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Measurement of Retinal 
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taariq K. Mohammed1, isa S. K. Mohammed1, Khelly A. Shah7, Ginger M. thompson1, 
Anja M. K. Jones7, Lily t. im1, Mona A. Kaleem1 & osamah J. Saeedi1*

Changes in retinal blood flow may be involved in the pathogenesis of glaucoma and other ocular 
diseases. Erythrocyte mediated velocimetry (EMV) is a novel technique where indocyanine green (ICG) 
dye is sequestered in erythrocyte ghosts and autologously re-injected to allow direct visualization of 
erythrocytes for in vivo measurement of speed. the purpose of this study is to determine the mean 
erythrocyte speed in the retinal microvasculature, as well as the intravisit and intervisit variability 
of EMV. Data from 23 EMV sessions from control, glaucoma suspect, and glaucoma patients were 
included in this study. In arteries with an average diameter of 43.11 µm ± 6.62 µm, the mean speed was 
7.17 mm/s ± 2.35 mm/s. In veins with an average diameter of 45.87 µm ± 12.04 µm, the mean speed 
was 6.05 mm/s ± 1.96 mm/s. Intravisit variability, as measured by the mean coefficient of variation, was 
3.57% (range 0.44–9.68%). Intervisit variability was 4.85% (range 0.15–8.43%). EMV may represent 
reliable method for determination of retinal blood speed, potentially allowing insights into the effects 
of pharmacologic agents or pathogenesis of ocular diseases.

Numerous systemic and ocular diseases have been associated with alterations in retinal blood flow (RBF)1,2. Local 
changes in RBF are implicated in the pathogenesis of major causes of blindness such as diabetic retinopathy and 
glaucoma3,4. Furthermore, retinal vasculature is readily accessible for imaging, allowing a window into alterations 
of blood flow associated with systemic and neurodegenerative diseases such as Alzheimer’s dementia5. While 
structural changes in retinal vasculature, such as change in vessel caliber or increased tortuosity, are established 
markers of hypertension6, diabetes7, vasculitis8, and neurodegenerative diseases9, changes in ocular blood flow 
have also been linked to these diseases10. Dynamic changes in RBF in ocular and systemic disease11 may precede 
these known structural changes, making RBF an important physical biomarker.

Numerous methods to measure RBF have been developed, but there is no established gold standard12 for the 
measurement of RBF in individual vessels in vivo that is accurate, precise, and capable of determining flow of 
multiple vessels over a wide field of view. Color doppler imaging, laser speckle imaging13, and more recently OCT 
angiography14 allow for the measurement of relative blood velocity and flow, but not absolute flow. Non-invasive 
techniques that record RBF in absolute terms include laser doppler imaging and the retinal function imager 
(RFI), whose coefficients of variation range from 10–11% for the RFI15,16 to 20% for laser doppler imaging using 
the Canon Laser Blood Flow Meter17. Adaptive Optics - Scanning Laser Ophthalmoscopy (AO-SLO) also allows 
for quantification of flow in the microvasculature, but in a relatively small field of view18. Furthermore, there are 
few comparison studies of different devices that measure RBF. The current gold standard for RBF measurement 
uses fluorescent and radioactive microspheres in animal models19. However, this method cannot be easily trans-
ferred to humans in vivo, and radioactive microspheres similarly have a coefficient of variation of 15–50%20. There 
is a critical need for an accurate and highly reproducible gold standard for human RBF quantification to validate 
devices and to establish the use of ocular microvascular blood flow as a robust biomarker for ocular and systemic 
disease.
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Erythrocyte mediated angiography (EMA) is a technique in which indocyanine green (ICG) dye is seques-
tered in the erythrocytes to allow direct visualization of erythrocytes in vivo21. Prior work has emphasized its role 
in characterizing vasomotion in the eye22. Here, we describe methods used to quantify microvascular erythro-
cyte speed in vivo using a novel variant: Erythrocyte Mediated Velocimetry (EMV). We assess the precision of 
erythrocyte speed through intravisit and intervisit variability of EMV speed measurements in small arterioles 
and venules using a commercially available scanning laser ophthalmoscope, which was specifically modified for 
this purpose.

Methods
participants. We enrolled glaucoma, glaucoma suspect, and control patients at least 40 years of age. The diag-
nosis of each patient was determined by a fellowship-trained glaucoma specialist. The diagnosis for glaucoma was 
made using the preferred practice patterns of the American Academy of Ophthalmology, specifically evidence of 
characteristic optic nerve damage characterized by retinal nerve fiber layer structural abnormalities or reliable 
and reproducible visual field abnormalities23. Glaucoma suspect was assigned to patients with normal visual field 
testing and either consistently elevated intraocular pressure or a suspicious-appearing optic disc24. Twenty-six 
EMV sessions were conducted on 35 eyes of 18 individual patients from May 19th, 2016 to October 19th, 2018. As 
shown in Fig. 1, we included data from 23 EMV sessions of 29 eyes of 16 individual patients. EMV sessions were 
considered ungradable if erythrocytes could not be resolved in the vessels for tracking. This was due to media 
opacity such as dry eye or cataract, or excessive eye movement which precluded image registration. Intravisit 
variability included only data from control patients. Intervisit variability included data from the 5 subjects who 
underwent multiple EMV sessions. Blood pressure (BP), pulse (HR), pulse oximetry, intraocular pressure (IOP), 
keratometry, ocular exam, ocular medications, and co-morbid disease were recorded. Patient demographics are 
shown in Table 1. Informed consent was obtained from all patients after discussion of the risks and benefits of 
the study. The study was conducted in accordance with the Declaration of Helsinki, and the study protocol was 
approved by the institutional review board of the University of Maryland Baltimore.

erythrocyte preparation. Cell preparation was conducted as described by Flower et al.21,22. Up to 34 mL of 
blood was drawn from each subject. Using sterile procedures, erythrocyte ghosts produced from the blood were 
loaded with ICG dye. Following pupillary dilation with Tropicamide 0.5%, up to 1 mL of autologous ICG-loaded 
erythrocytes were injected intravenously. These cells persisted and were used to measure erythrocyte speed for 
up to three hours for one session. As previously described, ICG-loaded erythrocytes have comparable physical 
properties to native erythrocytes22.

image acquisition. A Heidelberg Retinal Angiograph (HRA) 2 (Heidelberg Engineering GmbH, Germany) 
was used to acquire 10–20 second angiograms of subjects undergoing EMV. Angiograms of the disc, macula, 
and peripapillary retina were obtained in both eyes of all subjects except for one monocular patient. Angiograms 
were acquired with a custom scan pattern at 24.6 frames per second with a 15-degree horizontal and 7.5-degree 
vertical field of view. Conventional ICG or fluorescein angiography images were obtained concurrently or at the 
conclusion of each EMV session.

Figure 1. Flowchart showing inclusion and exclusion of patients.
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image registration. To account for eye motion, images were registered by aligning the entire angiogram 
sequence to a reference image. We used a custom MATLAB (MathWorks, version 2018a) script that performed 
spatial domain registration with algorithms utilizing the overall similarities of the images. The registration script 
allows for rotation and translation to align the image with a user-selected reference image. No scale change was 
permitted to preserve the calculated scale. Both the mean squares and Mattes mutual information metrics were 
used independently to register the images, with the final compiled registered sequence consisting of the optimally 
registered frames based on either of the two metrics, as selected by the user. This effectively eliminated eye motion 
and generated a consistent set of coordinates to allow for accurate speed measurement.

image registration validation. In addition to visual inspection of registered images, registration was 
quantitatively validated by comparing the stability between frames in unregistered and registered EMV angio-
grams. The stationary RBC closest to the optic disc and clearly visualized in all angiogram images was used as 
a reference point. Motion between frames was quantified by computing the straight-line distance between the 
stationary RBC on adjacent frames. A straight-line distance of more than three pixels between the stationary RBC 
coordinates on two adjacent frames was classified as poor stability. The number of frames with poor stability was 
compared between corresponding unregistered and registered angiogram sequences. To validate image registra-
tion, we chose five representative sequences chosen for their varying degrees of eye motion, one with minimal eye 
motion, one with moderate eye motion, and three with substantial eye motion, as judged by visual inspection. We 
compared the percentage of frames with poor stability before and after registration.

erythrocyte speed measurement. A protocol for speed measurement was developed that consists of 
manual erythrocyte tracking followed by erythrocyte speed measurement using a custom MATLAB script. 
Individual erythrocytes were tracked as they flowed in a vessel over multiple EMV image frames (Fig. 2). Tracking 
was only done when there was clearly one ICG labelled erythrocyte flowing in a vessel segment in a given time 
without any other ICG labelled erythrocytes that would create uncertainty. To further standardize erythrocyte 
tracking, cells were eligible for tracking only if the same cell was visible on at least three consecutive frames 
within the vessel of interest. Only erythrocytes visible on the retina were tracked, and those in the optic disc were 
excluded. After erythrocyte tracking, speed was determined in MATLAB using a semi-automated custom script. 
For standardization, the center of the brightest pixel was recorded as the cell location. After recording all cell 
locations, the user defined the vessel path (Fig. 3). The distance along the vessel course in pixels was converted 
to microns using the conversion scale provided by the Heidelberg HRA2 software, accounting for keratometry25. 
Speed was calculated using the vessel distance traveled by an erythrocyte over two adjacent frames and dividing 
by the time between frames. Mean speed was obtained by averaging the individual erythrocyte speed measure-
ments. At least 30 individual measurements were required. Angiograms were only eligible for inclusion if they 
included at least 85 frames.

Patient Session (if multiple) Age Sex Race Diagnosis Eyes HR BP

IOP

OD OS

1 a 46 M Black Control OD,OS 64 115/73 14 12

b 47 M Black Control OD,OS 61 120/69 15 15

2 a 55 M Black Control OD,OS 79 143/78 19 20

b 55 M Black Control OD,OS 80 134/91 21 21

3
a 61 M Black Glaucoma OD 66 130/84 15

b 62 M Black Glaucoma OD 61 131/84 12

4 65 F White Control OD, OS 82 144/93 17 15

5 56 F White Glaucoma OD,OS 62 122/68 14 17

6 69 F Black Glaucoma Suspect OD,OS 60 160/86 17 19

7 57 F Black Glaucoma OD,OS 64 126/70 21 12

8

a 53 M Black Glaucoma OD 75 109/75 11

b 54 M Black Glaucoma OD 69 116/69 11

c 54 M Black Glaucoma OD 71 117/73 14

9

a 55 F White Glaucoma Suspect OD,OS 50 111/73 16 13

b 55 F White Glaucoma Suspect OD,OS 54 126/73 15 16

c 56 F White Glaucoma Suspect OD,OS 62 112/76 11 13

10 56 F Black Glaucoma Suspect 
(OD), Glaucoma (OS) OD,OS 50 103/60 15 38

11 60 F White Glaucoma Suspect OD 54 97/50 11

12 57 F White Glaucoma OD,OS 93 137/86 13 14

13 66 F White Glaucoma Suspect OD,OS 60 139/82 30 17

14 64 F Black Glaucoma OD,OS 71 138/89 20 18

15 61 F Black Glaucoma Suspect OD,OS 63 118/56 15 15

16 64 F White Glaucoma Suspect OD,OS 68 128/76 18 20

Table 1. Patient Demographics.
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For determination of erythrocyte speed, one vessel chosen at random was analyzed per eye for each included 
EMV session. Due to concerns about the temporal resolution of imaging at 24.6 frames per second, we conserv-
atively chose to exclude arteries over 60 µm and veins over 80 µm. While our imaging technique allows for meas-
urement of erythrocyte speeds up to 25 mm/s, we conservatively chose this criteria for vessel caliber to place our 
mean speeds less than 15 mm/s26. For calculations of intravisit and intervisit variability, to account for variations 
in the field of view in each angiogram, we ensured the same region of the vessel was analyzed. This vessel region 
was chosen adjacent to the optic disc and limited to no more than 100 pixels in the horizontal direction, approx-
imately 1 mm. In the case of one macular vessel, the region was chosen to include the terminal end of the vessel, 
which was best visualized on the angiogram.

Figure 2. Example of erythrocyte tracking from erythrocyte mediated velocimetry images. Red circles show an 
individual erythrocyte flowing in a small vein along the retina (a–e).
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Vessel diameter measurement. The diameter of each vessel was determined from registered sequences 
of conventional ICG or fluorescein angiograms obtained concurrently or immediately after the EMV imaging 
session. Conventional ICG images were obtained at 24.6 frames per second with a 15° horizontal and 7.5° vertical 
field of view. Fluorescein angiography images were obtained at 4.7 frames per second with a 30° horizontal and 
30° vertical field of view. Diameter measurements were obtained using a custom MATLAB script to trace vessel 
boundaries and determine the average diameter over the course of the vessel segment. To account for possi-
ble variation in vessel diameter with the cardiac cycle27, diameter measurements were obtained on five separate 
images, each approximately 200 msec apart, and averaged.

Statistical analysis. Interrater reliability was evaluated with the intraclass correlation coefficient (ICC), 
two-way mixed, absolute agreement28, using 380 speed measurements of two independent graders on a standard 
set of angiograms. Intravisit variability, or the variability of erythrocyte speed within a single EMV session, was 
evaluated with 10 vessels (3 arteries and 7 veins) in six eyes of three control patients imaged twice within the same 
EMV session. We also evaluated intravisit variability in 10 vessels (3 arteries and 7 veins) of five eyes of four glau-
coma patients. Intervisit variability, or the variability of erythrocyte speed across time, was evaluated with 10 ves-
sels (3 arteries and 7 veins) of eight eyes of five patients who underwent two EMV sessions separated by at least 60 
days. For calculation of intervisit variability, if two angiograms of a given vessel from the same visit were available, 
the measurements from both angiograms were combined into a single mean speed. If patients had angiograms 
from three EMV sessions, the two visit days with the highest quality angiograms were used for comparison. The 
coefficient of variation (CV) was used for determination of intravisit and intervisit variability. The CV is defined 
as the ratio of the standard deviation (SD) to the mean, as shown in Eq. (1).

CV SD
mean (1)=

The CV was calculated for each vessel individually, using mean speeds obtained from the two angiograms. 
Mean ocular perfusion pressure (MOPP) was computed for each EMV session using the patient’s systolic blood 
pressure (SBP), diastolic blood pressure (DBP) and IOP, as shown in Eq. (2)29.
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Overall mean speed in retinal arteries and veins was determined by averaging mean speeds obtained from 
individual angiograms from all included EMV sessions. Data is presented as mean ± SD. All statistical analysis 
was performed in SPSS Statistics (IBM Corporation, version 24.0).

Results
image registration. The five sequences used for quantitative image registration validation exhibited mini-
mal, average, and high eye motion, judged by visual inspection. In the unregistered images, the sequences had a 
mean of 12.5% frames with poor stability. In the corresponding registered image sequences, the angiograms had 
a mean of 0.9% frames with poor stability (p < 0.01), effectively validating the MATLAB image registration script.

Variability of speed. The interrater variability, defined as the ICC for two independent graders calculating 
erythrocyte speed, is 0.983. The intravisit variability, defined as the average CV between two angiograms obtained 
in the same EMV session, is 3.57% (range 0.44–9.68%) in control subjects (Tables 2) and 6.66% in glaucoma 
patients (P > 0.10). The intervisit variability, defined as the average CV between two EMV sessions, is 4.85% 
(range 0.15–8.43%), as shown in Table 3. The mean time between visits was 220 days. Graphical representation of 
the intravisit and intervisit variability is shown in Fig. 4.

Figure 3. EMV image showing coordinates of many individual erythrocytes from an angiogram sequence 
(blue) overlaid on user-drawn vessel path (red).
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erythrocyte speed. Of 16 patients, 3 (18.8%) patients had diabetes, 9 (56.3%) had hypertension, 8 (50%) had 
dyslipidemia, and 6 (37.5%) of patients were on topical glaucoma medications. Using one vessel from each eye, mean 
erythrocyte speed was calculated in small retinal arteries and veins, as shown in Table 4. MOPP was also calculated 
for each eye. Eighteen arteries less than 60 µm in diameter and 22 veins less than 80 µm were analyzed. Mean arterial 

Patient Eye Vessel Diameter, µm (SD)

Angiogram #1 Angiogram #2

CVVelocity, mm/s (SD) Velocity, mm/s (SD)

1a OD Vein 39.74 (7.27) 4.14 (1.54) 4.30 (1.78) 2.69%

1a OS Vein 35.79 (5.33) 3.17 (0.76) 3.46 (0.73) 6.24%

1b OD Vein 34.69 (5.74) 4.54 (1.98) 4.56 (1.37) 0.44%

1b OD Vein 40.82 (6.57) 4.85 (1.24) 4.23 (1.18) 9.68%

2a OD Artery 34.34 (6.90) 7.22 (2.19) 7.07 (2.47) 1.45%

2a OD Vein 36.35 (6.23) 4.63 (1.36) 4.97 (1.82) 4.87%

2a OS Vein 53.00 (9.77) 5.14 (1.02) 5.25 (1.18) 1.46%

2b OD Artery 35.05 (6.02) 7.98 (2.83) 7.48 (1.89) 4.54%

4 OD Vein 29.88 (5.13) 7.19 (1.87) 7.29 (1.61) 1.02%

4 OS Artery 44.30 (4.51) 10.87 (3.80) 11.39 (5.52) 3.30%

Mean CV 3.57%

Table 2. Intravisit Speed – Comparison of speed from angiograms obtained within the same EMV session. 
Superscripts denote patient imaging session (if multiple). CV is defined as the ratio of the standard deviation 
(SD) to the mean.

Patient Eye Vessel Diameter, µm (SD)

Visit #1 Visit #2

CVVelocity, mm/s (SD) Velocity, mm/s (SD)

1a,b OD Vein 39.74 (7.27) 4.08 (1.63) 4.49 (1.23) 6.80%

1a,b OS Vein 35.79 (5.33) 3.35 (0.76) 3.22 (1.46) 2.72%

2a,b OD Artery 34.34 (6.90) 7.12 (2.38) 7.74 (2.43) 5.92%

2a,b OD Vein 36.35 (6.23) 4.79 (1.60) 4.53 (1.72) 3.88%

2a,b OS Vein 53.00 (9.77) 5.58 (1.05) 5.96 (1.43) 4.70%

3a,b OD Vein 38.59 (6.27) 6.60 (1.46) 7.43 (1.70) 8.43%

8a,b OD Vein 42.92 (7.93) 7.15 (2.42) 7.14 (1.69) 0.15%

8b,c OD Artery 39.00 (7.80) 7.57 (3.01) 8.38 (2.76) 7.21%

9a,b OS Vein 67.75 (13.75) 8.29 (3.06) 8.40 (3.75) 0.98%

9a,c OD Artery 49.62 (9.48) 7.06 (3.86) 6.33 (2.92) 7.76%

Mean CV  4.85%

Table 3. Intervisit Speed – Comparison of speed from angiograms obtained from two separate EMV sessions. 
Superscripts denote which patient imaging sessions were compared. CV is defined as the ratio of the standard 
deviation (SD) to the mean.

Figure 4. Difference in velocity as a function of the mean velocity between angiograms acquired in the same 
session (a) or separate sessions. (b) The center line represents the mean difference in velocity between sessions. 
The outer lines represent the mean difference ±1.96(SD).
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erythrocyte speed was 7.17 mm/s ± 2.35 mm/s in an artery with an average diameter of 43.11 µm ± 6.62 µm. Mean 
venous erythrocyte speed was 6.05 mm/s ± 1.96 mm/s in a vein with an average diameter of 45.87 µm ± 12.04 µm.

Discussion
We present the results of the first study utilizing EMV, a novel technique, to determine microvascular retinal 
blood speeds. EMV is a promising and highly precise method for determination of retinal microvascular blood 
velocity. Variability of quantitative absolute retinal blood flow and blood velocity measurements using other 
imaging techniques have ranged from 10–11% (RFI)15,16 to a mean of 20% (Canon Laser Blood Flowmeter)17, and 
our values were comparable or better.

Patient Eye MOPP Vessel Diameter, µm (SD) Velocity, mm/s (SD)

Arteries

2a OD 47.44 Artery 34.34 (6.90) 7.10 (2.36)

4 OS 58.33 Artery 44.30 (4.51) 10.96 (4.68)

5 OD 43.33 Artery 42.73 (9.27) 7.19 (2.92)

5 OS 40.33 Artery 43.17 (5.50) 6.70 (2.77)

6 OD 54.78 Artery 41.53 (10.36) 7.58 (2.40)

7 OD 38.11 Artery 40.58 (6.62) 7.14 (2.25)

8b OD 45.44 Artery 39.00 (7.80) 7.82 (3.24)

8c OD 44.44 Artery 39.99 (4.27) 8.30 (2.76)

9a OD 41.11 Artery 46.97 (7.53) 5.18 (2.39)

9b OD 45.44 Artery 52.72 (10.96) 6.47 (2.66)

9c OD 47.67 Artery 45.73 ((6.11) 6.21 (2.87)

10 OS 11.56 Artery 49.33 (7.72) 3.77 ((3.81)

11 OD 36.78 Artery 34.81 (5.94) 4.57 (2.75)

12 OD 55.67 Artery 38.50 (6.05) 7.76 (2.95)

12 OS 54.67 Artery 42.78 (7.46) 11.02 (4.47)

13 OD 37.33 Artery 31.18 (1.63) 2.19 (0.89)

14 OD 50.44 Artery 54.72 (12.05) 10.72 ((7.41)

16 OD 44.22 Artery 53.62 (4.65) 8.32 (3.59)

Average Arterial Velocity, mm/s (SD) 7.17 (2.35)

Average Arterial Diameter, µm (SD) 43.11 (6.62)

Veins

1a OD 44 Vein 39.74 (7.27) 4.14 (1.62)

1a OS 46 Vein 35.79 (5.33) 3.32 (0.78)

1b OD 42.33 Vein 40.82 (6.57) 4.82 (1.47)

1b OS 42.33 Vein 38.12 (5.73) 3.21 (1.45)

2a OS 46.44 Vein 53.00 (9.77) 4.42 (1.35)

2b OD 49.22 Vein 34.69 (5.74) 4.53 (1.72)

2b OS 49.22 Vein 49.06 (10.88) 4.49 (1.71)

3a OD 51.22 Vein 38.59 (6.27) 7.51 (1.74)

3b OD 54.44 Vein 38.82 (7.60) 6.61 (1.41)

4 OD 56.33 Vein 29.88 (5.13) 7.15 (1.71)

6 OD 56.78 Vein 43.19 (8.66) 4.79 (1.47)

7 OS 47.11 Vein 42.13 (8.02) 8.49 (3.94)

8a OD 46.56 Vein 42.92 (7.93) 7.20 (2.38)

9a OS 44.11 Vein 67.75 (13.75) 8.01 (3.14)

9b OS 44.44 Vein 71.44 (7.68) 8.42 (3.50)

9c OS 45.67 Vein 68.10 (8.52) 9.00 (3.74)

10 OD 34.56 Vein 44.49 (8.18) 4.50 (2.08)

13 OS 50.33 Vein 40.02 (4.00) 4.17 (1.35)

14 OS 52.44 Vein 68.30 (6.29) 8.57 (4.13)

15 OD 36.11 Vein 40.63 (2.85) 9.01 (4.53)

15 OS 36.11 Vein 40.85 (3.13) 5.61 (1.64)

16 OS 42.22 Vein 40.85 (2.05) 5.18 (2.34)

Average Venous Velocity, mm/s (SD) 6.05 (1.96)

Average Venous Diameter, µm (SD) 45.87 (12.04)

Table 4. Erythrocyte speed in small retinal arteries and veins. Superscripts denote patient imaging session (if 
multiple).
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Retinal velocity measurements obtained using EMV are comparable to previously published velocities using 
laser doppler26 in vessels of similar caliber. For a 42 µm arteriole, Riva, et al.26 found a mean velocity of approximately 
7.5 mm/s, which is similar to 7.17 mm/s found in our study. For a 45 µm venule, mean velocity was approximately 
6 mm/s, which is similar to our 6.05 mm/s. A relative advantage of EMV is that while Riva, et al. measured velocities 
in vessels larger than 40 µm in diameter, EMV allows for velocity determination in smaller vessels. Furthermore, by 
directly measuring the speed of individual erythrocyte ghosts, EMV offers the advantage of quantifying absolute 
speed. AO-SLO offers a similar ability to quantify flow in the retinal microvasculature, but it does so over a small 
field a view using equipment that is not commercially available30. EMV in comparison is more invasive, but it allows 
for visualization over a larger field of view with a modified commercially available device.

Despite the more invasive nature of this procedure, we have now imaged 26 patients and shown that it is 
relatively safe. It may, in fact, be safer than traditional angiography as the aggregate concentration of sequestered 
ICG dye using EMV is approximately 1/700th that of conventional ICG. Given that the cells are autologously 
reinjected there is a concern for risk of infection. Sterile technique is strictly adhered to minimize this potential 
risk. To date, only one patient had an adverse event when they experienced a vasovagal episode after injection of 
the conventional ICG dye.

This study had broad inclusion criteria, and hence we imaged some patients who did not have gradable angio-
grams due to media opacity such as cataract or dry eye or due to the learning curve of imaging patients with this new 
technology. Our broad inclusion criteria resulted in a cohort of patients demographically similar to those at risk for 
ocular disease with an average age of 57.8 years, and 25% with diagnoses of dry eye or ocular surface disease.

While we chose to assess mean retinal erythrocyte speeds, we note that other metrics such as median, min-
imum, maximum, range, and distribution may be as important if not more important given the natural physi-
ologic variability of blood flow. Physiologic variability of erythrocyte speed and flow comes from the pulsatile 
nature of flow, higher in systole and lower in diastole, as well as the distribution of speeds of individual erythro-
cytes flowing through the vasculature, where cells travelling in the vessel periphery are slower than the cells trav-
eling in the center of the lumen. The potential difference in speed with time and luminal position is why we chose 
to report mean speeds. The mean speed for each vessel was determined by averaging many individual erythrocyte 
speeds (mean of 70 individual speed measurements per angiogram) to account for these differences. Given the 
time-consuming nature of manual speed determination, we have since developed a more automated method of 
determining erythrocyte speeds from EMV (automated tracking videos available)31.

We focused this manuscript on erythrocyte speed as opposed to overall retinal blood flow due to potential 
differences in vessel caliber in measuring vessel diameter using fluorescein and using ICG angiography, which 
were both used to determine vessel caliber in this study. Vessel diameter is an important component of blood 
flow determination, and future studies will be designed to take this into account. EMV sessions were generally 
conducted at the same time of day and it is possible that measurements could have been affected by diurnal var-
iation. For individuals with glaucoma, it is possible that worsening of the disease in between imaging sessions 
could affect erythrocyte velocity measurements. Other limitations include the relatively small sample size and the 
varied diagnoses of this cohort that may affect retinal blood speed. While we did compare the intravisit variability 
in controls versus glaucoma and found no statistically significant difference, this sample was not large enough to 
study those differences in a robust manner. Future studies will explore changes in retinal blood flow with different 
conditions and disease states, such as glaucoma.

With the continued development of noninvasive methods of determining ocular blood flow, EMV may rep-
resent a reliable method for determination of retinal blood flow. The potentially accurate and reproducible meas-
urement of erythrocyte speed further allows for determining the effect of disease states or pharmacologic agents 
on ocular blood flow – even if small in magnitude.

Data availability
The dataset generated and analyzed during the current study is available from the corresponding author on 
reasonable request.
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