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A multiple coefficient of 
determination-based method for 
parsing SNPs that correlate with 
mRNA expression
Fan Song1, Yu tao1, Yue Sun2,4 & David Saffen1,2,3*

In this study, we present a novel, multiple coefficient of determination (R2
M)-based method for parsing 

SNPs located within the chromosomal neighborhood of a gene into semi-independent families, each 
of which corresponds to one or more functional variants that regulate transcription of the gene. 
Specifically, our method utilizes a matrix equation framework to calculate R2

M values for SNPs within a 
chromosome region of interest (ROI) based upon the choices of 1-4 “index” SNPs (iSNPs) that serve as 
proxies for underlying regulatory variants. Exhaustive testing of sets of 1–4 candidate iSNPs identifies 
iSNP models that best account for estimated R2 values derived from single-variable linear regression 
analysis of correlations between mRNA expression and genotypes of individual SNPs. Subsequent 
genotype-based estimation of pairwise r2 linkage disequilibrium (LD) coefficients between each iSNP 
and the other ROI SNPs allows the SNPs to be parsed into semi-independent families. Analysis of mRNA 
expression and genotypes data downloaded from Gene Expression Omnibus (GEO) and database for 
Genotypes and Phenotypes (dbGAP) demonstrates the usefulness of this method for parsing SNPs 
based on experimental data. We believe that this method will be widely applicable for the analysis of 
the genetic basis of mRNA expression and visualizing the contributions of multiple genetic variants to 
the regulation of individual genes.

Identifying genetic variants that correlate with gene expression and elucidating their underlying molecular mech-
anisms are major goals in the field of human genetics1–3. Information generated from these studies is often useful 
for the annotation of SNPs that associate with human disorders in genomewide association studies (GWAS) 
and for identifying causal variants that contribute to human disorders4. Understanding how expression of spe-
cific genes, especially the high- or low-expression extremes, contribute to the etiology of human disorders is an 
important step toward developing new methods for diagnosing disorder subtypes and for identifying possible 
molecular targets for novel drugs to treat, slow or prevent their development5,6.

Quantitative genome-wide association studies (GWAS) have identified a large number of genetic variants 
that correlate with mRNA expression of nearby genes7 and these expression “quantitative trait loci” (eQTL) are 
often useful for annotating individual genetic markers, usually single nucleotide polymorphisms (SNPs), that 
correlate with disease liability or protection in genome-wide association studies (GWAS). Although the major-
ity of “expression” SNPs (eSNPs) do not directly function as regulatory genetic variants, their correlation with 
mRNA expression may result from being in LD with one or more regulatory variants. The initial focus on the 
association of single eSNPs with human disorders, however, may result in the failure to detect associations that 
depend upon multiple genetic variants that influence the expression of individual genes, for example in cases 
where disorder liability or protection occurs only at the extremes of mRNA expression that are not captured by a 
single genetic marker8,9. Identifying sets of eSNPs that accurately capture the full range of gene expression for use 
in genetic association studies therefore remains an important goal. Current methods that assess the contributions 
of multiple genetic variants to mRNA expression of a single gene include haplotype-, regression- and Bayesian 
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statistics-based approaches10–13. While powerful, these methods may still fail to capture the complete landscape 
of genetic regulation for individual genes.

In this study, we describe a novel method for analyzing the combined contribution of regulatory variants to 
mRNA expression based on the analysis of coefficients of determination (R2) derived from single-variable linear 
regression analysis of individual SNPs located within defined chromosome regions of interest (ROI). We believe 
that this method will be useful for both assessing the minimum number of independent regulatory variants that 
influence the expression of a given gene and identifying families of SNPs that are in LD with these variants. A 
potential application of our approach is the identification of sets of SNPs that will serve as more effective markers 
in genetic association studies.

Results
Mathematical foundation. We previously described a multiple linear regression-based method for parsing 
SNPs that correlate with mRNA expression into semi-independent families8,14. The underlying assumptions of 
this method were: (i) non-regulatory SNPs correlate with mRNA expression to the extent to which they are in 
LD with regulatory variants, and (ii) semi-independent “families” of SNPs that correlate with mRNA expression 
reflect the underlying contributions of one or more regulatory variants. Although this ‘ad hoc’ method produced 
useful results for many of the genes we analyzed, mathematical modeling revealed significant inconsistencies, in 
particular with respect to SNPs with highly correlated genotypes and/or SNPs with minor contributions to the 
variance of mRNA expression.

During a search for a mathematically sound method for parsing SNPs that correlate with mRNA expression, 
we learned of a well-known result from multivariate statistical analysis that allows population multiple coeffi-
cients of determination (R2

M) to be calculated based on the matrix equation R2
M = CTR−1 C, where C is a col-

umn vector (rYX1, rYX2, …..rYXp), with elements equal to the Pearson correlation coefficients between a dependent 
variable Y and one or more independent variables, (X1, X2 …. Xk), CT is row vector equal to the transpose of C, 
and R−1 is the inverse of the correlation matrix R for the independent variables (modified nomenclature based 
on equations in:15). Elements of R comprise Pearson correlation coefficients for all pairwise comparisons of the 
independent variables: rX1X1, rX1X2 … rXiXj.…..rXpXp. In the derivations that follow, we found it useful to use the 
well-known identity equation: R−1 = adjugate of R/determinant of R = adjR /detR.

The first step toward using the above equations to develop a method for parsing SNPs that correlate with 
mRNA expression was to define rYG1, rYG2, ….. rYGp as the Pearson correlation coefficients between mRNA expres-
sion levels (Y) and genotypes of a small set of regulatory variants (G1, G2 …. Gp) and rG1G1, rG1G2 … rGiGj.…..
rGpGp as the Pearson correlation coefficients between genotypes for all pairwise combinations of these regulatory 
variants.

To simplify our notation, we designated individual non-regulatory SNPs as SNPA, and bi-allelic regulatory 
variants as SNPB, SNPC, SNPD, etc. Based on this notation, we also designated rYG1 = rYA, rYG2 = rYB, etc., and 
rG1G1 = rAA, rG1G2 = rAB, etc. It should be noted that (rYA)2 is equal to the single variable linear regression-based 
coefficient of determination for SNPA = R2

A and (rAB)2 is an r2 LD estimator for the pair of SNPs, SNPA and SNPB. 
We also used the notation: R2

M = R2
AB for systems comprising SNPA and SNPB, R2

M = R2
ABC for systems compris-

ing SNPA, SNPB SNPC, etc., where the subscript “M” stands for “multiple.”
The next step in using the matrix equation to calculate coefficients of determination (R2

A) for non-regulatory 
SNPA in LD with multiple regulatory variants SNPB, SNPC, etc., was to derive explicit equations for R2

A that are 
consistent with the constraints: R2

AB = R2
B, R2

ABC = R2
BC, R2

ABCD = R2
BCD,or R2

ABCDE = R2
BCDE. The restrictions on 

the values of R2
A in these equations reflect the assumption that, within each model, SNPA simply correlates with, 

but does not directly contribute to mRNA expression, beyond the contributions made by SNPB, SNPC, etc., which 
directly contribute to mRNA expression or are in high LD with actual regulatory variants. Manually solving these 
“constraint” matrix equations for R2

A in systems comprising one non-regulatory SNP (SNPA) and one-, two- or 
three-regulatory variants (SNPB, SNPC, SNPD) yielded the equations for R2

A listed in rows 1–3 of Table 1 and 
revealed a pattern that presumably extends to systems containing higher-numbers of regulatory variants (Table 1, 
rows 4-N). When expressed in terms of coefficients of determination and Pearson correlation coefficients, the 
equations defining R2

A take on the forms for 2-, -3 and 4-SNP systems listed in Fig. 1.
It should be noted that the equation for R2

A in a two-SNP system describes the expected result that the contri-
bution of a non-regulatory variant (SNPA) to mRNA expression (R2

A) is equal to the contribution of a regulatory 
variant SNPB with which it is in LD (R2

B) multiplied by the r2 LD coefficient for the two SNPs (r2
AB). Equations 

for systems containing increasing numbers of regulatory variants, however, become increasing complex, with the 
number of additive terms in the polynomial expansions of the matrix equations defining R2

A for 3- and 4-SNP 
systems, for example, equal to (4)2 = 16 and (18)2 = 324, respectively. Based on our inferred pattern for construct-
ing these equations shown in Table 1, however, calculations of values for R2

A can be easily and rapidly carried out 
using a computer. (See Supplementary Files 1–3 for a summary of the mathematical notation used in this paper 
and overviews of the derivations of R2

A for 2-, 3-, and 4- SNP systems).

Analysis of simulated mRNA expression/genotype datasets. To determine whether the equations 
described above can accurately predict values for coefficients of determination obtained from linear regression 
analysis of mRNA expression vs. SNP genotype in experimental datasets, we carried out a series of calculations 
using simulated mRNA expression/genotype datasets for one non-regulatory SNP (SNPA) and one or more bial-
lelic regulatory variants. The goal of these analyses was to confirm that our method accurately predicts R2

A values 
for pre-assigned sets of regulatory- and non-regulatory SNPs, prior to using the method to analyze experimental 
data, where the identities of regulatory- and non-regulatory SNPs are unknown.

Using custom R-language based programs developed in our laboratory, sets of population genotypes for 2–5 
SNPs (SNPA, SNPB, SNPC, SNPD, SNPE), each exhibiting a wide range of allele frequencies and pairwise r2 LD 
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values were constructed from sets of haplotypes with randomly assigned population frequencies that sum to 1. 
Values for mRNA expression were assigned based on the genotypes of the regulatory variants (SNPB, SNPC, SNPD, 
SNPE) in each model using Fisher’s “genotypic value” framework. (See Supplementary Files 2 and 4 for details.) 
Genotypes were coded 0, 1, or 2, based on the number of minor alleles within the simulated dataset under inves-
tigation. Alleles of regulatory variants were assumed to have additive effects, an assumption often appropriate for 
eQTLs16. Each simulation produced a virtual “spread sheet” with one column of mRNA expression values, one 
column of genotypes for the non-regulatory variant SNPA and 1–4 columns of genotypes for SNPB, SNPC, SNPD, 
and SNPE, depending upon the number of biallelic regulatory variants included in the model. The population 
size for each simulation was typically n = 1000 and multiple simulations, typically 1000–3000, were carried out to 
construct datasets for analysis.

In addition to providing a value for R2
A (derived from linear regression analysis of mRNA expression lev-

els vs. genotypes of the non-regulatory variant), data in each virtual spreadsheet allowed the calculation of 
Pearson correlation coefficients for: (i) correlations between mRNA expression and genotypes for individual 
regulatory variants and (ii) pairwise correlations between regulatory variant genotypes, that are required for 
matrix-equation-based calculation of R2

A. As shown in Supplementary File 5, Fig. S1, comparisons of “estimated” 
values for R2

A and values of R2
A predicted using our matrix-based equations for two-, three- and four-regulatory 

variant systems yielded nearly identical results.
In a second round of simulations, we constructed datasets for analysis with genotypes for each individual 

derived from haplotype frequencies calculated using the polynomial equations listed in Supplementary File 4, 
Section D, with the values of estimators of minor allele frequencies and pairwise second-order (DAB) and 
third-order (DABC) D linkage disequilibrium coefficients17 for non-regulatory and regulatory SNPs used as input 
variables. (See Supplementary File 2 and 4 for details). This method for constructing datasets was used to more 
realistically mimic experimentally derived datasets obtained from human mRNA expression/genotype data. As 
shown in Supplementary File 5, Fig. S2 our matrix equation-based method again produced excellent agreement 
between estimated and predicted R2

A values.
The results described above confirm the accuracy of our derived expressions for R2

A based on: (i) solving 
complex polynomial equations derived from our “constraint” matrix equations (Fig. 1 and Supplementary File 3) 
and (ii) our inferred general solutions to these equations (Table 1). Together, these establish a novel approach for 
analyzing the combined contributions of multiple regulatory variants to mRNA expression.

Analysis of mRNA/genotype data for methylene tetrahydrofolate reductase (MTHFR) expres-
sion in human brain and lymphoblastoid cell lines. In this section, we provide an example of how our 
method can be used to analyze experimental mRNA expression/genotype data. Unlike the simulated data sets 
described above, the regulatory variants that influence mRNA expression for most genes are unknown. For this 

Bi-allelic regulatory variants or index 
SNPs in constraint matrix equation Values of R2

A = β2/4α2 for non-regulatory/non-index SNPs

1 SNPB (RBb12)2/b11
2

2 SNPB, SNPC (RBb12 + RCb13)2/b11
2

3 SNPB, SNPC, SNPD (RBb12 + RCb13 + RDb14)2/b11
2

4 SNPB, SNPC, SNPD, SNPE (RBb12 + RCb13 + RDb14 + REb15)2/b11
2

5 SNPB, SNPC, SNPD, SNPE, SNPF (RBb12 + RCb13 + RDb14 + REb15 + RFb16)2/b11
2

N SNPB, SNPC, SNPD, SNPE, SNPF,… SNPN (RBb12 + RCb13 + RDb14 + REb15 + RFb16 + … + RNb1N)2/b11
2

Table 1. Solutions to higher-order “constraint” matrix equations. b11, b12, etc. are elements of the adjugate 
matrix (adjR) of the correlation matrix R, defined for each set of bi-allelic regulatory variants or index SNPs 
(SNPB, SNPC, etc.) and β and α refer to terms in the quadratic equation used to solve the polynomial equations 
derived from the “constraint” matrix equations for RA: RA = ─β ± (β2 − 4αγ)1/2/2α = −β/2α, since (β2 − 
4αγ)1/2 = 0 under the defined constraints. (See Supplementary Files 1 and 3 for details concerning mathematical 
notation and equation derivations).

(3)  Constraint: R2
ABCD = R2

BCD
Solu	on: R2

A = [RB(rAB 
r2

CD + rBCrAC + rBD 
rA - rAB - rAC 

rBD 
rCD - rA rBCrCD) 

+ RC(rABrBC + rACr2
BD + rCDrA - rAB 

rBD 
rCD - rAC - rBC 

rBDrA )
+ RD(rAB 

rBD + rAC 
rCD + r2

BCrA - rAB 
rBC 

rCD - rA - rBCrAC 
rBD)]2 /(1 + 2rBCrBDrCD – r2

BC – r2
BD –r2

CD)2

(2)  Constraint: R2
ABC = R2

BC
Solu	on: R2

A = [RB(rAB−rBCrAC) + RC(rAC−rABrBC)]2/(1-r2
BC)2

(1)  Constraint: R2
AB = R2

B
Solu	on: R2

AB =  R2
Br2

B

Figure 1. Solutions to polynomial equations derived from “constraint” matrix equations.
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reason, we used our method to identify individual SNPs or combinations 1, 2, 3 or 4 SNPs (SNPB, SNPC, SNPD, 
SNPE) selected from a set of genotyped or imputed SNPs within a chromosome region of interest (ROI) that 
best served as proxies for unknown regulatory variants. In the context of our method, candidate proxy SNPs are 
termed “index SNPs” (iSNPs). Criteria for identifying the best iSNPs that fit simulated and experimental data are 
described below.

We began by calculating a single-variable linear regression-based, sample coefficient of determination for 
mRNA expression vs. genotype for each SNP in the ROI (i.e., R2

A1, R2
A2, R2

A3,….., R2
An values for n SNPs in a 

chromosome ROI). In our notation, these are the “estimated” sample R2
A values for these SNPs. The next step 

was to calculate sample Pearson correlation coefficients for: i) mRNA expression vs. genotype (rYGi) and ii) 
genotype vs. genotype (rGiGj) for each SNP in the ROI. In our current study, individual-level mRNA expression 
and genotype data were obtained from two human brain datasets: “BrainCloud” (BC)18 and “4BrainR”19 and a 
human lymphoblastoid cell line (LCL) dataset20. See Supplementary File 2 for details, including Gene Expression 
Omnibus (GEO) and database for Genotypes and Phenotypes (dbGAP) dataset identifiers.

Using our R language-based program, sets of 1, 2, 3 or 4 ROI SNPs were selected to generate 1-, 2-, 3- or 
4-iSNP models for calculating R2

A values based on the equations listed in Fig. 1 and Table 1. An independent 
calculation of R2

A was carried out for each of the n SNPs in the chromosome ROI for each possible 1-, 2-, 3- or 
4-iSNP model. In our notation, the result of each independent calculation is the “calculated” R2

A value. The input 
variables for the equations used to calculate R2

A values were RB = rYB, RC = rYC, RD = rYD, and RE = rYE and rAB, rAC, 
rAD, rAE, rBC, rBD, rBE, rCD, rCE, and rDE, where Y is an index for vectors of sample mRNA expression levels and A, B, 
C, D and E are indices for vectors of population genotypes of SNPA, SNPB, SNPC, SNPD, and SNPE, respectively. 
The values of these variables differed with each independent selection of SNPA, SNPB, SNPC, SNPD, and SNPE.

For 1-iSNP models, an independent calculation of R2
A = R2

Br2
AB (Fig. 1) was performed for each ROI SNP for 

each choice of SNPB selected from a list of ROI SNPs. Each choice of SNPB represents a specific 1-iSNP model. 
To reduce computation burden, candidate iSNPs (SNPB) were selected from a shortened list of ROI SNPs from 
which SNPs with duplicate genotypes and SNPs that fail to meet a specific P-values threshold (e.g., P < 0.05) had 
been removed. To identify the best 1-iSNP model generated by this process, the normalized root mean-square 
error (NRMSE) was calculated for each model by comparing the estimated and predicted R2

A values for all of 
the SNPs in the ROI, with the models ranked in order of decreasing 1/NRMSE. The quality of fit of each model 
was also assessed by calculating adjusted R2

model values based on linear regression analysis of estimated R2
A vs. 

predicted R2
A.

Generation of 2-iSNP models based on the equation R2
A = [RB(rAB − rBCrAC) + RC(rAC − rABrBC)]2/(1 − rBC

2)2 
(Fig. 1) were carried out as described above, with all possible combinations of two candidate iSNPs (SNPB and 
SNPC) chosen from the reduced list of ROI SNPs. Again, models were ranked in order of decreasing 1/NRMSE 
and quality assessed by calculating adjusted R2

model. Due to the large number of terms in the polynomial equations 
defining R2

A in 3- and 4-iSNP models, R2
A values in these models were calculated based on our derived equation, 

R2
A = −β/2α, using values of the quadratic equation-related terms -β and 2α listed in Table 1. This simple expres-

sion for R2
A, which we believe holds for models containing an arbitrary number of iSNPs, is based on our obser-

vation that solutions of quadratic equations required to solve constraint matrix equation-derived polynomial 
equations for RA: RA = −β ± (β2 − 4αγ)1/2/2α, simplify to RA = −β/2α, because the terms under the square-root 
sign of the equation sum to 0 under the given constraints. (See Supplementary File 3 for details concerning these 
calculations.) Ranking of models and quality assessment was as described above. To date, a maximum of 3-iSNPs 
has sufficed for the analysis of most experimental data sets.

Figure 2 shows the results of analysis of human MTHFR mRNA expression in frontal cortex based on mRNA 
expression and genotype data from the 4BrainR18 data set (n = 144 Caucasian brain samples; 398 genotyped or 
imputed SNPs within an ~100 kb chromosome ROI containing the MTHFR gene: Fig. 2A). The results shown 
are for the 3-iSNP model selected on the basis of lowest NRMSE among the top 2200 models generated in the 
analysis.

The upper graph in Fig. 2B is a “R2-R2 plot” comparing: (i) “estimated’ R2 values derived from single-variable 
linear regression analyses of the mRNA expression/genotype data calculated independently for each SNP (blue 
bars and gray) and (ii) “predicted” values of R2 obtained from matrix equation-based calculations (dark blue line). 
The quality of the fit between the estimated R2

A values (blue/gray bars) and predicted R2
A values (dark blue line) 

is obvious upon inspection of the upper (R2-R2) plot and quantified by adjusted R2
model = 0.973. The lower graph 

in Fig. 2B is a “R2-Δ2 plot,” where values of pairwise r2 (=Δ2) LD coefficients calculated for each SNP with respect 
to SNPB (red line), SNPC (green line), SNPD (black line) are imposed on the estimated R2 value for each SNP 
(blue bars). To facilitate comparisons, the heights of the red, green and black lines were scaled to the heights of 
the estimated R2 value for each iSNP. Together, these lines define three semi-independent families of SNPs linked 
to the iSNPs: rs198368 (red), rs2066470 (green), and rs10864536 (black). Independent analyses of 4BrainR data 
for MTHFR mRNA expression in fontal cortex (FCTX), temporal cortex (TCTX), cerebellum (CERE) and pons 
(PONS) show that FCTX, TCTX and CERE share the same three red, green and black iSNP families, while PONS 
is best modeled by 3 iSNPs drawn from the rs10864536 iSNP family (Supplementary File 6). Thus, although R2 
values for individual SNPs usually differ between datasets, iSNP families are often conserved.

This was also true for MTHFR mRNA expression in independent sets of lymphoblastoid cell lines (LCLs) 
derived from Japanese (JPT), Chinese (CHB) or Caucasian (CEU) populations (Supplementary File 7). In this 
case, three iSNP families were identified in the CEU-LCLs. By contrast, analysis of the JPT- and CHB-LCLs 
parsed the ROI SNPs into two iSNP families, with one of the families comprising two the iSNP families detected 
in the CEU-LCLs. The different results obtained for JPT/CHB-LCLs compared to CUE-LCLs reflect differences in 
the LD structure of these populations, and provide a good example of how, on one hand, a single iSNP can harbor 
more than a single regulatory variant and, on other hand, how analysis of mRNA expression of the same gene in 
different populations can reveal the presence of “hidden” regulatory variants.
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Comparison of the SNP lists obtained for the 3-iSNP families observed in the CEU-LCLs with those obtained 
for FCTX revealed one of the families (iSNP = rs2274976) to correspond to the FTCX green iSNP family and 
the other two iSNP families (iSNP = rs4845881 and re1023252) to subsets of the FCTX black IiSNP family of 
SNPs. Together, these results suggest that regulatory variants associated with the green and black iSNP families 
contribute to mRNA expression in FCTX, TCTX, CERE and LCLs, while regulatory variants associated with the 
FCTX red iSNP family are active in FCTX, TCTX and CERE, but not in PONS or LCLs. The observation that 
FCTX black iSNP family SNPs are parsed into two separate families in LCLs suggest that this family contains at 
least two distinct regulatory variants. Obviously, more work will be required to elucidate the number and loca-
tions of regulatory variants associated with each SNP family, but we believe that the above example illustrates the 
usefulness of our method for fine-structure analysis of mRNA expression and its power to produce hypotheses 
for further investigations.

A summary of the above findings is provided in Supplementary File 8, Tables S1 and S2. The analysis of four 
additional genes: the well-studied gene CHI3L2 (Chitinase 3 like 2), the autism and schizophrenia candidate 
gene DGCR8 (DiGeorge Critical Region-8) and the Alzheimer candidate genes GSTM3 and GSTM5 (Glutathione 
S-transferase mu-1/5) can be found in Supplementary Files 9–11.

A

B R2-R2

R2-∆2

Figure 2. Multiple coefficient of determination-based analysis of human MTHFR mRNA expression in 
frontal temporal cortex (FCTX). (A) Screen shot from the USCS Genome Browser (GCH37/hg19 version) 
showing the chromosome 1 ROI containing MTHFR and neighboring genes. The two tracks at the bottom of 
this panel show: (i) levels of histone H3-lysine 27 acetylation (H3K27Ac), a marker for open, transcriptionally 
active chromatin detected in multiple cell lines, and (ii) clusters of DNase I-sensitive sites (DNase clusters), 
which are also markers for open chromatin. (B) Upper graph: a “R2-R2” plot comparing estimated values for 
coefficients of correlation (R2) derived from single-variable linear regression analyses of correlations between 
mRNA expression levels and genotypes for 100 genotyped and 298 imputed SNPs in the chromosome ROI [blue 
(nominal P < 0.05) and grey (nominal P ≥ 0.05) bars] and predicted R2 values calculated as described in the 
text. Lower graph: a “R2− Δ2” plot showing the parsing of ROI SNPs into three semi-independent families, each 
comprising a subset of ROI SNPs that are in LD with one of three index SNP (iSNP) selected as described in 
the text. The three iSNPs listed on the upper-right corners of the two plots were selected as the combination of 
SNPs that produced the closest agreement (smallest NRMSE) between estimated and predicted R2 values among 
thousands of randomly select combinations of three ROI SNPs. The adjusted R2

model (adjusted R2) listed on 
the top left of the upper plot, was derived from linear regression analysis of the correlation between estimated 
and predicted R2-values and provides a measure of the “goodness-of-fit” for this combination of iSNPs. (See 
Supplementary File 2. Online Methods for details concerning imputation of SNP genotypes).
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Discussion
The method for analyzing mRNA expression data described in the paper provides a nearly complete accounting 
for ROI SNPs for genes under investigation and an easy way to visualize iSNP families, facilitating the detection 
of iSNP families that are conserved between different tissues in the same set of individuals or between individuals 
in different populations. The method is flexible, allowing the selection of iSNP families based upon: (i) minimum 
NRMSE, (ii) maximum adjusted R2

model, (iii) maximum R2
M, (iv) maximum sum of estimated R2 values for indi-

vidual iSNPs, (v) minimum Akaike information criterion (AIC) and/or (vi) minimum Bayesian Information 
criterion (BIC). Minimum NRMSE is set as the default criterion. Importantly, the method also provides a quanti-
tative account of how regulatory variants influence the estimated single-variable linear regression R2 values (R2

A) 
for non-regulatory SNPs in linkage disequilibrium within datasets under investigation. Specifically, it clearly 
shows how the combined effects of multiple regulatory variants can only be understood through application 
of the “constraint” matrix equations defined in this study, i.e., R2

AB = R2
B, R2

ABC = R2
BC, R2

ABCD = R2
BCD, etc., 

for which we derived a general formula (Table 1). These combined effects are often counter-intuitive, dramati-
cally inflating or deflating R2

A values expected from the simple sum of (r2
AX)(R2

X) terms, where x = B, C, D or E 
(Supplementary File 3). These “unexpected” results are produced by the many terms within the polynomial solu-
tions of “constraint” matrix equations that contain Pearson correlation coefficients, which can take on positive or 
negative values. The method also provides estimates of the minimum number of regulatory variants within the 
chromosome ROI that contribute to mRNA expression and, by defining specific iSNP families, provides hints 
concerning the locations of those variants.

Limitations of the current method include the current lack of hybridization array-based mRNA expression 
data sets that produce reproducible results for many genes of interest and the subjective nature of choosing the 
best iSNP models. Although we have not yet used this method to analyze RNA-sequencing-based mRNA expres-
sion data, we are optimistic that these datasets will provide better replication compared to array-based data-
sets. Likewise, we believe that comparing the results of models selected based on different criteria, for example 
maximum 1/NRMSE versus maximum R2

M, may produce insights not available from consideration of models 
based on a single criterion. A discussion of two additional limitations of our method, the assumption of additive 
effects of SNP alleles and applicability primarily to common, cis-acting, biallelic genetic variants, can be found in 
Supplementary File 2.

Finally, we want to stress that our method only quantifies associations among SNPs within the datasets under 
investigation, rather than identifying specific regulatory variants. Thus, caution must be taken when interpreting 
the results of analyses. The identification of an iSNP family does not necessarily guarantee the existence of under-
lying regulatory variants: our program will dutifully parse statistical noise as well as true causal relationships SNP. 
For all of these reasons, we have made no effort to provide P-values for selected models. Rather, we hope that this 
method will be useful for bringing order to the “forest” of SNPs surrounding genes of interest and for generating 
hypothesis that can be investigated using additional bioinformatic tools and by experimentation.

Methods
Briefly, we developed a mathematical method for parsing SNPs that correlate with mRNA expression into SNP 
families related by LD using a matrix equation from multivariate statistical analysis that allows the calculation of 
multiple coefficients of determination (R2

M) based on Pearson correlation coefficients (rYX) between: 1) a depend-
ent variable, (Y = mRNA expression) and multiple independent variables (X = SNP genotypes) and ii) pairwise 
comparisons of the independent variables. We subsequently developed a R language-based computer program 
for carrying out the required calculations and plotting the results of the analysis of simulated and experimental 
mRNA expression/SNP genotype data sets. A detailed description of the methods developed in this study can be 
found in Supplementary Files 2–4 available online. Copies of our R-programs for matrix equation calculations 
and data analysis are available online at: https://github.com/saffenlab/R2-D2-model.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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