 
upper layer of the transwell chamber with 8 μm permeable membrane, and 500 μl DMEM containing 10% FBS 
was placed below the cell permeable membrane. Following an incubation period for 24 h, the transwell chamber 
was fixed by 4% paraformaldehyde for 30 min, and then the cells remaining on the upper layer of the permeable 
membrane were scraped with cotton swabs. After staining with 0.1% crystal violet for 15 min, the amount of 
migration cells in the bottom of the chamber was counted randomly in five microscopic fields.

Active Rho and downstream effectors detection. The Active Rho Detection Kit (CST, #11860S, 
Beverly, MA, USA) was used to detect the Rho activation level following the manufacturer’s protocol. The whole 
pull-down process included the binding of GTP-bound GTPase and glutathione resin through GST-linked bind-
ing protein, the centrifugation to remove unbound proteins, and the elution to remove glutathione resin through 
SDS buffer. Then, the elute sample could be analyzed by western blotting.

The downstream effector included Myosin Light Chain 2 (MLC2) and F-actin. MLC2 phosphorylation (Ser19) 
was detected by western blotting. To detect cellular F-actin expression, the cells were seeded into 12-well culture 
plate at a final concentration of 1 × 105 cells/ml in DMEM and incubated overnight, following treatments in 
each group were performed at the indicated time points. When cells reached 50% confluence, rinse, fixation and 
permeabilization were performed step by step, and then the cells were incubated with 50 g/ml fluorescein isothio-
cyanate labeled phalloidin for 30 min at room temperature away from light. The fluorescent microscope was used 
to observe and photograph the stained cells in each group.

Serum inflammatory factors measure. Enzyme linked immunosorbent assay (Elisa) was used to meas-
ure the expression levels of the inflammatory factors in serum. Elisa Kits targeting at TNF-α, IL-6 and IL-10 were 
obtained from ELK Biotechnology (#ELK1396, #ELK1158, #ELK1144, Wuhan, China). After clotting for two 
hours at room temperature, the serum was centrifuged for 20 min at approximately 1000 × g. Freshly prepared 
serum was used to detect inflammatory factors with the detailed manufacturer’s instructions. The microplates 
were pre-coated with an indicated antibody specific to the inflammatory factor, and the color change caused by 
the enzyme-substrate reaction could be measured spectrophotometrically at a wavelength of 450 nm.

Animal experimental design and evaluation. Experimental design was approved by the Animal Care 
Committee of the Children’s Hospital of Shanghai. It is confirmed that all methods were performed in accord-
ance with the relevant guidelines and regulations. The rat NEC model described by Caplan et al.21 was used for 
reference and further optimized to better simulate the occurrence and development of NEC. Hypertonic for-
mula feeding and asphyxia-cold stress exposure were conducted in our rat NEC model15,22. Forty-two newborn 
Sprague–Dawley rats originated from six different litters were divided randomly into four groups.

Control + NS (n = 11), Control + rapamycin (n = 11), NEC + NS (n = 12), and NEC + hBD3 (n = 8). 18 h 
before the end of the experiment, BrdU (50 mg/kg) was intra-peritoneal injected to assess the migration of intes-
tinal epithelial cells. All pups were sacrificed via cervical dislocation and the intestine and serum were collected 
according to demand. Hematoxylin and eosin (H&E) staining was used for experienced pathologists to score the 
pathological changes blindly according to the published NEC scoring system. Intestine tissues with scores 2 or 
higher were defined as NEC positive. Autophagy related proteins were assessed by western blotting. Inflammatory 
cytokines were measured via qRT-PCR and Elisa respectively. Tight junction proteins and BrdU were detected 
with immunohistochemistry.

Statistical analysis. Statistical analysis was performed with SPSS 24 software (SPSS, Chicago, Illinois, USA). 
Results were represented as Mean ± SD. Student’s t test and one-way analysis of variance (ANOVA) were used for 
comparison among groups. P < 0.05 was considered as statistically significant.
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