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Electromagnetic field quantization 
and quantum optical input-output 
relation for grating
tiecheng Wang

A quantization scheme is developed for the radiation and higher order electromagnetic fields in one 
dimensional periodic, dispersive and absorbing dielectric medium. For this structure, the Green function 
is solved based on the plane wave expansion method, thus the photon operators, commutation 
relations and quantum Langevin equations are given and studied based on the Green function 
approach, moreover, the input-output relations are also derived. It is proved that this quantum theory 
can be reduced back to that of the predecessors’ study on the homogenous dielectric. Based on this 
method, we find that the transformation of the photon state through the lossy grating is non-unitary 
and that the notable non-unitary transformation can be obtained by tuning the imaginary part of the 
permittivity, we also discussed the excellent quantum optical properties for the grating which are 
similar to the classical optical phenomena. We believe our work is very beneficial for the control and 
regulation of the quantum light based on gratings.

In recent years, a significant effort has been devoted to the study on the theory and application of metastruc-
ture and metasurface, which are artificial periodic structures with their periodicity perpendicular to the inci-
dent direction of light1. Based on the dimension of the periodicity, they can be classified as one dimensional 
(1D) grating2 and two dimensional variation of such structures. A lot of fundamental study on these structures 
has been conducted, including band structure3–5, scattering6,7, absorption8,9, nonlinear optical effects10–12, and 
so on. The extraordinary features, like guided resonance, light bound states in the continuum (BICs)13–15, and 
so on, enable these structure to be applied to many optical processes, for example, hollow-core waveguide16, 
high-Q resonators17, surface-normal coupler18, vertical-cavity surface-emitting lasers19, high-NA planar lenses20, 
surface-normal second-harmonic emission21, and so on.

The previous study of metastructure and metasurface focuses on the classical optical properties and presents 
various and meaningful application in classical optics, but an important question is noticeable, how these struc-
tures regulate the quantum electromagnetic (EM) field? To solve this problem we should accomplish the the 
first two basic tasks which are the EM field quantization in those periodic artificial structures and getting the 
corresponding input-output relation. There has been extensive research on EM quantization22–26. In ref. 27, a fully 
canonical quantization scheme which is based on the Hopfield model28 of a dielectric for the macroscopic EM 
field in a linear harmonic oscillator bulk material is developed, the EM field is coupled to a harmonic-oscillator 
polarization field that interacts with a continuum of harmonic oscillator reservoir fields. Another method-the 
Green function approach-is introduced to solve the quantization problem for the dielectric including loss, which 
can be regarded as a natural extension of the familiar method of the mode expansion to arbitrary Kramers-Kronig 
consistent media. The quantization of the radiation field is based on the classical Green function representation of 
the vector potential, identifying the external sources therein with the noise sources that are necessarily associated 
with the loss in the medium. However, so far there has not been specific EM quantization theory for the medium 
with periodic structure.

In our work, the plane-wave expansion (PWE) method29–31, which is applied previously to deal with the clas-
sical optical problems for the periodic structures, and the Green function approach are used to accomplish the 
EM field quantization for 1D periodic, dispersive, and lossy medium. The EM fields in plane wave expansion is 
introduced to the quantum Maxwell equation and then the Green function in the corresponding bulk system 
can be calculated, on the basis of these the photon annihilators will be obtained. Moreover, we can study the 
input-output relation and get more quantum properties by applying this relation. Here the method we used is 
developed from the mode expansion of photon operators32–34.
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Theory and Method
Solution of quantum Maxwell equations for 1D grating. We consider 1D periodic structure (1D 
photonic crystal) as shown in Fig. 1. In order to quantize the eletromagnetic field in this structure we will resolve 
the quantum Maxwell equations22–25 using PWE method. Here the relative permittivity is periodic along the x 
direction and uniform along the y and z direction, we consider the transverse electric (TE) modes in which the 
electric field is polarized in the uniform y direction, all possible nonzero EM fields are denoted by ˆ ˆ ˆH E H( , , )x y z . 
The unit vectors of the primitive lattice and the corresponding reciprocal lattice can be introduced a = aex and 

π= = →b e eb a2 /x x, respectively. The operator EM fields can be written as the superposition of plane waves based 
on the PWE method

∑ω ω=ˆ ˆE x y z E z e( , , , ) ( , ) ,
(1a)

y
j

jy
ik xjx

∑ω ω ξ= =ξ ξ
ˆ ˆH x y z H z e x z( , , , ) ( , ) ( , ),

(1b)j
j

ik xjx

Noise current density ωˆ rJ ( , )y  and corresponding bosonic vector field ωˆ rf ( , )y  can be expressed in a similar way. 
The periodic relative permittivity can be also expanded as ε ω ε ω= ∑x y z e( , , , ) ( )j j

iG xj . Here the wave vector is 
kjx = kx + Gj, Gj = jb. The integer j in all the previous expressions is taken as j = 0, −1, 1, …, −N, N. In principle, 
the indices j should run from −∞ to +∞, but in numerical practice, truncation over a certain order is necessary. 
The number of the values of j is = +M N2 1, ωÊ z( , )jy  and ωξĤ z( , )j  are expansion coefficients of the electric and 
magnetic fields, ε ωx( , )j , ωĴ z( , )jy  and ωf̂ z( , )jy  represent expansion coefficients of the relative permittivity, noise 
current density and corresponding bosonic vector field. It is implicit in equations (1) that the Bloch theorem is 
satisfied for the one dimensional periodic medium.

The classical EM fields in the one dimensional periodic structures have already been studied in many previous 
works29–31. We borrow the ideas from these works to solve the quantum Maxwell equations, substitute the opera-
tor EM fields in quantum Maxwell equations for the plane waves expansion, thereby we find that the electric field 

ωÊ z( , )my  obeys the partial differential equation

∑ω δ ω ε ω ωµ ω−
∂
∂

+ − = .−
ˆ ˆ ˆ

z
E z k k c E z i J z( , ) ( / ) ( , ) ( , )

(2)my
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2
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In order to solve the electric field in this equation, we rewrite it as the following matrix form

ω ω ωµ ω




−

∂
∂

+





=ˆ ˆ
z

P E z i J z( ) ( , ) ( , ),
(3)

y y

2

2 0

where P(ω) is M × M matrix, ωÊ z( , )y  and ωĴ z( , )y  are both one column matrixes, ω ω ω= −(E z E z E z( , ) ( , ), ( , ),y y y0 1
ˆ ˆ ˆ  

)E z E z( , ), ( , )y Ny
T

1
ˆ ˆ

ω ω  and ω ω ω= −
ˆ ˆ ˆ(E z E z E z( , ) ( , ), ( , ),y y y0 1  ω ω

ˆ ˆ )E z E z( , ), ( , )y Ny
T

1 , the superscript T 
means the transpose of the matrixes. We use the Green function method to solve the electric field ωÊ z( , )y  in Eq. 
(3), the Green function35 G(z, z’, ω) is a M × M matrix, in order to solve it, the Fourier transforms of κ ωÊ ( , )y  and 

Figure 1. Monochromatic TE-polarized EM wave propagating in the 1D periodic medium shown in (a) 
(oblique view) and (b) (side view). The structure is periodic along x direction with period a, the wave vector lies 
in the x-z plane and the nonzero electric field is Ey.
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κ ωĴ ( , )y  of ωÊ z( , )y  and ωĴ z( , )y  should be introduced. Then we substitute these Fourier decomposition into Eq. (3)  
and obtain an equation in Fourier space shown as follows

κ ω κ ω ωµ κ ω+ = .ˆ ˆI P E i J( ( )) ( , ) ( , ) (4)y y
2

0

The corresponding Green function G(κ, κ′, ω) for this equation satisfies

κ ω κ κ ω δ κ κ+ ′ = − ′I P G I( ( )) ( , , ) ( ), (5)2

here the Green function G(κ, κ′, ω) is also a M × M matrix which is the Fourier transform of G(z, z′, ω), I is the 
identity matrix, κ ωÊ ( , )y  and κ ωĴ ( , )y  are one column matrixes. The eigenvalues of the matrix P(ω) and the M × M 
matrix S(ω), whose σ th column (S0σ(ω), S−1σ(ω), S1σ(ω), …, S−Nσ(ω), SNσ(ω))T is the eigenvector corresponding 
to the eigenvalue −κσ

2(ω), can be obtained simultaneously, κσ(ω) is the wavevector along z direction. The matrix 
S(ω) satisfies

∑ ω ω δ κ κ δ δ κ κ− ′ = − ′ .
σ

σ σ
=

⁎S S( ) ( ) ( ) ( )
(6)

N

m n mn
0

Then the Green function κ κ ω′G( , , ) in Eq. (5) can be calculated based on Eq. (6)

∑κ κ ω
δ κ κ

κ κ δ κ κ δ
′ =

− ′
− − + +σ

σ σ

σ σ=

⁎
G S S

i i
( , , ) ( )

( )( ) (7)mn

N
m n

0

where δ is a positive infinitesmal, the dependence on ω is implicit for κσ(ω) and S(ω). The Green function G(z, z’, 
ω) can be calculated by integrating G(κ, κ′, ω) over κ and κ′

∑ω
κ

′ =
σ

σ σ

σ

κ

=

− ′σ
⁎

G z z i S S e( , , )
2

,
(8)mn

N
m n i z z

0

the residue theorem is used in the calculation of this integral. Based on this Green function the field Êmy(z, ω) can 
be solved

∑ω µ ω ω ω= +
σ

σ
β

σ
β

σ
+ − −σ σˆ ˆ ˆE z i S e o z e o z( , ) [ ( , ) ( , )],

(9)my m
i z

y
i z
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here the amplitude operators ωσ
+ô z( , )y  and ωσ

−ô z( , )y  are introduced, which propagate forward (along +z direc-
tion) and backward (along −z direction), respectively,

∫ ∑ω ω= ′ ′σ
σ

σ

β κ+

−∞

− − ′σ σˆ ˆ
⁎

o z i dz S
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( )

where we assume the wave vector κσ = βσ + iγσ, βσ and γσ are the real and imaginary parts of κσ.

Annihilation and creation operators. Based on the explicit expressions of amplitude operators, we have 
also studied the spatial evolution of the amplitude operators which is governed by quantum Langevin equations 
(see Supplementary Material), where the quantum noise associated with the damping is taken into account by 
operator Langevin noise sources. After consideration of the commutation relations of the operator noise current 
densities, we can get the commutation relations of the amplitude operators (see Supplementary Material), from 
the results we can see that the commutation relations of the amplitude operators with different orders may not be 
zero. A special case is considered z = z’ and then we define a matrix Umn(ω) in this case

†
^ ^ ω ω ω δ ω ω′ = − ′ .β β± ± ±o z o z U e[ ( , ), ( , )] ( ) ( ) (11)my ny mn

i z i zm n

The commutation relations of the photon annihilation operators with different orders should be equal to zero, 
so we introduce the photon annihilation operators ω+â z( , )my  and ω−â z( , )my , which are the linear superposition of 
the amplitude operators ω+ô z( , )my  and ω−ô z( , )my , respectively,

∑ω ω ω= .β β± ± ± − ± ±ˆ ˆa z e X o z e( , ) [ ( )] ( , )
(12)my

i z

n
mn ny

i z1m n

The matrixes of superposition coefficients X+ (ω) and X−(ω) are determined by the commutation relations of 
the bosonic photon annihilation and creation operators

ω ω δ δ ω ω′ = − ′β β± ± − −ˆ ˆ †a z a z e[ ( , ), ( , )] ( ), (13)my ny mn
i z( )m n

Substituting in the left of the commutation relations in Eq. (13) for the photon operators the superposition forms 
(12), the coefficients X+ (ω) and X−(ω) can be determined by U(ω)
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ω ω ω = .± − ± − †X U X[ ( )] ( )[ ( )] 1 (14)1 1

It is clearly seen from Eq. (14) that X+ (ω) is equal to X−(ω) (X+ (ω) = X−(ω) = X(ω)).
So far, The EM field quantization in one-dimensional photonic crystal is fully completed, the final form of the 

electric field can be written as in matrix

ω µ ω ω ω= + .β β+ − −ˆ ˆ ˆE z i SX e a z e a z( , ) [ ( , ) ( , )] (15)y
i z

y
i z

y0

Here β±e i z  are the diagonal matrixes β β β β± ± ± ±−
diag e e e e( , , )i z i z i z i zN0 1 1  which describe the propagation of the 

quantum light, ω±â z( , )y  are one column matrixes ω ω ω ω− 
ˆ ˆ ˆ ˆ( )a z a z a z a z( , ), ( , ), ( , ), ( , )y y y Ny

T
0 1 1 . Here ωâ z( , )y0  

is the radiation order and the others are high orders. The matrix S connects the amplitude operators in different 
orders with the electric field operators in different orders, it is not unity matrix in the grating, which reveal that 
there is interaction between different orders in this case. When the model degenerates to the homogeneous case, 
the matrix S is unity and X is diagonal, then our theory can degenerate successfully to the the corresponding 
results of the previous work36–38 of other authors who considered the EM quantization in the radiation order in 
the normal propagation case (see Supplementary Material).

Quantum optical input-output relation for grating. Now we turn to the problem of propagation of the 
quantized field39 through 1D periodic dielectric slab—1D grating—embedded in two semi-infinite homogeneous 
dielectrics, which is shown in Fig. 2. The dielectric function is expressed as

ε ω ε ω ε ω ε ω→ = Θ − − + Θ + − Θ − + Θ − .r z l z l z l x z l( , ) ( /2) ( ) [ ( /2) ( /2)] ( , ) ( /2) ( ) (16)1 2 3

the superscripts 1, 2, 3 represent three corresponding regions.
The input-output relation of annihilation operators in transfer matrix form for the grating can be obtained by 

using EM boundary condition and solution of quantum Langevin equation (see Supplementary Material)
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here the columns ω+ĝ ( ) and ω−ĝ ( ) are associated with the grating.
The commutation relations of ω

±
Ĝ ( ) with different orders may not be zero, in light of mentioned theoretical 

discussion we construct the new operators ω+ĝ ( )n  and ω−ĝ ( )n  associated with the slab which satisfy the bosonic 
commutation relations. Firstly, we define ω

+
Ĝ ( )n

0
 and ω

−
Ĝ ( )n

0
 to ensure that they commute with each other

ω ω ω= − ±
± − +ˆ ˆ ˆG G G( ) ( ) ( ), (18)n n n

0

After some calculation, the related commutation relations are listed in the following, moreover, the matrix V 
is introduced further

Figure 2. Scheme of the grating (marked by 2) with permittivity ε ωx( , )2  shown in (a) (oblique view) and (b) 
(side view) with thickness l embedded in homogeneous dielectrics (marked by 1 and 3) ε ω( )1  and ε ω( )3 . The 
semi-infinite orange area up the grating is indicated by 1 and the semi-infinite green area down the grating is 
indicated by 3, the grating is located between these two semi-infinite areas.
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Secondly, we construct new operators ω+ĝ ( )m  and ω−ĝ ( )n  as linear superposition of operators ω
+

Ĝ ( )n
0

 and 
ω

−
Ĝ ( )n

0
 in the similar way to construct the photon operators

∑ω ω ω=± − ± ±
ˆ ˆg Y G( ) ( ) ( ),

(20)m
n

mn j
1 0

The new operators should fulfill the bosonic commutation relations

ω ω δ δ ω ω′ = − ′± ±ˆ ˆ †g g[ ( ), ( )] ( ), (21)m n mn

Similarly, the coefficients of Y+ (ω) and Y− (ω) can be determined from the above equations by substituting 
the Eqs. (20) into (21)

ω ω ω = .± − ± ± − †Y V Y[ ( )] ( )[ ( )] 1 (22)1 1

Finally, the quantum optical input-output relation expressed in the transfer matrix form can be transformed 
to the scattering matrix Qmn(mn = 11, 12, 21, 22)

Figure 3. The transmission and values of commutation relations, c11,00 and c12,00, of the medium layer without 
loss as a function of the reduced wavelength λ/Λ. The transmission is studied in (a) and (c), c11,00 and c12,00 are 
studied in (b) and (d), the uniform slab with relative permittivity 4.0 is considered for (a) and (b), and the 
grating with filling factor w/Λ = 0.6 is considered for (c) and (d), ε = .4 0, θ = 0°. The thicknesses of the uniform 
slab and grating are both equal to d = 1.75Λ.
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So far we construct the relation between the output annihilation operators ω+â l( /2, )3 , ω−−â l( /2, )1  and the 
input annihilation operators ω−+â l( /2, )1 , ω−â l( /2, )3  and the bosonic excitations associated with the slab ω+ĝ ( ), 

ω−ĝ ( ). The new operators ω+ĝ ( ) and ω−ĝ ( ) play the role of the noise sorces associated with the damping in the 
input-output relation. When we consider the special case of homogeneous dielectric, the input-output relation 
and related commutation relations can be also derived back to the previous study37,38.

Then we can derive the commutation relations between the output photon operators based on the input-output 
relation together with the known commutation relations between the input photon operators. After deliberate 
and straightforward calculation the results can be written in matrix form

Figure 4. The transmission and values of commutation relations, c11,00 and c12,00, of the medium layer with loss 
as a function of the reduced wavelength λ/Λ. The transmission is studied in (a) and (d), c11,00 is studied in (b) 
and (e), and c12,00 is studied in (c) and (f), the uniform slab with relative permittivity (4.0, 0.1) is considered for 
(a), (b) and (c), and the grating with filling factor w/Λ = 0.6 is considered for (d–f), ε = . .(4 0, 0 1), θ = 0°. The 
thicknesses of the uniform slab and grating are both equal to d = 1.75Λ.
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Here the matrixes shown in the above equation are defined as ˆ ˆ †ω ω= =+ +c a l a l c[ ( /2, ), ( /2, )],mn m n mn11,
3 3

12,  
ˆ ˆ †a l a l[ ( /2, ), ( /2, )]m n
3 1ω ω−+ − , ω ω= −− +ˆ ˆ †c a l a l[ ( /2, ), ( /2, )]mn m n21,

1 3  and ω= −−ˆc a l[ ( /2, ),mn m22,
1  ω−−ˆ †a l( /2, )]n

1 . 
In the following we give the results about the values of commutation relations for the uniform slab and grating 
immersed in air. The grating refers to alternating dielectric bar and air, the period and bar width of the grating are 
denoted by Λ and w, the relative permittivity of the dielectric bar is marked by ε, the thicknesses of the uniform 
slab and grating are both denoted by l, the wavelength and incident angle of the EM field are represented by λ and 
θ. Because of the symmetry of this model, c11,mn = c22,mn, c12,mn = c21,mn.

The diagonal elements of matrixes c11, c12, c21 and c22 are real number which can be seen from Eq. (24). For the 
uniform dielectric the matrix X is diagonal, if the uniform dielectric is lossless, the coefficients Xmn approach zero 
for higher orders (m ≠ 0), so only the radiated (m = 0) annihilation and creation operators are physically signifi-
cant. Hence, we are interested in c11,00, c12,00, c21,00 and c22,00 in radiation order for our model.

In Fig. 3 we consider the transmission and values of commutation relations, c11,00 and c22,00, for the lossless 
uniform slab and lossless grating as a function of the reduced wavelength λ/Λ. The corresponding case of lossy 
layer is shown in Fig. 4. For uniform slab, no matter it is lossless or lossy, c11,00 = 1 and c12,00 = 0 hold, which can be 

Figure 5. The absorption, c11,00 and c12,00 for the grating when the geometric parameters are changed: (a–c) 
show the absorption, c11,00, and c12,00 as functions of the reduced wavelength λ/Λ and the reduced thickness l/Λ, 
the width of the grating is chosen as w = 0.6Λ. (d–f) depict the absorption, c11,00 and c12,00 as functions of the 
reduced wavelength λ/Λ and the filling factor w/Λ, the thickness of the grating is chosen as l = 1.75Λ. For all 
these cases, The relative permittivity of the grating is ε = .(4, 0 1) and the incident photons propagate normally 
θ = 0°.
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seen from Figs. 3(b), 4(b,c), that means the output photons satisfy bosonic commutation relation and the annihi-
lation operators for different channels commute with each other, these results coincide with the former work. For 
grating, only when it is lossless, c11,00 = 1 and c12,00 = 0, which can be seen from Fig. 3(d), when it is lossy, these 
equations are not true in this case, that is to say, c11,00 ≠ 1 and c12,00 ≠ 0, which can be seen from 4(e,f). After com-
paring the four different models, we find that the physical origin of this inequality is that the excitations, ω+ĝ ( )m  
and ω−ĝ ( )m , in different orders interact with each other. Not only that, from Fig. 4(d–f) we also find that near the 
guided resonance, which is the Fano resonance in our optical model, obvious resonance and deviation of c11,00 and 
c12,00, the deviation means that the departure of c11,00 value from 1 and c12,00 value from 0. It can be also clearly seen 
that at the reduced wavelength λ/a > 1.5, there is no guided resonance, while there is also no resonance for c11,00 
and c12,00 and the deviation decreases.

The Heisenberg picture is implied in the quantization theory, when the theory is converted to Schördinger 
picture, we can understand the phenomenon further, which is the deviation of the bosonic commutation rela-
tions for the output photon operators in the lossy grating. In the Schördinger picture, the evolution operator is 
no longer unitary with respect to the radiated order which can be derived from the input-output relation40,41, so 
the transformation of the quantum states is non-unitary. From Fig. 4(e,f) we can see that the phenomenon of 
deviation is very small (~10−3).

Now we tune c11,00 and c12,00, which describe the transformation of the photon states, by change the parameters 
in our model. Compared to the classical optics the Fano resonance can appear in the grating for quantum light 
which can be seen from Fig. 5(a,d), near the resonant absorption is notable. The peak and valley of c11,00 and c12,00 
are coincident with the resonant absorption, the sign of c12,00 is opposite to that near the adjacent resonant curve. 
We can see that the deviations of c11,00 from 1 and c12,00 from 0 are closely related to the Fano resonance in the 
grating. It is clearly seen in Fig. 5 that these deviations are very weak (~10−3) due to the weak absorption (the 
imaginary part of the relative permittivity is only ε = .0 1I ). In Fig. 6 it is implied that the deviation of c11,00 from 1 
rises by increasing the imaginary part of the relative permittivity which is closely related to the effect of absorp-
tion, this devation can reach about 0.4. When εI is located at (0.3, 1.5) the deviation of c12,00 from 0 can be 
increased about 1 order of magnitude (~10−2). εI variation leads to notable effect of ω+ĝ ( )m  and ω−ĝ ( )m  in higher 
orders on the output photon operators in radiation order, so we can enhance the effect of the nonunitary evolu-
tion obviously by changing the imaginary part of the relative permittivity of the grating.

We have also calculated the transmission, reflection and absorption for photon number density, which are 
equal to that in classical optics. The sharp resonance, guided resonance, which appears in the grating for classical 
light can also emerge for quantum light. At the resonance, 100% relative numbers of the outgoing photons in 
output channels are exhibited and near 100% absorption is realized for the lossy grating, the Q factor is high and 
the lifetime is long. From the asymptotic behavior of the resonance, some embedded resonances with zero line-
width can be found, these embedded resonances possess infinite high Q factor and infinite long lifetime, and are 
called light bound states in the continuum (BICs) which have attracted much attention in recent years in classical 
optics13–15. In our work, we also find the light BICs in quantum optics in theory. In classical optics, many applica-
tions of the grating are developed because of their excellent optical properties42,43, we believe that the grating can 
be applied in various areas of quantum optics, such as propagation of non-classical light, quantum state transfor-
mation, spontaneous emission of a nearby scatter and so on, these will be our next tasks.

Conclusion
We give the Green function and the EM field quantization for 1D periodic, dispersive and absorbing dielectric 
bulk medium firstly. The EM field are expanded in plane waves and are inserted to the quantum Maxwell equa-
tions, the Green function is solved, furthermore the electric field is quantized and the amplitude annihilators are 
established. The commutation relations of these amplitude operators in our periodic bulk system are calculated 
out based on the previous known commutation relations of the operator noise current density, we find that the 
amplitude operator don’t commute with the its Hermite operator with different order, which is quite different 

Figure 6. The absorption (a), c11,00 (b) and c12,00 (c) for the grating as functions of reduced wavelength λ/Λ and 
imaginary part of the relative permittivity εI. The real part of the relative permittivity is fixed at 4.0, the 
thickness and width of the grating are chosen as l = 1.75Λ, and w = 0.6Λ, respectively, the incident photons 
propagate normally θ = 0°.
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from the homogeneous dielectric case. Then we construct the photon annihilation operators by linear superpo-
sition of the amplitude operators. The quantum Langevin equations which determine the spatial evolution of the 
amplitude operators in our bulk system are provided and studied.

The quantum input-output relation for the grating is also derived, the output field operators can be described 
in terms of input field operators and noise sources associated with the loss in the gratings. We find that the con-
ventional commutation relations are satisfied, ω ω= =+ +ˆ ˆ †c a l a l[ ( /2, ), ( /2, )] 111,00 0

3
0
3  and c a l[ ( /2, ),12,00 0

3ˆ ω= + , 
ω− =−ˆ †a l( /2, )] 00

1 for uniform slab or lossless grating, but for lossy grating, these relations do not hold, these 
phenomena originate from the interaction between the output photon in radiation order and the excitations in 
higher orders. The excellent quantum optical properties of the grating are also found and discussed. We believe 
our work is very beneficial for the control and regulation of the quantum light based on gratings.
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