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Metabolomic and metallomic 
profile differences between 
Veterans and Civilians with 
Pulmonary Sarcoidosis
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Hans J. Vogel3,4, Brent W. Winston  3,4 & Mehdi Mirsaeidi  5,6*

Sarcoidosis is a disorder characterized by granulomatous inflammation of unclear etiology. In this 
study we evaluated whether veterans with sarcoidosis exhibited different plasma metabolomic and 
metallomic profiles compared with civilians with sarcoidosis. A case control study was performed 
on veteran and civilian patients with confirmed sarcoidosis. Proton nuclear magnetic resonance 
spectroscopy (1H NMR), hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) 
and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify metabolites and 
metal elements in plasma samples. Our results revealed that the veterans with sarcoidosis significantly 
differed from civilians, according to metabolic and metallomics profiles. Moreover, the results showed 
that veterans with sarcoidosis and veterans with COPD were similar to each other in metabolomics 
and metallomics profiles. This study suggests the important role of environmental risk factors in 
the development of different molecular phenotypic responses of sarcoidosis. In addition, this study 
suggests that sarcoidosis in veterans may be an occupational disease.

Sarcoidosis is a granulomatous entity of unknown etiology. The incidence of sarcoidosis has been well studied 
in the American civilian population and ranges between 11 in 100,000 in Caucasians to up to 36 in 100,000 
in African American populations1. Although not well studied, the incidence of sarcoidosis among veterans is 
estimated to be even higher2. Sarcoidosis has protean manifestations including ophthalmic, joint, skin, and 
liver involvements, but most often involves the lung, affecting almost 90% of cases. In some individuals it can 
lead to serious disability of affected organs such as pulmonary fibrosis, cirrhosis, blindness, and may be fatal. 
Unfortunately, there is no available noninvasive biomarker to facilitate the diagnosis nor predict progression of 
disease.

Metabolomics is a method to identify and measure small molecules – metabolites – which may provide a way to 
study and monitor disease progression. In addition, has the potential to differentiate various stages of a particular 
disorder, provide means for a more accurate diagnosis and possibly stratification of prognosis3,4. Two of the more 
commonly used analytical platforms for metabolomics studies are proton nuclear magnetic resonance (1H-NMR) 
spectroscopy, a very robust and consistent method, and hydrophilic interaction liquid chromatography mass spec-
trometry (HILIC-MS), an extremely sensitive method5. Metabolomics has helped to identify potential biomarkers 
for the diagnosis and prognosis of infectious and non-infectious respiratory conditions such as asthma6, chronic 
obstructive pulmonary disease (COPD)7,8, influenza9, pneumonia10, tuberculosis11, and acute respiratory distress 
syndrome (ARDS)12,13.

Metallomics targets various elements and metal ions that participate in many biological pathways in close 
relationship with proteins and metabolites14. Inductively coupled plasma-mass spectrometry (ICP-MS) is a highly 
sensitive technique used to detect and quantify elements in the periodic table in biological fluids15.
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The veteran population comprise a particular group of subjects with a unique history of exposure to hazardous 
materials, including gun smoke, jet fuel, air pollution (burn pit smoke, dust) and occupational hazards (asbestos, lead)16.  
Because of this, we sought to evaluate whether veterans with sarcoidosis exhibit different metabolomics and metallo-
mics profiles compared with civilians with sarcoidosis. Furthermore, we evaluated whether veterans with sarcoidosis 
have a different metabolomic and metallomic profile compared to other veterans with a non-sarcoidosis pulmonary 
condition, (COPD).

Methods
Patient enrollment. We performed a case-control study on veterans (n = 13) and civilians (n = 30) with 
confirmed pulmonary sarcoidosis. Sarcoidosis was defined as the presence of clinical signs and symptoms of 
pulmonary sarcoidosis or the presence or history of bilateral hilar lymphadenopathy, along with biopsy-proven 
sarcoid-like granulomas in pulmonary samples, with the exclusion of other granulomatous conditions, including 
mycobacterial infection.

Airflow obstruction was defined per American Thoracic Society and European Respiratory Society (ATS/
ERS) guidelines with an FEV1/FVC ratio less than lower limit of normal (24). In order to further analyze the 
metabolomic profiles of veterans without sarcoidosis and with similar exposure history, we randomly selected 35 
veterans with COPD as controls, matched by race, gender, and deployment history. Civilians were recruited from 
the University of Miami Sarcoidosis Program and veterans from the Miami Veterans Administration Sarcoidosis 
Program.

This retrospective study was conducted in accordance with Helsinki Declaration and the study was been 
approved by the University of Miami’s Institutional Review Board (No.20150612). Written informed consent was 
obtained from all participants.
1H-NMR spectroscopy and metabolites profiling. Plasma samples were obtained from all patients and 
analyzed by 1H-NMR spectroscopy. Details of sample preparation have been described in the Supplementary 
Appendix (Supp. 1). One dimensional 1H-NMR was performed using a 600 MHz Bruker Ultrashield Plus 
1H-NMR spectrometer (Bruker BioSpin Ltd., Canada). Details of the 1H-NMR analysis have previously published9 
and provided in the Supp. 1. To quantify the metabolite concentrations, DSS (4,4-dimethyl-4-silapentane-1-su
lfonic acid) was used as an internal standard. Multivariate statistical analysis models were developed to identify 
metabolites involved in the discrimination. ChenomX 7.1 was used to identify and quantify metabolites17.

HILIC-MS and metabolites profiling. Plasma samples were also analyzed by liquid chromatogra-
phy mass spectroscopy (LC-MS) using the Q Exactive HF Hybrid Quadrupole-Orbitrap Mass Spectrometer, 
Thermo-Fisher). Chromatography was performed using a 2.1 mm × 100 mm long Syncronis HILIC 
(thermos-Fisher) LC column packed in-house with 3 µm porous Hypercarb particles.

The elution gradient of solvent B (%) (acetonitrile with 0.1% formic acid) over time was: 95% for 2 min, 85%–
95% for 5 min, 5–80% for 3 min, and 5% for 5 min, 5–95% for 2 min and then held at 95% for last 3 min against 
solvent A (20 mM ammonium formate pH 3.0 in H2O). MS conditions were as follows: HESI-II temperature 
325 °C, auxiliary gas flow 10 units, sheath gas flow 25, spray voltage ± 2.50 kV, capillary temperature 275 °C, and 
S-lens RF level 60%, auxiliary gas heater temperature 275 °C for negative ion mode. To acquire mass spectra, mass 
scan parameters were set up as follows: runtime 20 mins, full MS scan type, resolution 240,000, AGC target 3e6, 
maximum IT 200 ms and scan range 70–1000 m/z. Maven software, an open source software, was used for pro-
cessing metabolomics data obtained by LC-MS18.

ICP-MS analysis of metallome profiles. The plasma metallome was assessed using inductively coupled 
plasma mass spectrometry (ICP-MS). Details of the sample preparation is also described in the Supp. 1. ICP-MS 
analysis was performed using a PlasmaQuant® MS Elite (Analytik Jena, Jena, Germany) spectrometer on plasma 
samples. A standard SeronormTM serum samples was used as quality control samples and provided a way to trans-
late the elemental count of the ICP-MS to semi quantitative. Integrated collision reaction cell (iCRC) mode was 
applied for analysis of plasma using a single continuous method. To attenuate all polyatomic interference, hydrogen  
gas was added to the iCRC skimmer. Both iCRC and non-iCRC modes were applied for analysis, thus the isotopes 
(different forms of an element with ‘different number of neutrons) 51V, 75As, 78Se and 90Zr were quantified by both 
iCRC mode and non-iCRC mode. 24Mg, 56Fe and 51Cr were quantified only in iCRC mode and non-iCRC mode 
was used for all the remaining isotopes.

Data analysis. Both univariate and multivariate data analyses were applied to the extracted information from 
the metabolomic datasets. Univariate analyses such as, ANOVA and T-test were used as complementary methods 
to the multivariate analysis in order to provide useful information on metabolomics profiles and on metabolite 
individually. MetaboAnalyst19 and MetaBox20 were used for univariate data analyses. Data were not preprocessed 
for the univariate analyses.

Multivariate data analysis was applied to reduce the complexity of metabolomics data and for data mining. 
Principal component analysis (PCA) was performed to find outliers, trends, and similarities, using datasets 
derived from the plasma samples for the evaluation of interrelations and groupings of metabolomics data between 
veteran and civilians with pulmonary sarcoidosis and veterans with COPD.

Partial least square-discriminant analysis (PLS-DA) and orthogonal partial least square-discriminant analysis 
(OPLS-DA) are two supervised multivariate data analyses methods for classification and discrimination between 
groups by maximizing separation using most differentiating variables responsible for class discriminations. 
PLS-Da and OPLS-DA were used to separate different populations and to establish metabolomic profiles for 
each population based on the most differentiating metabolites. Q2Y (goodness of validation) and cross validation 
ANOVA (CV-ANOVA) parameters were considered for predictability and significance of separation of study 
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populations using metabolomics profiles21,22. Q2Y > 0.3 and 0.5 were evaluated as acceptable and good models for 
human samples. P value ≤ 0.05 was considered a significant model. The highest Q2Y was considered in choosing the 
OPLS-DA model. S-plot and coefficient plot were applied to find the most significant metabolites that contributed 
to the separation as potential variables in the study. S-plot was used to extract the putative biomarkers, that have 
both high reliability and magnitude. Compounds with covariance >0.1 were considered important metabolites23.  
SIMCA-P v15.0.2 (Umetrics AB, Umeå, Sweden) and MetaboAnalyst 3.0 software were used for multivariate 
analyses. Data were normalized (median), transformed (log) and auto-scaled for multivariate analyses.

Prediction test. Prediction test was used to obtain sensitivity, specificity and area under the curve for 
receiver operating (AUROC) parameters. The prediction test was carried out by splitting the population of the 
study into a training and a predicting set. The predicting group was created by randomly selecting 25% of the 
samples. A misclassification table was obtained for all discriminant analysis models to measure sensitivity and 
specificity using SIMCA-P v15.0.2 software. AUROC was calculated using Graph Pad Prism v 3.03.

Pathway analysis. Parallel pathway analyses were performed using MetaboAnalyst 3.024, a free web-based 
tool, and Cytoscape 3.6.025 using selected discriminative metabolites in the separation of veteran sarcoidosis from 
civilian cohorts. Reactome, an open-source, open access, pathway database was also used to explore biochemical 
networks26. The list of discriminative metabolites was chosen according to the best OPLS-DA model which had 
higher predictability (Q2Y).

Results
Patient characteristics. Of the 78 subjects who were consented for the study, 43 had sarcoidosis (13 veter-
ans and 30 civilians) and 35 were veterans with COPD. Demographic characteristics are summarized in Table 1. 
Out of the 43 subjects enrolled with sarcoidosis, 10 subjects (33%) in the civilian group and 1 subject (8%) in the 
veteran group were female (P = 0.107). There were no significant differences in age, race or lung function between 
participants. The difference in the mean (SD) CPI score of civilian and veteran subjects were 19.1 (21.3) and 29.2 
(18.8), respectively (P = 0.0148).

Among COPD subjects, the mean (SD) age was 63.5 (4.7), which was significantly older than veterans with 
sarcoidosis (P = 0.038). However, there was no difference in race and gender between these two groups.

Metabolomics study. Metabolite Identification. Using ChenomX 1H-NMR Suite 7.127, one dimensional 
1H-NMR analysis resulted in the identification of 55 metabolites including sugars, organic acids, amino acids, 
and volatile organic compounds. Using the Maven software, 103 variables were identified in a targeted approach 
to the HILIC-MS analysis and consisted of sugars, amino acids, organic acids, acylcarnitines and their derivatives.

Principal component analysis (PCA) clearly showed clustering between veteran and civilian sar-
coidosis and COPD control. Unsupervised PCA demonstrated clustering among the three groups using the 
55 and 103 metabolites detected by 1H-NMR and HILIC-MS, respectively (Fig. S1A,B). However, PCA showed a a 
higher degree of separation between veteran and civilian sarcoidosis cohorts reflecting two distinct metabolomic 
profiles (Fig. S2A,B). The 6-component PCA models had an R2X = 0.483 and 0.456 for 1H-NMR and HILIC-MS, 
respectively, demonstrating a relative high variation of metabolites among the samples. Further analysis revealed 
very good clustering between civilian sarcoidosis and veterans with COPD, whereas the two veteran cohorts were 
roughly clustered (Figs. S3 and S4).

Veterans with sarcoidosis have a different metabolomic profile compared to civilians with 
sarcoidosis. Multivariate data analysis of metabolomic profiles using OPLS-DA detected that the vet-
eran sarcoidosis cohort was significantly different from the civilian sarcoidosis cohort. The results provided a 
highly predictive and significant model to separate the two cohorts particularly for HILIC-MS (Q2Y = 0.607, 
p = 2.8 × 10−7) than 1H-NMR spectroscopy (Q2Y = 0.454, p = 9.9 × 10−5) (Fig. 1A,B). Forty-one metabolites con-
tributed to the differentiation of metabolic profiles between civilians and veterans with sarcoidosis for each of 
the two analytical approaches (Fig. S5A,B). Six metabolites were detected in both HILIC-MS and 1H-NMR to be 
significantly different between civilian and veteran sarcoidosis subjects: arginine, glutamine, creatinine, glycine, 
taurine, and methionine.

The performances of the discriminative models are summarized in Table 2. Most differentiating metabo-
lites were selected for the OPLS-DA models to obtain higher predictability (Q2Y) using a variable impor-
tance in projection (VIP) approach. S-plot revealed that taurine, sucrose, n-methyl-d-aspartic acid, 
ll-2–6-diaminoheptanedioate, hypoxanthine, ethanolamine, alpha-hydroxyisobutyric acid, sn-glycerol 
3-phosphate, 2-oxoisocaporate, 4-hydroxybutyrate, acetone histidine, isoleucine, isopropanol, methionine and 
beta-alanine were the most plausible biomarkers to differentiate between the two sarcoidosis cohorts in both 
datasets (Fig. S6A,B). This study also showed that a targeted analysis using HILIC-MS could be a better dis-
criminative method because of its higher Q2 and the fact that includes all 103 identified metabolites (Fig. S7). 
Permutation test confirmed the validation of R2 and Q2 values of each predictive model (OPLS-DA) using 200 
repetitions (Fig. S8).

Unpaired T-tests on the sarcoidosis populations were performed using 55 and 103 metabolites identified by 
1H-NMR and HILIC-MS, respectively. The T-test analysis on the 1H-NMR data showed 8 metabolites that were 
significantly (p < 0.05) different between the veteran and civilian cohorts with 6 having a significant low false 
discovery rates (FDR) (<0.05) (Table S1 & Fig. 2). T-tests on the HILIC-MS dataset showed 38 metabolites differ-
entially expressed (p < 0.05), from which 24 metabolites had significant FDR (p < 0.05) (Table S2 & Fig. 3). These 
results confirm that the two sarcoidosis populations are metabolomically different.
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Veterans and civilians with sarcoidosis have different metabolomic profiles compared to veter-
ans with COPD. MVA analysis also showed very distinct metabolic profiles for the sarcoidosis civilian cohort 
and the COPD cohort for both HILIC-MS (Q2 = 0.724) and 1H-NMR (Q2 = 0.713) (Figs. S9B and S10B). However, 
a smaller difference occurred between the two veteran cohorts. The predictability (Q2Y = 0.408 and 0.46)  
and significant difference (p = 0.00012 and 0.0001) for both 1H-NMR and HILIC-MS methods were considerably 
lower between the two veteran cohorts (Table 2) as shown in Figs. S9A and S10A. Also, a univariate approach 
using unpaired t-test proved that the metabolite alterations were more significant between civilian sarcoidosis and 
veterans with COPD than between the two veterans’ groups (Table S3–6).

Metallomics study. PCA of the three study groups show significant clustering. In a targeted approach, 33 
trace elements were quantified in the plasma samples of the three cohorts (civilians with sarcoidosis, veterans 
with sarcoidosis and veteran controls with COPD) using ICP-MS techniques. PCA analysis (Fig S11) shows a 
very clear separation of veteran patients with sarcoidosis from civilians with sarcoidosis. Similar to metabolomics 
results, this discrepancy was more noticeable between civilian sarcoidosis vs. COPD than veteran sarcoidosis vs. 
COPD (Figs. S12 and S13).

Veteran sarcoidosis showed significant different metallomic profile compared to civilian 
sarcoidosis. OPLS-DA analysis revealed a very good, highly predictive (Q2Y = 0.688) and significant 
(p = 6.003 × 10−6) model to discriminate between the two sarcoidosis groups based on the 33 elements (Fig. 4). 
The coefficient plot (Fig. S14) depicts differences in 33 elements between both cohorts showing increased rubid-
ium (85Rb), gallium (71Ga), nickel (60Ni), cesium (133Cs), arsenic (75As), barium (137Ba), aluminum (127Al) and 
mercury (202Hg) and decreased boron (11Ba), antimony (121Sb), cadmium (114Cd) bromine (79Br), cobalt (59Co), 
Calcium (44Ca), selenium (77Se), strontium (88Sr), palladium (105Pd), magnesium (24Mg) and lead (208Pb) in the 

Variables

Sarcoidosis

P-value

COPD

P-value*
Veterans 
N = 13 (%)

Civilian 
N = 30 (%)

Veterans 
N = 35 (%)

Race: African American 3(23) 6(20) 0.820 12(34) 0.460

Gender: Female 1(9) 10(33) 0.107 2(6) 0.802

Presence of airflow obstruction 3(23) 8(27) 0.804 N/A N/A

Taking Prednisone >20 mg/d 4(31) 3(10) 0.105 N/A N/A

Taking 2nd line antisarcoidosis medications 5(39) 15(50) 0.488 N/A N/A

Extrapulmonary sarcoidosis 7(59) 19(63) 0.560 N/A N/A

On Anti-TNF-α therapy 2(15) 4(13) 0.859 N/A N/A

Congestive heart failure 0 2(7) 0.870 4(11) 0.498

Diabetes 4(31) 8(27) 0.783 5(14) 0.203

Chronic kidney disease 1(8) 1(3) 0.544 3(8.6) 0.922

Hypertension 9(69) 13(43) 0.126 23(66) 0.818

Hyperlipidemia 8(62) 10(33) 0.091 0  < 0.0001

Coronary artery disease 1(8) 1(3) 0.544 8(23) 0.256

FVC < 70% 3(23) 6(20) 0.819 N/A N/A

DLCO (MEAN ± SD) 67.6 ± 23.3 68.2 ± 23.1 0.9 51.7 ± 14.6 0.001

CPI (mean, SD) 29(21.3) 19.1(21.3) 0.015 N/A N/A

6-min walk distance (m) (MEAN ± SD) 310 ± 128 259 ± 159 0.52 330 ± 108 0.28

Scadding criteria (based on chest images)

    Stage I 4 (31) 10 (33) NS N/A N/A

    Stage II 2(15) 7 (23) NS N/A N/A

    Stage III 3(23) 5 (17) NS N/A N/A

    Stage IV 4(31) 8 (27) NS N/A N/A

mMRC (MEAN ± SD) NA NA NA 1.87 ± 1 N/A

Deployment history

Caribbean 0 N/A N/A 1(3) 0.541

Europe 0 N/A N/A 8(22) 0.065

Persian Gulf 4(31) N/A N/A 1(3) 0.004

South Asia 5(38) N/A N/A 11(31) 0.472

Never Deployed 4 (31) N/A N/A 15(41) 0.481

Table 1. Demographic and clinical characteristics in the veteran and civilian populations studied. *P-value 
shows comparison between veterans with sarcoidosis and veterans with COPD. Scadding Stage IV: shows 
pulmonary fibrosis in sarcoidosis. A patient in COPD cohort was deployed to both Asia and Europe. SD is 
standard deviation, NS: non-significant. mMRC (Modified Medical Research Council) Dyspnea Scale. One 
patient has moderate pulmonary hypertension in COPD group and none of sarcoidosis subjects has pulmonary 
hypertension.

https://doi.org/10.1038/s41598-019-56174-8


5Scientific RepoRtS |         (2019) 9:19584  | https://doi.org/10.1038/s41598-019-56174-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

plasma samples of the veterans with sarcoidosis compared to the civilian cohort. Unpaired t-test, a univariate 
approach, showed 18 elements that were significantly different (p < 0.05) between the two sarcoidosis groups, 
including 10 elements with significant FDR (<0.05) (Table S7). It has been shown that other elements such as iron 
(56Fe) and manganese (55Mn) were significantly increased in the plasma of veteran sarcoidosis compared to civil-
ian cohort. Permutation test confirmed the validation of R2 and Q2 values of each predictive model (OPLS-DA) 
using 200 repetitions.

Metallomics profiles were significantly different between subjects with sarcoidosis and COPD.  
OPLS-DA analyses showed closer metallomics profiles between the two veteran groups compared to the civilian 
cohort. Utilizing the 33 elements, OPLS-DA analysis was highly predictive (Q2Y = 0.81) in separating civilian 
sarcoidosis subjects from veterans with COPD, while it was a less predictive discriminant model (Q2Y = 0.53) in 
separating veteran sarcoidosis subjects from veterans with COPD, using 29 elements (Fig. S15A,B). Additionally, 
individual t-tests provided more elements that were significantly (p < 0.05) changed when comparing civilian sub-
jects with sarcoidosis versus veterans with COPD compared to veterans with sarcoidosis versus veterans with COPD 
(Tables S8 and S9). Overall, our metallomics results were remarkably similar to our metabolomics studies, likely 
reflecting different pathophysiological mechanisms of sarcoidosis in veterans compared to civilians.

Correlation of metabolomic and metallomic profiles and sarcoidosis cohort status and clinical 
composite physiological index (CPI). PLS-regression showed a strong relationship between predictive 
metabolomics profiles in distinguishing the veteran and civilian cohorts with sarcoidosis. R2 values were 0.95 
and 0.91 for the HILIC-MS and the 1H-NMR metabolomic data, respectively (Fig. S16). The relation was weak 

Figure 1. Shows OPLS-DA generated from 1H-NMR (A) and HILIC-MS (B) data, demonstrating a significant 
difference between the veteran and civilian subjects with pulmonary sarcoidosis with a higher predictive power 
for HILIC-MS (Q2Y = 0.607, p = 2.8 × 10−7) than 1H-NMR spectroscopy (Q2Y = 0.454, p = 9.9 × 10−5).

OPLS-DA model R2Y Q2Y P value Sensitivity Specificity AUROC #Metabolites/elements*

NMR

Civilian vs. Veteran 0.719 0.454 9.91e−005 100 100 1.0 41

Civilian vs. COPD 0.898 0.713 4.62e−014 100 98 1.0 55

Veteran vs. COPD 0.576 0.408 0.00012 86 76 0.90 13

LC-MS

Civilian vs. Veteran 0.776 0.607 2.86e−007 100 100 1.0 41

Civilian vs. COPD 0.845 0.797 9.94e−20 100 100 1.0 26

Veteran vs. COPD 0.663 0.46 0.0001 95 100 0.98 29

ICP-MS

Civilian vs. Veteran 0.654 0.555 2.97e−005 91 90 0.95 17*
Civilian vs. COPD 0.918 0.838 2.89e−019 95 95 0.97 57*
Veteran vs. COPD 0.639 0.458 0.0002 86 84 0.91 29*

Table 2. Summary of all OPLS-DA analyses (discriminative models) for H-NMR spectroscopy, LC-MS and 
ICP-MS analyses. NMR: Nuclear magnetic resonance, LC-MS: Liquid chromatography–mass spectrometry, 
ICP-MS: Inductively coupled plasma mass spectrometry, R2Y: It is used to evaluate the model with showing 
the percentage of all NMR, LC-MS, and ICP-MS response variables explained by the model. Q2Y: It is used to 
evaluate the model with showing the percentage of all observation predicted by the model. AUROC: The Area 
Under the curve of the Receiver Operating Characteristic. *: Shows elements.
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between metabolomics profiles and CPI as an independent variable (R2 = 0.55 for HILIC-MS and R2 = 0.77 for 
1H-NMR). R2 values for the regression were obtained using the PLSR method based on the most important 
metabolites obtained by the OPLS-DA analysis. Moreover, logistic regression showed that CPI is not a good pre-
dictive marker to discriminate between the two sarcoidosis cohorts (Table 1).

A similar PLS-regression analysis on metallomics profiles demonstrated a weaker correlation (R2 = 0.80) than 
metabolomics in discriminating between the sarcoidosis cohorts (Fig. S17). There was not a strong relationship 
between metallomics data in discriminating sarcoidosis from COPD.

Relation of Metabolomics profiles and radiologic sarcoidosis stage. Subjects with stage 4 sarcoidosis  
different from other stages in their metabolomics profile (HILIC-MS data) with a high degree of predictability 
and a statistic significant difference (Q2Y = 0.522, p = 0.00019) (Fig. 5). Twenty-nine metabolites contributed in 
the differentiation of the radiologic sarcoidosis stages. Coefficient plots that illustrate the relative correlation of 
metabolites characteristic of sarcoidosis stage 4 vs. stages 1–3 is shown in Fig. S18. Univariate analysis showed 
only 7 metabolites that significantly (p < 0.05) differed between stages 1–3 and stage 4, which were already noted 
in the multivariate analysis (Table S10).

Integration of 1H-NMR and HILIC-MS datasets. The 1H-NMR and HILIC-MS metabolomics data-
sets were further integrated using a normalized and block scaled method. Although there were several over-
lapped metabolites, both methods used different approaches for metabolite identification. The OPLS-DA model 
obtained, showed a slight improvement in separating the two sarcoidosis cohorts (Q2Y = 0.626) based on the 
72 metabolites compared to the HILIC-MS dataset alone. Similar results were obtained for the discrimination 
between veterans with sarcoidosis and COPD, with a Q2Y = 0.693 and Q2Y = 0.843, respectively. Therefore, the 
combination of the two datasets further illustrates the metabolomic similarity of the two veteran cohorts when 
compared with the civilian sarcoidosis group.

Figure 2. Shows 6 metabolites differentially expressed (p < 0.05), with significant FDR (p < 0.05) between the 
veteran and civilian sarcoidosis cohorts using the 1H-NMR dataset.
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Pathway analysis. We applied parallel pathways analysis by MetaboAnalyst 3.0 and Cytoscape 3.6.0 using 
most differentiating metabolites obtained by the HILIC-MS and 1H-NMR platforms. Table 3 summarizes the 
details of the significant (p < 0.05) biochemical pathways with impact factor >1.0 after integration of both 
datasets. Using Cytoscape, the most important upregulated and downregulated biochemical pathways between 

Figure 3. Shows 24 metabolites differentially expressed (p < 0.05), with significant FDR (p < 0.05) between the 
veteran and civilian sarcoidosis cohorts using the HILIC-MS dataset.

Figure 4. Shows 33 elements differentially detected (p < 0.05), with significant FDR (p < 0.05) between the 
veteran and civilian sarcoidosis cohorts using the ICP-MS dataset.
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sarcoidosis cohorts was graphically illustrated. We found that pathways involved in the transport of inorganic 
cations/anions and amino acids/oligopeptides, creatine metabolism, amino acid synthesis, and interconversion 
(transamination), amino acid transport across the plasma membrane, transport of glycerol from adipocytes to 
the liver by aquaporins, glycerophospholipid catabolism, and GABA biosynthesis, metabolism, and catabolism 
could be the most relevant biological networks that differ between veterans and civilians with sarcoidosis. A more 
detailed pathway analysis for both individual 1H-NMR and HILIC-MS datasets is shown in the supplementary 
section. (Tables S12 and S13).

Figure 5. Shows OPLS-DA results from 29 metabolites that differentially expressed (p < 0.05), with significant 
FDR (p < 0.05) between the stage 4 and stages 1, 2, and 3 pulmonary sarcoidosis among both veteran or civilian 
population using the HILIC-MS dataset.

Biochemical Pathway Total Expected Hits Raw p FDR Impact

1 Alanine, aspartate and glutamate metabolism 24 0.57831 8 3.78e-08 1.01e-06 0.54606

2 Taurine and hypotaurine metabolism 20 0.48193 4 0.001103 0.012609 0.51439

3 Arginine and proline metabolism 77 1.8554 9 6.56e-05 0.001311 0.50307

4 Glycine, serine and threonine metabolism 48 1.1566 6 0.000843 0.011242 0.30843

5 beta-Alanine metabolism 28 0.6747 3 0.028381 0.13356 0.28022

6 Glycerolipid metabolism 32 0.77108 3 0.040164 0.17851 0.23544

7 Histidine metabolism 44 1.0602 4 0.020117 0.11495 0.19034

8 Glycerophospholipid metabolism 39 0.93976 4 0.013324 0.089586 0.17075

9 Glyoxylate and dicarboxylate metabolism 50 1.2048 2 0.34069 0.82592 0.14685

10 Methane metabolism 34 0.81928 3 0.046852 0.19727 0.14633

11 D-Glutamine and D-glutamate metabolism 11 0.26506 2 0.0273 0.13356 0.13904

12 Phenylalanine metabolism 45 1.0843 3 0.092443 0.32154 0.11906

13 Tryptophan metabolism 79 1.9036 1 0.85903 1 0.10853

14 Nicotinate and nicotinamide metabolism 44 1.0602 3 0.087726 0.319 0.10565

Table 3. Pathway analysis based on selected differential metabolites after integration of both NMR and LC-MS 
metabolomics datasets. FDR: False discovery rate.
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Discussion
This study shows that veterans with sarcoidosis have distinct metabolomic and metallomic profiles when com-
pared to civilians with sarcoidosis. Since these populations have different environmental and occupational expo-
sures, our findings agree with the notion that sarcoidosis is an abnormal inflammatory condition in response to 
many (still unidentified) triggers that may have their own particular pathophysiologic signature. Not surprisingly, 
the metabolic profiles among the two veteran cohorts studied (sarcoidosis and COPD) showed more similarity 
between them compared to civilians with sarcoidosis.

A number of reviews and research studies have addressed the impact of “exposomes” in altering metabolomics 
signatures and the role of metabolomics in characterizing particular environmental factors28–31, but to the best 
of our knowledge, no study has experimentally demonstrated this relation clearly when related to environmental 
exposure and sarcoidosis. The application of metabolomics in studying sarcoidosis has been reported previously. 
Lactate, acetate and N-butyrate is increased in saliva and 3-hydroxybutyrate, acetoacetate, carnitine, cystine, 
homocysteine, pyruvate, and trimethylamine N-oxide are some metabolites increased in the serum samples of 
patients with sarcoidosis compared to normal controls, while serum methanol, butyrate in saliva and isoleucine, 
glutamine and succinate are decreased32,33. We previously showed LC-MS-based metabolomics could differentiate 
fibrosing from non-fibrosing pulmonary sarcoidosis as well as differentiate subjects with composite phycological 
index (CPI) > 40 versus those that had CPI < 4034.

In this study we used metabolomics as a tool to characterize the exposome and investigate the molecular finger-
prints and key cellular processes that are likely activated by exposure to the environment. The differences in metabo-
lite alterations were readily detectable by both 1H-NMR and HILIC-MS detection methods, but most notably by the 
latter. Veterans with sarcoidosis have unique exposures and this may dictate the development of a particular type of 
sarcoidosis. For example, Gulf War Illness (GWI) is a syndrome described in deployed military to the Persian Gulf 
region exposed to particular environmental threats such as dust storms35. It is a multisystem disease diagnosed based 
on the Kansas criteria (presence of 3 or more of following chronic symptoms: fatigue, sleep problems, pain syndrome, 
neurologic and cognitive symptoms, gastrointestinal, respiratory and skin symptoms)35. Targeted metabolomics stud-
ies have shown GWI is a unique metabolic syndrome that is characterized with increased sphingolipids and phos-
phatidylcholines and decreased purines and endocannabinoids36, a specific metabolic fingerprint different to other 
conditions with similar symptomatology such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)36.  
Furthermore, the lipid profile of GWI can be replicated in rat and mouse models exposed to a nerve gas antidote, 
pyridostigmine bromide37,38. On the other hand, mounting evidence has indicated that environmental exposure 
such airborne inorganic dust could be risk factors for sarcoidosis39 and that the nature of the exposure can impact the 
frequency and clinical phenotypes of the disease40. In mouse models, exposure to silica dust leads to metabolomic 
alterations after lung inflammation41. Similarly, we present here significant differences in metabolomic profiles in 2 
sarcoidosis populations with different exposures.

One of the significant metabolomic changes observed was in amino acids. Compared to civilians, veterans 
with sarcoidosis exhibited lower concentration in most amino acids analyzed molecules important in the induc-
tion of anti-inflammatory mechanisms and reducing stress response in inflammation42,43. Amino acids such as 
glutamine, phenylalanine, tryptophan, arginine and cysteine play a vital role in immunomodulation, particularly 
through the T-cell proliferation and activation44. Veterans also exhibited an increased concentration in some 
anti-inflammatory biomarkers such as taurine, hypoxanthine, glucosamine, reflecting a high degree of interac-
tions between both anti-inflammatory and pro-inflammation mechanisms.

Exposure to metallic environmental factors, including occupational and infectious causes, have been asso-
ciated with sarcoidosis45,46. For example, exposure to beryllium, aluminum, rare earth elements, and titanium 
have been associated with sarcoidosis in mine, manufacturer, and agriculture workers46–49. We found significantly 
higher in the plasma concentration of rubidium, gallium, nickel, and cesium in the plasma of veterans compared 
to civilians with sarcoidosis. Veterans deployed to the Middle East have particular exposures to heavy metal and 
trace elements. For example, Pb, Zn, Cd, Ni, and Cr contamination of seawater, food, and soils due to the Gulf 
War and oil spills have been reported50,51. Military operations by themselves have added another potential source 
of contamination of water and soil in the gulf, During the two Gulf Wars in the 1990s, millions of hectares were 
contaminated due to spilling of millions of oil barrels and burning of hundreds of oil wells and is estimated that 
340 tons of uranium was depleted in the first Gulf War52. Accordingly, we have shown that the plasma level of 
uranium in veterans with sarcoidosis is higher than was observed in the civilian cohort. Furthermore, nickel con-
tamination from different sources such as batteries can have effect on lung and antioxidant system in the form of 
water-soluble nickel phosphate53. Nickel was also higher in the veteran sarcoidosis group.

The lung is the first line of exposure that is exposed to essential or non-essential/toxic elements and potentially 
toxic metal-related nanomaterials. Nanoparticles generated from dust storms or gun powders may deposit in 
the lungs and direct activated alveolar macrophages toward the pulmonary interstitium causing a more severe 
immune response than larger particles54. Metalloids become localized and interact with pulmonary cells and 
tissues or are dispersed all over the body by passing biological barriers55. Metal ions have significant biological 
effects in different metabolic pathways56,57. For example, radioactive Cesium 137 (137Cs) has been associated with 
reduced lung function in children in the Chernobyl disaster58.

Dust storms in deployment areas represent an additional exposure hazard due to their high contents of silica, 
aluminum, and rare earth elements59,60. The association of silica exposure and development of sarcoidosis was 
studied by Rafnsson et al.61, who found that people who were exposed to dust had up to a 5 times higher risk 
of development of pulmonary sarcoidosis when compared to a normal population (9.3 vs. 0.5–2.7 in 100,000, 
respectively). Dust storms also contain particles such as, calcium oxide (CaO) and magnesium oxide (MgO), and 
oxides of sodium and potassium (Na2O and K2O) as well as silicon dioxide (SiO2), aluminum oxide (Al2O3), iron 
(Fe2O3) and titanium (TiO2) oxides and trace elements such as, zirconium (Zr), strontium (Sr), rubidium (Rb)62. 
Our data showed that Mg, Ca, Al, Ti, and Fe is increased in veterans with sarcoidosis compared to the civilian 
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sarcoidosis population. Investigations on dust in the Iraq desert revealed that the quartz particle is surrounded 
by calcium carbonate containing various elements such as aluminum, iron, uranium, nickel, cobalt, copper, lead, 
chromium, strontium, tin, manganese, zinc, barium, arsenic, and vanadium63. Accordingly, we observed an 
increase in most of the aforementioned elements in the plasma samples of veteran sarcoidosis. Of note, cadmium, 
known to be involved in the pathogenesis of pulmonary carcinogenesis64, was not higher among the veterans 
studied.

We also noted that veterans with sarcoidosis have higher concentrations of elements that regulate biologic 
processes in immune cells. For instance, lanthanum (a rare earth element) can compete with calcium in different 
proteins65,66. This substitution can alter the function of annexin A11 (ANXA11), an intracellular metalloprotein 
that carries 5 calcium ions. It has been proposed that alteration of ANXA11 is associated with pulmonary fibrosis 
in sarcoidosis67. In this way, sarcoidosis in veterans may be considered an occupational disease.

Another interesting finding noted in veterans with sarcoidosis was with pathway analysis, which showed that 
GABA synthesis and metabolism might be downregulated in veterans compared to civilian with sarcoidosis, with 
both precursor metabolites of GABA (glutamate or glutamine) and breakdown metabolites of GABA (succinate 
semialdehyde) were decrease in veterans. GABA can modulate the immune response via secretion of cytokines, 
activation, proliferation and migration of immune cells68.

The current study has two major limitations. A relatively low sample size in our study may lead to a lack of 
precision and the results have not been validated in an external validation cohort. To partially overcome the lim-
itations, we applied 3 different methods to validate the findings with higher resolution. The very similar results 
obtained using three different techniques, 1H-NMR, HILIC-MS and ICP-MS, serves as an important internal 
validation of our results.

Using metabolomics and metallomics, this study provides relevant evidence for the role of potential environ-
mental risk factors for different molecular phenotypic responses of sarcoidosis. More investigation will be needed 
to identify biochemical pathways that link between environmental risk factors and a disease phenotype as well as 
metal-related metabolomics perturbations in human diseases. We conclude then that this comprehensive metab-
olite and metallomic profiling clearly shows distinct metabolomic profiles between two sarcoidosis populations 
exposed to different environmental factors. Metabolic fingerprints can be a powerful and useful tool for sarcoido-
sis phenotyping in a more accurate manner than the current clinical approach. Furthermore, characterization of 
metabolic profiles is a promising platform to better understand the underlying pathophysiological mechanisms, 
establish the importance of environmental exposures and determine disease severity, prognosis, and response to 
treatment.
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