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Assessment of Aggregation 
Frameworks for Composite 
Indicators in Measuring Flood 
Vulnerability to Climate Change
Hyun Il Choi   

The IPCC Third Assessment Report presents a conceptual framework for vulnerability to climate change 
with the three attribute components of exposure, sensitivity, and coping. Since the vulnerability 
assessments have been conducted mainly by the composite indicators aggregated from the IPCC’s 
components, it is necessary to assess aggregation frameworks for constructing the composite 
indicators that have an influence on vulnerability assessment outcomes. This study therefore 
investigates the robustness of assessment outcomes for flood vulnerability to climate change through 
a comparative analysis of the six vulnerability indicators aggregated from the IPCC’s components by 
the conventional aggregation frameworks. The comparative analysis has been illustrated through both 
the possible combinations of reference values for vulnerability attribute components and a case study 
on the flood vulnerability assessment to climate change for coastal areas in the Republic of Korea. The 
study demonstrates that there can be large fluctuations and reversals in ranking orders across the six 
vulnerability outcomes by different aggregation frameworks. It concludes that for flood vulnerability 
assessment to climate change in coastal areas, the vulnerability indicator needs to be aggregated by 
a multiplicative utility function from all the three assessment components with positive elasticity to 
vulnerability.

Climate change is one of the greatest environmental threats, already having visible impacts on all countries world-
wide; thus, vulnerability assessment to climate change has become one of the most important tools for providing 
fundamental information on mitigation and adaptation measures concerning climate variability, changes, and 
impacts1. One of the most outstanding definitions and frameworks for vulnerability assessment to climate change 
is discussed in the Intergovernmental Panel on Climate Change Third Assessment Report (IPCC TAR)1, which 
states that the vulnerability assessment components are exposure, sensitivity (also fragility or susceptibility), and 
coping (also response capacity, adaptive capacity, or resilience). This has also been described in some selected 
literature, including the IPCC Fourth and Fifth Assessment Reports2–5. As climate change has a large impact on 
many sectors important to society and the environment, this conceptual framework for vulnerability to climate 
change has been used in various vulnerability assessments for the purpose of targeting multi-dimensional issues 
in a wide range of fields6. In particular, many coastal areas have already experienced severe weather conditions, 
such as strong winds, heavy rains, and huge storm surges, due to climate change, causing devastating flooding 
in low-lying areas of coastal regions1,4,5. Hence, it is necessary to develop flood damage mitigation strategies in 
coastal regions through an appropriate assessment of flood vulnerability that indicates a degree of potential dam-
age at flood risk.

Vulnerability to climate change has been evaluated mainly with a composite indicator compiled from mul-
tiple assessment components by one of the various aggregation frameworks and methods7. A single composite 
indicator is usually compiled from individual component indicators to measure the multidimensional concept8, 
as multiple-criteria decision making or analysis is required to evaluate multidimensional issues and multiple 
conflicting criteria in decision making9. Hence, multi-attribute utility functions are most commonly and power-
fully used to combine assessment attribute components into a composite indicator for the overall performance 
information that can provide ranked alternatives for deterministic policy and decision problems7,8. The general 
procedure for constructing a composite indicator for policy and decision making is as follows:7 1) a theoretical 
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framework is established to select and classify appropriate assessment components that fulfill the purpose of 
generating a meaningful composite indicator; 2) proxy variables relevant to individual components are selected 
and identified by multivariate analysis in the context of availability, measurability, representatives, soundness, 
and mutual independence; 3) a selected normalization method transforms variables measured at different units 
or scales into a common domain to affect the analysis in an equal scale; 4) reasonable weightings are estimated 
and assigned for the importance of the associated variable based on correlations between variables and the phe-
nomena; 5) a multi-attribute utility function is employed to aggregate individual attribute components into a 
composite indicator to measure overall performance; and 6) sensitivity and robustness analysis is conducted to 
prevent the derived composite indicator from providing false or misleading information.

Since there is no prominent scheme or standard method for constructing the vulnerability composite indi-
cator from individual attribute components, vulnerability to many aspects of natural and social sciences and 
humanities has been estimated somewhat discretionally by simply selecting one of several aggregation frame-
works and methods. Many vulnerability assessment studies have presented various vulnerability composite indi-
cators generated from the constituent components by either additive utility functions or multiplicative utility 
forms conventionally and in general7. Some of the previous studies addressed multiple frameworks for construct-
ing vulnerability composite indicators10,11, but it is deemed acceptable in most studies that a single aggregation 
method is simply selected without considering the purpose and characteristics of each vulnerability assessment. 
Although there is limited comparison of the vulnerability outcomes from different aggregation methods by using 
only the correlation coefficients between them10,11, the robustness and sensitivity of vulnerability scores with 
varied types of frameworks and utility functions have not been explicitly explored.

The aim of this study is to evaluate various kinds of composite indicator products for assessing vulnerability 
to climate change. It uses different conventional aggregation frameworks to better understand the importance 
of composite indicators used in decision making for selecting alternatives or a preferred solution. Therefore, for 
evaluating the various composite indicators, this study investigates how frameworks of assessment components 
and multi-attribute utility forms for combining them affect the vulnerability composite indicator outcomes to 
estimate the overall performance. This study considers that all the attribute components are normalized into a 
commensurate scale from 1 to 100, indicating the least to most preferred, and weighted equally to individual com-
ponents in order to avoid any other effects of normalization and weightings on composite indicator outcomes. 
It is feasible to assign equal weights to all assessment indicators in the absence of information or consensus for 
different weights7. The comparative analysis has focused on the vulnerability ranking fluctuations across the six 
composite indicators by the conventional aggregation frameworks to facilitate the understanding of the interac-
tion among the constituent components and assessment outcomes with respect to various multi-attribute utility 
forms. The analysis is illustrated by tackling the possible reference cases for combinations of the vulnerability 
attribute components and by a case study based on actual observations and data in multidimensional situations 
for the coastal flood vulnerability assessment to climate change in the Republic of Korea.

Conventional Frameworks of Vulnerability Indicators
When individual attribute indicators cannot satisfactorily represent the multidimensional concept, they are com-
piled into a composite indicator that can measure the complex phenomenon8. It is obvious that the aggregation 
frameworks and multi-attribute utility functions for individual assessment components can directly affect com-
posite indicator outcomes, although it is also important to appropriately utilize other factors such as proxy varia-
bles, normalization methods, weighting methods, etc. Given that weighted and normalized individual attributes 
are under mutually independent conditions, they can be in general and conventional combined into a composite 
indicator by either the linear additive utility function7 as:
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=
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or the nonlinear multiplicative utility function7 as:
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where the composite indicator CA or CM is additively or multiplicatively aggregated from individual weights αi 
or βi, respectively, and component indicator scores χi of attribute i in a common scale for component numbers n.

After the attempted vulnerability assessment using an overall outcome from a general function that inte-
grates the IPCC’s three components independently as representatively suggested by Adger2, many vulnerability 
indicators have been aggregated from the IPCC’s three components by the conventional utility functions. The 
vulnerability indicator to climate change can be expressed in Eq. (3) by an additive aggregation form as presented 
in select previous studies12–14:

α α α= + −VA E S C (3)1 1 2 3

and the vulnerability indicator to climate change can be expressed in Eq. (4) by a multiplicative aggregation form 
as presented in select previous studies15–17:
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where E, S, and C are the three vulnerability assessment components of exposure, sensitivity, and coping, respec-
tively. VA1 and VM1 are vulnerability composite indicators by additive and multiplicative forms, respectively. The 
equal weighting factors can usually be assumed for each component as used in some previous studies12–17. Note 
that in the functional relationship between attribute components and the vulnerability indicator, higher coping 
measures contributing to less vulnerable situations can decrease the overall vulnerability value, while higher 
scores of exposure and sensitivity contribute to the increasing composite indicator3. Thus, the coping score with 
a negative elasticity is employed as a subtrahend in Eq. (3) and a divisor in Eq. (4).

Given that lack of coping LC with a positive elasticity to vulnerability is substituted opposite to coping C, 
Eq. (3) can be rewritten by following some selected previous studies18–20 as:

α α α= + +VA E S LC (5)2 1 2 3

and Eq. (4) can be rewritten by following the selected previous studies21–23 as:

= × ×β β βVM E S LC (6)2
1 2 3

Note that the lack of coping score corresponds to the reversal value of the coping attribute22. The equal weight-
ing method can usually be employed as used in the selected previous studies18–23.

Besides the above frameworks for aggregating the IPCC’s three components individually, the vulnerability 
assessments have been also conducted by several modified frameworks that use various combinations of two of 
the IPCC’s three components. Based on the basic concept addressed in the IPCC TAR1, Metzger et al.24 proposed 
another framework that uses the potential impact component by combining the exposure and sensitivity compo-
nents. For assessing the relative vulnerability of communities to climate change impacts, Hahn et al.25 developed 
a framework for the livelihood vulnerability index, where a function of the exposure and coping components is 
combined with the sensitivity component. In the MOVE (Method for the Improvement of Vulnerability in Europe)  
framework, the average of the sensitivity and coping components is combined with the exposure component as 
in Depietri et al.26 On behalf of the three modified frameworks where the two components are combined to be 
compiled with the other component, the framework using the potential impact PI as a composite component of 
exposure and sensitivity is selected for one of the conventional frameworks for the vulnerability indicator. Thus, 
Eq. (5) can be modified according to some previous studies27–29 as follows:

α α= +VA PI LC (7)3 4 5

where PI = α6E + α7S, and Eq. (6) can be modified by following the selected previous studies30–32 as:

= ×β βVM PI LC (8)3
4 5

where PI = Eβ6 × Sβ7. When the equal weighting method was used in some previous studies27,30–32, lack of coping 
was more weighted than the other two components. Given the equal weights of 1/2, the vulnerability composite 
indicators VA3 and VM3 are aggregated from lack of coping weighted by 1/2 and exposure and sensitivity with 1/4 
weight for each. Note that Eqs. (7) and (8) are representative variants of additive and multiplicative aggregations 
for the IPCC’s three components, but some of the variants, not to be covered here, may employ a mixed aggrega-
tion scheme of additive and multiplicative forms, such as the MOVE framework.

As summarized in Table 1, the vulnerability to climate change has usually been estimated using one of the six 
measures from VA1, VA2, and VA3 by additive aggregations, and VM1, VM2, and VM3 by multiplicative aggre-
gations. Therefore, the influence of the six multi-attribute utility forms required for a composite indicator on 
measuring vulnerability is comprehensively examined as follows.

utility function types
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Table 1.  Summary of the conventional aggregation frameworks in general forms and equal-weighed forms for 
vulnerability composite indicators compiled from the IPCC’s assessment components, exposure E, sensitivity S, 
and lack of coping LC (or coping C).
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Comparative analysis of vulnerability indicators.  To investigate the performance of vulnerability indi-
cators aggregated from the three components of exposure, sensitivity, and lack of coping (or coping) by the six 
multi-attribute utility functions in Eqs. (3) through (8), after assigning equal weights to all component indicators, 
the three normalized values of 100.0, 50.5, and 1.0 are chosen for representing high (H), middle (M), and low 
(L) level scores for each constituent component. Note that 1.0 is taken to represent the low-level score to avoid 
dividing by zero for coping in Eq. (4). As shown in Table 2, a total of eighteen possible combinations of the three 
components are implemented for the variation of vulnerability composite indicators. There can exist the six com-
binations of exposure and sensitivity levels without order of two, H-H, H-M (or M-H), H-L (or L-H), M-M, M-L 
(or L-M), L-L with respect to the three levels, H, M, and L for lack of coping (or L, M, and H for coping). For 
example, case (1) comprises three score levels of H-H-H(L) for E||S, S||E, and LC(C) (where “||” denotes “OR”).

In Table 2, the eighteen reference cases are arranged from the highest in case (1) to the lowest in case (18) by 
scoring patterns of the three components. Figures 1 and 2 present the comparisons of vulnerability values (in lines)  
and ranking orders (in bars) across different aggregation forms, such as the two addictive forms (VA1 and VA2) 
and the two multiplicative forms (VM1 and VM2) in Fig. 1, and across different aggregation components such 
as the three components (VA2 and VM2) and the two components (VA3 and VM3) in Fig. 2. Note that in order 
to approximately present the vulnerability changes between the two discrete reference cases, the vulnerability  
values for each of the two adjacent cases are linearly connected by lines in Figs. 1 and 2.

Table 2 and Fig. 1 denote the variations of normalized vulnerability indicator, VA1 and VA2, by additive aggre-
gations in Eqs. (3) and (5), along with VM1 and VM2, by multiplicative aggregations in Eqs. (4) and (6) with 
respect to the eighteen combinations of the three score levels (H, M, or L) for the three components, exposure E, 
sensitivity S, and lack of coping LC (or coping C). Figure 1 also shows the vulnerability raking orders based on the 
four kinds of composite indicators, VA1, VA2, VM1, and VM2, from the three constituent components. As shown 
in Fig. 1, the ranking from VA1 and VA2 values aggregated by the two additive multi-attribute utility functions 
is completely coincident between the two results. Note that the outcome values of VA1 and VA2 can differ (see 
Table 2 and Fig. 1) in compiling either the coping component for subtrahend or the lack of coping component 
for adder into the composite indicators by additive multi-attribute utility forms, but the magnitude orders are the 
same for both indicator outcomes.

Comparing the two multiplicative composite indicators VM1 and VM2, some reference cases of the three 
attribute components show inconsistent outcomes in VM1, which incorporated the coping component as a divi-
sor. The composite indicator outcomes are expected to be identical for the reference cases that comprise the three 
components of the same score levels in different orders, such as cases (3) and (2) with H-H-M(M) and H-M-H(L), 
cases (9) and (10) with H-L-M(M) and M-L-H(L), cases (13) and (12) with M-L-M(M) and M-M-L(H), and cases 
(17) and (16) with L-L-M(M) and M-L-L(H), respectively. However, the vulnerability outcome of each of the for-
mer cases is much lower than that of the latter (i.e. cases (3) < (2), (9) < (10), (13) < (12), and (17) < (16)) as pre-
sented in Table 2 and Fig. 1. The vulnerability in reference cases (3), (9), (13), and (17) would be underestimated 
in VM1 as a result of a multiplicative aggregation function using a divisor component of coping in Eq. (4). On the 
other hand, the multiplicative form for VM1 produces much higher vulnerability in case (5), with M-M-H(L), 

reference 
cases

score levels normalized scores vulnerability valuesa

E||S S||E LC(C) E||S S||E LC(C) VA1 VA2 VA3 VM1 VM2 VM3

(1) H H H(L) 100.0 100.0 100.0(1.0) 100.0 100.0 100.0 100.0 100.0 100.0

(2) H M H(L) 100.0 50.5 100.0(1.0) 75.1 83.5 87.6 79.6 79.6 84.3

(3) H H M(M) 100.0 100.0 50.5(50.5) 75.1 83.5 75.3 27.1 79.6 71.1

(4) H M M(M) 100.0 50.5 50.5(50.5) 50.3 67.0 62.9 21.5 63.4 59.9

(5) M M H(L) 50.5 50.5 100.0(1.0) 50.3 67.0 75.3 63.4 63.4 71.1

(6) M M M(M) 50.5 50.5 50.5(50.5) 25.4 50.5 50.5 17.2 50.5 50.5

(7) H H L(H) 100.0 100.0 1.0(100.0) 50.3 67.0 50.5 21.5 21.5 10.0

(8) H L H(L) 100.0 1.0 100.0(1.0) 50.3 67.0 75.3 21.5 21.5 31.6

(9) H L M(M) 100.0 1.0 50.5(50.5) 25.4 50.5 50.5 5.8 17.2 22.5

(10) M L H(L) 50.5 1.0 100.0(1.0) 25.4 50.5 62.9 17.2 17.2 26.7

(11) H M L(H) 100.0 50.5 1.0(100.0) 25.4 50.5 38.1 17.2 17.2 8.4

(12) M M L(H) 50.5 50.5 1.0(100.0) 0.5 34.0 25.8 13.7 13.7 7.1

(13) M L M(M) 50.5 1.0 50.5(50.5) 0.5 34.0 38.1 4.6 13.7 18.9

(14) L L H(L) 1.0 1.0 100.0(1.0) 0.5 34.0 50.5 4.6 4.6 10.0

(15) H L L(H) 100.0 1.0 1.0(100.0) 0.5 34.0 25.8 4.6 4.6 3.2

(16) M L L(H) 50.5 1.0 1.0(100.0) −24.4 17.5 13.4 3.7 3.7 2.7

(17) L L M(M) 1.0 1.0 50.5(50.5) −24.4 17.5 25.8 1.3 3.7 7.1

(18) L L L(H) 1.0 1.0 1.0(100.0) −49.2 1.0 1.0 1.0 1.0 1.0

Table 2.  The comparison of vulnerability composite indicators VA1, VA2, and VA3 by additive aggregations in 
Eqs. (3), (5), and (7), along with VM1, VM2, and VM3 by multiplicative aggregations in Eqs. (4), (6), and (8) 
with respect to the eighteen reference combination cases of the three score levels high H, middle M, and low L 
for the three normalized attribute components, exposure E, sensitivity S, and lack of coping LC (or coping C). 
anormalized values divided by each maximum and multiplying 100.0.
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than case (4), with H-M-M(M) (an equivalent combination to the case (5)) and case (3), with H-H-M(M) (a 
higher level combination than the case (5)). This is due to the fact that the multiplicative composite indicator VM1 
would generate the overestimated outcomes in such combinations as in case (5), including a low denominator 
of coping without any comparable low numerators of exposure or sensitivity that cannot cancel out each other. 
Abnormally large outcomes could lead to ranking reversals in vulnerability assessments measured by VM1. Such 
large vulnerability outcomes are also generated in cases (1) and (2), but ranking reversals might not occur since 
these cases have higher score levels than other reference cases. Note that as shown in Table 2 and Fig. 1, other 
composite indicators, such as VA1, VA2, and VM2 produce the same vulnerability outcomes between each of the 
two cases in the above five sets of reference cases, such as cases (2) & (3), (4) & (5), (9) & (10), (12) & (13), and 
(16) & (17), while there is a difference between each of the two cases in VM1 outcomes only. Consequently, the 
vulnerability outcomes VM1 aggregated from the IPCC’s components E, S, and C by the well-known form of a 
multi-attribute utility function in Eq. (4) might cause volatility of rankings and rank reversals in decision making.

As denoted in Table 2 and Fig. 1 for comparison of the additive and the multiplicative aggregation functions, 
the multiplicative composite indicator VM2 (where excluding VM1 with some anomalies) generates higher vul-
nerability scores in case (12) with M-M-L(H) and case (13) with M-L-M(M) than cases (14) with L-L-H(L) and 
(15) with H-L-L(H). These four reference cases all have the same vulnerability scores in the additive composite 
indicators VA1 and VA2. Case (6) with M-M-M(M) is higher than case (7) with H-H-L(H) in the multiplicative 
outcomes by VM2, but case (6) is less than case (7) in the additive outcomes by VA1 and VA2. Thus, the outcomes 
of the additive composite indicators could be compensated with a higher score in any of the three components, 
while a lower score in any of the three components could drastically reduce the outcomes of multiplicative com-
posite indicators. This is due to the fact that the additive aggregation functions show the higher compensability 
in that the composite indicators from deficient components can be compensated for by surplus scores of other 
components, which can hardly compensate for low components in the multiplicative aggregation functions.

Table 2 and Fig. 2 denote the comparison of the vulnerability indicator scores VA2 and VM2 aggregated from 
the three components, exposure, sensitivity, and lack of coping, with VA3 and VM3 aggregated from the two 
components, potential impact (combined from exposure and sensitivity) and lack of coping. The framework 
comprising the two components with more weighted lack of coping can lead to different vulnerability ranking 
than that of results combined when the three components are equally weighted. The vulnerability indicators 
VA3 and VM3 can be more sensitive to the lack of coping component weighted at one-half of the exposure and 

Figure 1.  Comparison of variations of vulnerability values and ranking for additive scores VA1 and 
multiplicative scores VM1 aggregated from exposure, sensitivity, and coping components along with those for 
additive scores VA2 and multiplicative scores VM2 aggregated from exposure, sensitivity, and lack of coping 
components.

Figure 2.  Comparison of variations of vulnerability values and ranking for additive scores VA2 and 
multiplicative scores VM2 aggregated from exposure, sensitivity and lack of coping components along with 
those for additive scores VA3 and multiplicative scores VM3 aggregated from potential impact and lack of coping 
components.
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sensitivity components with one-quarter weight for each, given the equal weights of 1/2 as denoted in Table 1. 
Except cases (1), (6), and (18) with the triplet score levels for the three components, almost all other reference 
cases show differences in ranking orders between VA2 and VA3 by additive aggregations and between VM2 and 
VM3 by multiplicative aggregations. As for the perspective of the lack of coping scores, the vulnerability ranking 
of VA3 and VM3 is higher in cases (5), (8), (10), and (14) with the high level scores of lack of coping, while lower 
in cases (7), (11), (12), (15), and (16) with the low level scores of lack of coping, compared with that of VA2 and 
VM2, respectively, as shown in Fig. 2.

Flood vulnerability assessments.  Flood vulnerability assessment is one of the essential tools for pro-
viding preemptive information on current flood mitigation plans, wherein severe flood damages occur more 
frequently. Flood vulnerability has been commonly evaluated with a composite indicator compiled from mul-
tiple assessment components by easily selecting one of the various aggregation schemes. Although it is natural 
that different aggregation schemes may generate different composite indicators, it is necessary to understand the 
impact of different aggregation schemes on vulnerability assessment outcomes. Therefore, a case study on flood 
vulnerability assessment to climate change is conducted by various aggregation frameworks for the three relevant 
components in the IPCC TAR1.

Study site.  As shown in Fig. 3, the study site comprises the 73 coastal administrative districts in the Republic of 
Korea for a comparative analysis of the flood vulnerability ranking orders to climate change across various com-
posite indicators by different aggregation frameworks. The study site is located between 33~43°N and 124~131°E, 
which extends southwards from continental Asia into the Pacific Ocean. The Korean peninsula is surrounded 
by the East Sea to the east, the West Sea to the west, and the Korea Strait to the south. The western and southern 
coasts are irregular with many islands, whereas the eastern coastline is relatively straight. More than half of the 
annual precipitation falls over the study site between June and September mainly due to the East Asian monsoon 
and several typhoons. There have recently been severe flood damages in coastal areas of the Republic of Korea due 
to climate change impacts, as well as geomorphological features.

Construction of flood vulnerability indicators.  The proxy variables need to be carefully selected and constructed 
based on the full context of availability, representatives, measurability, integrity, analytical soundness, relevance 
to phenomena, and relationship to each other7. However, there will be some hurdles in the selection of proxy 
variables for every study on vulnerability assessments despite the best possible efforts and intentions to avoid 
such issues. In the selection of proxy variables for this study, the main focus was on human and property damage 
by coastal flooding due to climate change. With reference to previous studies6,16,17,22,29,33,34 and data acquisition 
availability in the study site, this study carefully selected and collected the six proxy variables for the three attrib-
ute components of exposure, sensitivity, and coping in the well-known conceptual framework of vulnerability to 
climate change in the IPCC TAR1, as shown in Table 3.

Due to the lack of data on hydrological modelling for the entire study site, for the geographical range exposed 
to hazards, the exposure component comprises flood-causing climatic variations in coastal regions, such as the 
rainfall and storm surge data. Aside from heavy rainfall being the main cause of flooding, storm surge is one of 
the most dangerous perturbations causing flooding in coastal areas, since it can cause a significant rise in sea 

Figure 3.  The localization of the coastal 73 administrative districts (yellow) under study in the Republic of 
Korea.
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level. The future daily rainfall data by climate change based on the IPCC AR5 scenario are collected from the 
Korea Meteorological Administration Global Atmosphere Watch35. The storm surge height data above ground 
level are constructed from the storm surge data across a 100-year return period using a non-stationary GEV 
(generalized extreme value) distribution model36. The sensitivity component comprises the human and property 
factors likely to be damaged by hazardous floods, such as the children and elderly population, and major facilities 
and infrastructure data, which were collected from the Korean Statistical Information Service37. On behalf of 
systems for coping with hazardous floods, the medical and evacuation facilities for emergency services and the 
river improvement length for flooding countermeasures were selected in the coping component against casualty 
losses and property damage, respectively. Figure 4 shows the spatial distribution of the six proxy variables in the 
study site. Overall, the exposure components E1 and E2 are higher in the southern and western parts, with rela-
tively severe climates in low terrains, while sensitivity components S1 and S2 are higher in the north-western and 
south-eastern parts around metropolitan areas. For the coping components, many districts show the contrary 
values with lower C1 and higher C2 in general.

For standardization of all the proxy variables in exposure, sensitivity, and coping components, this study uses 
the min-max normalization method as employed in previous studies13,14,27,29,38, which transforms all proxy varia-
bles into a common scale between 1 and 100 as follows:

= +
−

−
−u s x x

x x
s smin( )

max( ) min( )
( )

(9)i min
i i

i i
max min

where xi is the original value of the proxy variable i, ui is the standardized value of xi, max(xi) is the maximum 
value of the proxy variable i, min(xi) is the minimum value of the proxy variable i, smax is the standardized maxi-
mum value of 1, and smin is the standardized minimum value of 100.

The lack of coping component for a positive contribution to vulnerability is standardized into reversal values 
of the coping proxy variables having a negative relationship with vulnerability as used in previous studies38:

= −
−

−
−u s x x

x x
s smin( )

max( ) min( )
( )

(10)i max
i i

i i
max min

The standardized proxy variables are then compiled into each component indicator χj for exposure E, sensitivity S,  
coping C, or lack of coping LC with the weighting factor wi for the total variable number k as used in previous 
studies19,20,27–29,38:

∑χ = =
=

E S C or LC w u( , , , )
(11)j

i

k

i i
1

Finally, the flood vulnerability indicators VA1, VM1, VA2, VM2, VA3, and VM3 are derived by various aggre-
gation frameworks in Eqs. (3)–(8), respectively. Note that the weights are equally assigned to proxy variables ui 
and component indicators χi in each aggregation scheme in order to prevent unexpected effects of weightings on 
composite indicator outcomes.

Comparison of flood vulnerability indicators.  The flood vulnerability is ranked for the 73 coastal administrative 
districts in order of each vulnerability indicator VA1, VM1, VA2, VM2, VA3, and VM3, as shown in Fig. 5. The vulner-
ability ranking is ordered from higher to lower flood vulnerability outcomes. Figure 5(a,c) denote that regardless 
of the use of the coping C or the lack of coping LC component, the flood vulnerability rankings are exactly the same 
for the study site between the two composite indicator outcomes VA1 and VA2 by different additive multi-attribute 
utility functions in Eqs. (3) and (5). Although the two outcome values of VA1 and VA2 can differ in compiling 
either C or LC into the composite indicators, no ranking reversal occurs in both outcomes as shown in Table 2 and 
Fig. 1. In contrast, there are significant ranking changes between the two flood vulnerability outcomes VM1 and 
VM2 by the two multiplicative multi-attribute utility functions in Eqs. (4) and (6), as shown in Fig. 5(b) and (d).  
The differences in the vulnerability rankings between VM1 and VM2 come from different dispositions in compil-
ing C and LC, respectively. Figure 5(c,d) denote the comparison between additive and multiplicative composite 
indicators VA2 by Eq. (5) and VM2 by Eq. (6). There are ranking fluctuations between the two flood vulnerability 
ranking orders in many districts, which are mainly due to the difference of compensability between the two 
aggregation functions. Figure 5(c,e) denote the comparison of the two additive composite indicators VA2 from the 

components symbols proxy variables units

exposure
E1 future daily rainfall projections to 2100 mm/day

E2 100-year storm surge height above ground level m

sensitivity
S1 children and elderly population density people/km2

S2 major facilities and infrastructure density km2/km2

coping
C1 (or LC1) emergency facilities density number/km2

C2 (or LC2) river improvement ratio km/km

Table 3.  The selected proxy variables for the coastal flood vulnerability assessment based on the three 
vulnerability components in the IPCC TAR1.
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three components (E, S and LC) by Eq. (5) and VA3 from the two components (PI and LC) by Eq. (7). Figure 5(d,f) 
compare the two multiplicative composite indicators VM2 from the three components by Eq. (6) and VM3 from 
the two components by Eq. (8). Some districts show the apparent changes in the flood vulnerability rankings 
between VA2 and VA3, and between VM2 and VM3, respectively, since a more weighted LC component can have 
a larger influence on VA3 and VM3.

For further comparative analysis of various flood vulnerability outcomes as shown in Fig. 5, Table 4 also lists 
the ten selected administrative districts that showed significant ranking fluctuations across various flood vul-
nerability outcomes, including the normalized values of three assessment components E, S, and LC(C), and the 

Figure 4.  Spatial distribution of the six proxy variables for the flood vulnerability assessment in the Korean 
Peninsula: (a) E1; (b) E2; (c) S1; (d) S2; (e) C1 (or LC1); and (f) C2 (or LC2).
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flood vulnerability rankings by the six composite indicators VA1, VA2, VA3, VM1, VM2, and VM3. Higher flood 
vulnerability rankings are determined by the multiplicative aggregation forms VM1, VM2, and VM3, compared 
to the additive indicators VA1, VA2, and VA3, as shown in districts 2620, 2811, 3114, 4122, and 4127, where the 
value of neither E nor S is too low. On the contrary, the flood vulnerability rankings of districts 2611, 4678, 4682, 
and 4885 are mostly higher in the additive indicators VA1, VA2, and VA3 that have higher compensability by the 
highest level value for either E or S, as compared to the multiplicative outcomes by VM1, VM2, and VM3. Table 4 
also shows that there is a notable ranking difference between VM1 and VM2 in district 2611, which has the three 
component values comparable to reference case (11) in Table 2. As shown in Table 2 and Fig. 1, the VM2 produces 

Figure 5.  Comparison of the 73 administrative district ranking by the coastal flood vulnerability from various 
composite indicators: (a) VA1; (b) VM1; (c) VA2; (d) VM2; (e) VA3; and (f) VM3.
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an identical vulnerability for both reference case (11) with H-M-L(H) and reference case (9) with H-L-M(M), in 
which both combinations are equivalent to each other. However, the vulnerability of reference case (9) is much 
lower than that of reference case (11) in VM1, although the two cases have equivalent scores for the three constitu-
ent components. A similar ranking fluctuation between VM1 and VM2 occurs in district 5011, ranked as the most 
vulnerable district by VM1, where a low denominator value of the coping component C will generate abnormally 
large composite indicator outcomes, as addressed in Section 3. In some districts, the flood vulnerability rankings 
of the VA2 and VM2 aggregated from the three components E, S, and LC with the equal weights of 1/3 are differ-
ent from those of the VA3 and VM3 derived from more weighted LC by 1/2 and less weighted E and S by 1/4. As 
compared to VA2 and VM2, VA3 and VM3 showed lower flood vulnerability rankings in districts 2611, 2811, 3144, 
and 4122, with relatively low values of LC, while higher flood vulnerability outcomes were observed in districts 
4678, 4682, 4885, and 5011, with relatively high values of LC. Such ranking changes appear more prominently in 
comparing the two multiplicative indicators between VM2 and VM3, rather than in the two additive indicators 
between VA2 and VA3. The flood vulnerability outcomes are similar between VA2 and VA3 and between VM2 and 
VM3 in districts 2620 and 4127, respectively, with middle level values of LC.

Discussion
The flood vulnerability assessment is one of the key non-structural measures against flood damage by climate 
change, a more serious threat in coastal areas than in inland regions due to regional climatic and topographic 
features. Base on the IPCC’s conceptual framework comprising exposure, sensitivity, and coping components1, 
the vulnerability assessments to climate change have been conducted in various fields, such as human health, 
ecosystem, water, agriculture, fishery, etc., including floods. This study has therefore assessed the influence of 
frameworks and utility function forms for constructing a composite indicator on measuring the overall vulnera-
bility to climate change. In the framework for the three vulnerability assessment components in the IPCC TAR1, 
the exposure and sensitivity components have a positive elasticity to the vulnerability, while the vulnerability 
decreases with the increasing coping score that needs to function as a subtrahend in additive multi-attribute util-
ity forms and a divisor in multiplicative multi-attribute utility forms. Thus, lack of coping with a positive elasticity 
to the vulnerability like other two components can be used in the opposite concept to coping in the construction 
framework for composite indicators. The vulnerability ranking orders based on composite indicators VA1 and VA2 
derived by the two additive aggregation forms are completely coincident regardless of the use of coping or lack 
of coping component. The two outcome values of VA1 and VA2 will naturally differ, but the magnitude sequences 
are nevertheless unchanged in each vulnerability indicator. However, the volatility of rankings and rank reversals 
occur in some vulnerability outcomes by a multiplicative multi-attribute utility function with a denominator 
coping component, since low level coping values will generate abnormally large composite outcomes and middle 
level coping values will underestimate the vulnerability numerically. Hence, for robustness and confidence in 
obtaining the vulnerability outcomes by a multiplicative composite indicator, all the assessment components need 
to have the same directional elasticity to vulnerability. There are also obvious differences in some vulnerability 
ranking orders between the two composite indicators from additive and multiplicative aggregations. This is due 
to the fact that additive multi-attribute utility functions will generate composite indicators with higher compen-
sability of attribute components, while multiplicative multi-attribute utility forms will induce one of the low score 
components to reduce the composite indicator drastically7. In the framework for the use of potential impact as a 
composite component of exposure and sensitivity, the vulnerability indicator may provide misleading informa-
tion in assigning more weights to the coping component, although these issues can be somewhat mitigated by the 
use of proper weighting methods as presented in some literature28,29.

As shown in a case study involving the Republic of Korea, coastal regions tend to have more severe weather 
events and more barren areas undeveloped in a natural state or unimproved by forced displacement and planned 
relocation, as compared to inland regions. On the other hand, most of the densely populated and developed areas 
along the coastlines have adequately adapted or coped with flooding in the study site. In light of such circum-
stances, a multiplicative composite indicator VM2 can be suggested to be more appropriate for measuring the 

district 
codes

component indicator values flood vulnerability rankingsa

E S LC(C) VA1 VA2 VA3 VM1 VM2 VM3

2611 44.3 100 1.0(100.0) 35 35 44 18 62 72

2620 39.7 54.0 54.2(46.8) 32 32 33 17 14 15

2811 67 18.6 31.0(70.0) 45 45 52 26 21 38

3114 24 42 39.5(61.5) 54 54 58 27 20 32

4122 59.9 13.2 37.9(63.1) 48 48 55 33 26 40

4127 62.7 29.1 53.0(48.0) 36 36 37 19 16 17

4678 95 2.1 77.1(23.9) 10 10 9 39 42 34

4682 81 2.1 80.2(20.8) 20 20 16 40 46 39

4885 87.2 2.1 88.0(13.0) 9 9 8 30 41 33

5011 52.4 4.8 100.0(1.0) 24 24 11 1 30 22

Table 4.  The list of the ten selected administrative districts with significant changes in ranking orders across 
different flood vulnerability outcomes, along with the three component indicators E, S, and LC(C) and the 
flood vulnerability rankings in the six composite indicators VA1, VA2, VA3, VM1, VM2, and VM3. aRanking of 73 
coastal administrative districts by flood vulnerability outcomes.
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flood vulnerability in the coastal areas under study, given that districts where all of the assessment components 
are more vulnerable can have higher vulnerability than the ones being compensated for by any larger component. 
Table 5 reports the top ten administrative districts based on ranking orders by VM2, as compared to ranking 
orders by other five flood vulnerability indicators, along with the two selected administrative districts that show 
extreme fluctuations in ranking orders across different flood vulnerability outcomes in the study site. Although 
it might be difficult to validate the assessment outcomes of the flood vulnerability to future climate change, the 
historical flood damage data are collected from the National Disaster Information Center39 as a reference for the 
review on the flood vulnerability results in the study site. Note that for the past five years during 2013 and 2017, 
the average number of flood damage reports is 6.4 for the top ten administrative districts in Table 5, as compared 
to 5.2 for the 63 other administrative districts under study.

Table 5 also demonstrates that the vulnerability ranking results can significantly differ depending on the selec-
tion of the vulnerability indicators in this case study. As already mentioned, it is desirable to rank the coastal dis-
tricts vulnerable to flooding using the multiplicative indicators because higher vulnerability results are expected 
for the coastal areas where all the assessment components are more vulnerable. However, a multiplicative indica-
tor VM1 is problematic in that low-level coping values generate undesirable ranking changes as typically denoted 
in district 5011. The undesirable impact of this problem can also reach the unfavorable ranking alterations in 
districts 2814, 2650, 2629, 2638, 2617, and 2611. Meanwhile, the additive vulnerability indicators generate higher 
vulnerability outcomes by one of the much higher-level values in the constituent components, which results in 
the overestimated districts 2611 and 5011, where one of the assessment components is at the highest level. On the 
contrary, there are the underestimated vulnerability outcomes by the additive vulnerability indicators in some 
districts, 2629, 2638, 2617, and 2818, without very high level components. District 2611 has an abnormally higher 
ranking in VM1 due to ranking changes with other underestimated districts. It likewise has a higher ranking in 
VA2 by compensation of the maximum S than in VM2, which is also higher than in VM3 with more weights to the 
minimum LC. As low-level coping values will generate undesirable ranking changes in VM1, district 5011 with 
the minimum C shows the abnormally highest ranking in VM1. District 5011 also has higher rankings in VA3 
and VM3, with more weights to the maximum LC, compared to rankings in VA2 and VM2, respectively. Note that 
districts 2611 and 5011, with the extreme level coping values, might provide much different flood vulnerability 
outcomes in the aggregation framework using a denominator coping or a more weighted coping.

This study has compared and evaluated the composite indicators aggregated by the three additive and the 
three multiplicative utility functions for the IPCC’s vulnerability assessment components. The selection of aggre-
gation frameworks needs to be carefully determined according to the purpose of vulnerability assessments and 
the characteristics of assessment components, and compensability is one of the basic selection criteria in var-
ious aggregation schemes, each with its own benefits and limitations. As an example case, the Unite Nations 
Development Programme (UNDP) revised the Human Development Index (HDI) by a multiplicative composite 
scheme, since the additive structure of the original HDI had been criticized for its drawback that allowed for 
perfect substitution across the three assessment components of health, education, and income40. Although both 
additive and multiplicative aggregation schemes are compensatory schemes, the latter offers lesser compensation 
for low value components compared with the former with constant trade-offs across all components. In addi-
tion, the multiplicative aggregation scheme requires that all components have the same directional elasticity to 
a composite indicator in order to avoid undesirable ranking reversal problems. As selected for the coastal flood 
vulnerability to climate change in this study, the multiplicative scheme can provide a better solution to avoid full 
compensability. Under certain circumstances, however, it would be a partial solution still with some degree of 
compensability. When it should be interpreted as symmetrical importance of components, it can be solved by a 

district 
codes

component indicator values flood vulnerability rankingsa

E S LC(C) VA1 VA2 VA3 VM1 VM2 VM3

2817 70.4 88.7 62.9(38.1) 1 1 1 2 1 1

2814 70.6 83.4 60.4(40.6) 2 2 2 5 2 2

2820 70.1 47.6 79.2(21.8) 3 3 3 4 3 3

2650 43.8 91.4 50.8(50.2) 4 4 9 7 4 7

4611 62.9 34.0 87.8(13.2) 6 6 4 3 5 4

2826 77.6 31.1 75.0(26.0) 8 8 7 6 6 5

2629 42.7 63.5 61.5(39.5) 14 14 17 10 7 9

2638 51.1 47.3 65.3(35.7) 18 18 21 11 8 8

2617 45.7 70.2 48.9(52.1) 15 15 26 12 9 14

2818 65.6 28.7 74.9(26.1) 13 13 13 8 10 6

2611b 44.3 100 1.0(100.0) 35 35 44 18 62 72

5011b 52.4 4.8 100.0(1.0) 24 24 11 1 30 22

Table 5.  The list of the top ten administrative districts based on ranking orders by VM2 and the two selected 
administrative districts with ranking fluctuations across different vulnerability indicators, along with ranking 
orders by other five flood vulnerability outcomes VA1, VA2, VA3, VM1, and VM3, accompanied by the three 
component indicators E, S, and LC(C). aRanking of 73 coastal administrative districts by flood vulnerability 
outcomes. bSelected districts showing extreme changes in rankings across different flood vulnerability 
indicators.
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non-compensatory multi-criteria approach41. All studies on vulnerability assessments may have limitations and 
drawbacks in processes for constructing composite indicators. This study employs the min-max normalization 
method where proxy variables are transformed into a common scale between 1 to 100 and also adopts an equal 
weighting assumption, the possible weighting systems in lack of a statistical or an empirical basis on causal rela-
tionships or consensus of assessment components. Therefore, this comparative case study for various composite 
indicators needs further investigation on several important processes affecting composite indicator outcomes, 
particularly for the selection and uncertainty in representative proxy variables for each attribute component, nor-
malization methods for transforming variables measured at different units or scales into a common domain, and 
weighting schemes for variables and components to contribute to the analysis in different scales.

Conclusions
As the individual attribute components can be compiled into a composite indicator by multi-attribute utility func-
tions to effectively represent multidimensional complicated issues8, the vulnerability to climate change has been gen-
erally measured by a composite indicator. A prominent framework for vulnerability assessment to climate change 
comprises the three attribute components of exposure, sensitivity, and coping, as presented in the IPCC TAR1.  
There has been a variety of aggregation methods for the constituent components into a composite indicator to 
measure the overall vulnerability to climate change. The conventional frameworks commonly used for aggregat-
ing the IPCC’s assessment components can be classified as: 1) an additive form VA1 and a multiplicative form VM1 
for the three individual components as originally, 2) an additive form VA2 and a multiplicative form VM2 for the 
three individual components by replacing coping with lack of coping, and 3) an additive form VA3 and a multi-
plicative form VM3 for a composite indicator combining the two components, as well as the other one. However, 
it has not been explicitly interpreted how the construction frameworks and aggregation methods influence the 
vulnerability composite indicator outcomes. This study has therefore evaluated the robustness and sensitivity of 
the vulnerability composite indicators aggregated by the conventional additive and multiplicative multi-attribute 
utility functions from the vulnerability assessment components. The analysis is especially focused on the vulner-
ability ranking alteration across the six composite indicators by the conventional aggregation frameworks and 
processes. The effects on the vulnerability outcomes across different construction frameworks are first examined 
by a design of the possible reference cases of the vulnerability assessment components, and then demonstrated 
through a case study on the coastal flood vulnerability assessment from actual data to climate change.

It is found that it is desirable for all constituent components to have the same directional elasticity to a com-
posite indicator for robustness of vulnerability scores generated by multiplicative multi-attribute utility forms 
in order to avoid undesirable ranking reversals. It is also implied that the uncertainty in vulnerability outcomes 
can increase with the use of potential impact with more weighted coping that tends to have more uncertainty42. 
Multiplicative aggregation allows lesser compensation for low value components whereas additive aggregation 
provides constant trade-offs among constituent components. When the assessment components are mutually 
preferentially independent, full substitution should not be allowed across components in general. In such con-
texts, this study suggests that the coastal flood vulnerability to climate change be evaluated by a multiplicative 
composite indicator VM2 from the IPCC’s three components with all the positive elasticity to vulnerability, since 
regions with a lower component value cannot be fully compensated for by other component values. If trade-offs 
are not allowed at all, the vulnerability should be assessed by non-compensatory multi-criteria methods. It is 
important to select a proper framework and aggregation method to construct vulnerability composite indicators, 
since an undesirable composite indicator outcome due to overlooking irrational features in some aggregations 
may cause preference reversals in policy and decision making. It should therefore be prudent to select aggregation 
frameworks for composite indicators with careful consideration of the objectives and features of the vulnerability 
assessments, as well as the advantages and disadvantages of each aggregation method that may have problematic 
limitations in construction processes and schemes.
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