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Rumen Bacteria and Serum 
Metabolites predictive of feed 
Efficiency Phenotypes in Beef 
cattle
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The rumen microbiome is critical to nutrient utilization and feed efficiency in cattle. Consequently, 
the objective of this study was to identify microbial and biochemical factors in Angus steers affecting 
divergences in feed efficiency using 16S amplicon sequencing and untargeted metabolomics. Based 
on calculated average residual feed intake (RFI), steers were divided into high- and low-RFI groups. 
Features were ranked in relation to RFI through supervised machine learning on microbial and 
metabolite compositions. Residual feed intake was associated with several features of the bacterial 
community in the rumen. Decreased bacterial α- (P = 0.03) and β- diversity (P < 0.001) was associated 
with Low-RFI steers. RFI was associated with several serum metabolites. Low-RFI steers had greater 
abundances of pantothenate (P = 0.02) based on fold change (high/low RFI). Machine learning on RFI 
was predictive of both rumen bacterial composition and serum metabolomic signature (AUC ≥ 0.7). 
Log-ratio proportions of the bacterial classes Flavobacteriia over Fusobacteriia were enriched in low-
Rfi steers (f = 6.8, P = 0.01). Reductions in Fusobacteriia and/or greater proportions of pantothenate-
producing bacteria, such as Flavobacteriia, may result in improved nutrient utilization in low-RFI steers. 
Flavobacteriia and Pantothenate may potentially serve as novel biomarkers to predict or evaluate feed 
efficiency in Angus steers.

The United States is the largest producer of beef, and the beef industry accounts for a retail equivalent of $105 bil-
lion1. Over the next decade, demand for US exportation of beef is expected to increase2. Given the rapid reduction 
in natural resources and substantial growth of the human population expected in the coming decades, it is imper-
ative to develop novel agricultural approaches in order to increase the global food supply with limited resources3. 
Ruminants, including beef cattle, rely on the fermentation of feedstuffs to provide energy for the animal. The 
rumen microbiome in cattle is fundamental for the successful conversion of plant matter to energy substrates for 
the animal via fermentation4. This microbiome also supplies the host animal with other important nutrients such 
as vitamins and protein4. Identifying and exploiting factors that affect the efficiency of this conversion in beef 
cattle will result in increased animal protein supply without increasing input resources.

Rumen microbes produce metabolites that are released into the rumen lumen and can be absorbed through 
the rumen epithelium or through the epithelium in the lower gastrointestinal tract4. The rumen microbes are 
responsible for the production of approximately 70% of the energy supply to the ruminant, including production 
of organic acids such as acetate and propionate5. Differences in the production of these metabolites, as well as 
variation in rate and quantity of absorption, can contribute to variation in nutrient utilization and efficiency of the 
ruminants, and may lead to physiological or phenotypic changes6,7. However, it can be difficult to distinguish the 
origin of many metabolites between those of endogenous origin and metabolites of microbial origin. Although 
associations between the rumen microbiome and physiological changes in the host have been identified8,9, the 
mechanisms driving these changes are still unknown and whether foundational, or keystone, species are respon-
sible for the divergences in feed efficiency and other phenotypes.
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In order to address these critical knowledge gaps, we used a combination of microbial genomics, metabolom-
ics, and bioinformatics to further define variations in feed efficiency as determined by the divergence in residual 
feed intake (RFI). Determination of the complex associations and networks between the rumen microbiome, 
host metabolome, and differences in host phenotype can be facilitated by novel utilization of bioinformatics and 
machine learning to discover physiological patterns and microbial factors. By taking a multidisciplinary approach, 
research can move beyond correlation to identify variables accounting for differences in host phenotype.

The objective of this study was to identify the microbial and biochemical biomarkers mediating variation in 
feed efficiency in cattle. To accomplish this, we analyzed the relationships among RFI, the rumen bacterial com-
munity, and the serum metabolome.

Results
Sequencing information. A total number of 50 samples underwent microbial DNA extraction. Bacterial 
community composition was determined by amplifying and sequencing the V1-V3 hypervariable region of the 
16S rRNA gene. A toal of 21,734,148 number of sequences were present following quality control and chimera 
removal. An average of 48,048 ± 41,628 sequences was present in each sample.

Bacterial community diversity. After binning reads at 97% similarity, a total of 21,401 OTU were 
detected. Alpha-diversity was measured by equitability, Simpson’s Evenness, observed OTU, Good’s coverage, 
chao1, and Shannon’s Diversity Index. Alpha-diversity metrics did not differ between low- and high-RFI steers at 
the end of the study (Table 1), including equitability (P = 0.24; Table 1), Simpson’s Evenness (P = 0.19; Table 1), 
Observed OTU (P = 0.78; Table 1), Good’s coverage (P = 0.14; Table 1), chao1 (P = 0.78; Table 1), and Shannon’s 
Diversity Index (P = 0.07; Table 1). Beta diversity of the rumen bacterial communities also changed significantly 
over time (PERMANOVA: F = 422, P < 0.001, Fig. 1) with highly ranked bacterial classes Gammaproteobacteria, 
Alphaproteobacteria, and Bacteroidia diverging in time.

Biochemical and microbial predictors of RFI. A total of 114 known metabolites were identified. Residual 
feed intake was predictive of rumen bacterial composition (AUC = 0.74, Fig. 2A) and serum metabolomic 

Low-RFIa High-RFIa P-valueb

Equitability 0.596 ± 0.040 0.650 ± 0.015 0.239

Simpson’s Evenness 0.142 ± 0.032 0.141 ± 0.011 0.190

Observed OTU 55.9 ± 4.62 59.9 ± 2.43 0.777

Good’s Coverage 0.985 ± 0.015 0.999 ± 0.001 0.140

Chao1 56.5 ± 4.27 59.9 ± 2.43 0.777

Shannon’s Diversity Index 3.38 ± 0.245 3.83 ± 0.108 0.074

Table 1. Sequence and alpha-diversity statistics of the 16S rRNA gene sequences for bacterial populations in 
low- and high-RFI steers. aMean ± SEM. bSignificance determined at α ≤ 0.05.

Figure 1. Compositional biplot beta diversity generated through Robust Aitchison PCA comparing microbial 
compositions over time (weeks) with arrows representing the highly ranked bacterial features colored by class 
level taxonomy.
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composition (AUC = 0.75, Fig. 2B) at week 10 using RF machine learning and LSVC respectively. Many serum 
metabolites were identified as predictive of high- and low-RFI between steers, one such metabolite being panto-
thenate. (Supplementary Table 1). The serum pantothenate proportion was also found to be significantly different 
between low- and high-RFI steers (F = 5.89, P = 0.02, Fig. 3A). Additionally, among the highly ranked micro-
bial classes were the rumen bacterial classes of Flavobacteriia and Fusobacteriia (Supplemental Table 2). The 
log-ratio of Flavobacteriia (numerator) and Fusobacteriia (denominator) was significantly increased in low-RFI 
steers (F = 6.8, P = 0.01) (Fig. 3B). Furthermore, when using Cyanobacteria, a class found at low but constant 

Figure 2. Ten-fold stratified K-Folds cross-validation ROC curves for the prediction accuracy (AUC) for 
bacterial (A) and metabolite (B) compositions of RFI.

Figure 3. Analysis of week ten microbial compositions and metabolite abundances. Pantothenate abundance 
compared between low- and high-RFI (A). Log-ratio proportions of highly ranked microbes Flavobacteriia 
(numerator) and Fusobacteria (denominator) compared between low- and high-RFI (B). Regression plot 
between the log-ratio of Flavobacteriia (numerator)/Cyanobacteria (denominator) and the log-scaled 
pantothenate abundance.
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abundance across all samples as the denominator, the log ratio of Flavobacteriia (numerator) and Cyanobacteria 
(denominator) correlated well with pantothenate abundance (Fig. 3C).

Discussion
Total beef consumption in the United States is greater than 20 billion pounds annually, and is the most consumed 
red meat product in the United States1; however, declining land resources and increasing human populations 
place pressure on producers to improve production efficiency. Therefore, researchers and producers are charged 
with finding novel approaches and methods for reducing inputs while increasing animal protein supply to meet 
the needs of an expected global population exceeding 9 billion people by the year 20503. Given this need, targeting 
phenotypes that improve efficiencies, such a feed and reproductive efficiencies, or reduce negative environmental 
impacts, including methane production and excess nitrogen release, will ultimately improve beef and livestock 
agriculture on a global scale. The rumen microbiome contributes significantly to the breakdown of low-quality 
feedstuffs, such as forages, and may be responsible for much of the variation observed in ruminant feed efficiency 
phenotypes10. Understanding the relationships between host phenotypes and the rumen microbiome may pro-
vide novel methods for improving feed efficiency in ruminants.

In this study, measurements of α-diversity did not differ between the two groups. In other ecosystems, 
increased biodiversity is associated with greater success and resilience of the ecosystem11,12; however, the data 
presented in this study suggest that α-diversity may not be a significant contributing factor to feed efficiency 
phenotypes in stable bacterial communities in growing beef steers. Previous studies have also observed the same 
relationships between rumen bacterial α-diversity and feed efficiency phenotypes in steers13,14. Other factors, 
such as divergences in individual taxa or functionality of the rumen microbiota, may play a greater role in dicta-
tion of host feed efficiency phenotypes.

Given the relationship between feed efficiency phenotypes and the rumen bacterial communities, it may be 
possible to identify specific rumen microbes and serum metabolites associated with RFI. In the human vagina, for 
example, Lactobacillus spp. is often associated with pregnancy success and woman reproductive tract health15–17. 
In the rumen, specific taxa, even if at lower abundances, may cause distinct variation in feed efficiency pheno-
types18. The lack of differences in α-diversity in previous studies suggests that divergences in feed efficiency phe-
notypes may be the result of dissimilarities at a finer resolution, such as individual taxa and metabolites, rather 
than global changes in the microbial communities and cumulative metabolites. Differences in serum and rumen 
metabolites may provide indications of feed efficiency and could be developed into a method for on-farm detec-
tion of feed efficiency.

The rumen microbiome produces several vital nutrients for the host animals, including organic acids that 
serve as glucogenic precursors, as well as proteins and vitamins4. A nutrient produced by the rumen microbiota is 
pantothenate. Pantothenate is not normally essential in the diet of adult cattle because the vitamin is produced by 
ruminal microbes in adequate amounts19,20. Pantothenate plays a significant role in the metabolism of fatty acids 
in ruminants and other species21,22. In this study, pantothenate was identified as a potential biomarker of RFI and 
was shown to be significantly enriched in low-RFI compared to high-RFI steers. Pantothenate is a key component 
of coenzyme A (CoA), which is required to perform a variety of functions in intermediary metabolism of rumi-
nants23. Namely, CoA is responsible for the transfer of fatty acid components into and out of the mitochondria24. 
Pantothenate is produced by several species of bacteria in the rumen, and can then be released into the rumen 
lumen to be absorbed by the host animal. One class of bacteria that can generate pantothenate in the rumen are 
Flavobacteriia.

In this study, Flavobacteriia was also identified as a potential biomarker of RFI. However, because the abso-
lute population of microbes in each sample is unknown, log-ratios were used to compare between low- and 
high-RFI25,26. It was found in this study that the log-ratio of Flavobacteriia and Cyanobacteria were well corre-
lated to pantothenate abundance. Cyanobacteria was identified as a class with low-ranked and non-fluctuating 
proportions across all samples and used as the denominator in the log-ratio. Although, Cyanobacteria are oxy-
genic phototrophic bacteria they are often found at low but constant proportions in the rumen27,28 and thought 
to be possibly misclassified from the class Melainabacteria29. By using the log-ratio of Flavobacteriia and 
Cyanobacteria, the assumption can be made that this correlation is caused by an enrichment in Flavobacteriia 
and not a decrease in Cyanobacteria. This information supports that more efficient steers are associated with 
increased proportions of both Flavobacteriia and pantothenate.

In contrast to the log-ratio used in the correlation, the log-ratio of Flavobacteriia and Fusobacteria do not 
allow the same assumptions to be made as used above. This suggests that low-RFI animals could be caused by an 
increase or decrease of Flavobacteriia or an increase or decrease in Fusobacteria. Fusobacterium necrophorum 
of the class Fusobacteria is a known opportunistic pathogen and causative agent of liver abscesses in cattle30. 
Although F. necrophorum is a normal rumen inhabitant31, it is known to be enriched in high-grain diets32. This 
enrichment causes F. necrophorum to leak into portal circulation where it is then trapped in the liver causing 
abscesses33. Fusobacteriia and Flavobacteriia both identified as prospective important biomarkers here may 
play joined roles in regulating feed efficiency. However, further experimentation is needed to delineate this 
relationship.

Pantothenate may indicate greater feed efficiency. The relationship between pantothenate and Flavobacteriia 
could provide insight beyond the mechanisms accounting for some variability in feed efficiency, by possibly 
serving as biochemical and microbial biomarkers in the serum and rumen, respectively. These biomarkers could 
allow producers to identify and select animals of greater feed efficiency. Metabolites and microbes predictive of 
efficiency phenotypes in cattle are not only imperative to partially explaining divergences in feed efficiency, but 
also to the selection of microbial communities related to efficient animals. These insights may also lead to the 
ability to select for an optimal rumen microbiome.
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This study identified potential microbial and biochemical biomarkers that were used to determine extremes 
in feed efficiency in steers. Although notable correlations between pantothenate and feed efficiency were iden-
tified, linking, and perhaps predicting, the functional capacity of the rumen and its microbiome, specifically 
Flavobacteriia, through serum pantothenate offers the potential to use serum biochemistry as an indicator in 
identification of feed efficient cattle. Additionally, although it has yet to be determined to what degree the rumen 
microbiome influences the host, or the host influences the rumen microbiome, the present study identified sev-
eral key physiological elements that may impact or predict microbial community structure (e.g. RFI), or predic-
tive of RFI (i.e. the serum metabolome and rumen bacterial community). However, it is also important to point 
out this is not a validation study, rather a study to initially identify potential biomarkers to inform future feed 
efficiency work. Future work would aim to conduct research validating these findings. As producers and research-
ers alike search for sources of variation in feed efficiency in cattle with the intent to optimize cattle productivity, 
methods to predict feed efficiency, such as use of microbial and biochemical markers could ultimately be used to 
improve the selection for feed efficient cattle.

Materials and Methods
This study was approved and carried out in accordance with the recommendations of the Institutional Animal 
Care and Use Committee at the University of Tennessee, Knoxville.

Animal experimental design and sample collection. Fifty weaned steers of approximately 7 months of 
age were housed at the Plateau Research and Education Center in Crossville, TN34. Animals weighed 264 ± 2.7 kg 
at the beginning of the study and transitioned to a backgrounding diet for 14 days prior to the start of the trial. 
Diet consisted of 80% corn silage, 10% cracked corn, and 10% protein supplement (11.57% crude protein and 
76.93% total digestible nutrients with 28 mg monensin/kg on a dry matter basis). A 70-day feed efficiency trial 
was administered following the acclimation period. Steers were adapted to the GrowSafe© system during that 
adaptation period. Body weight (BW) was measured at 7-day intervals and daily feed intake measured using the 
GrowSafe© system for the length of the 70-day feed efficiency trial. Feed efficiency was determined using RFI35. 
At the conclusion of the trial, steers were ranked based on RFI and samples from the low- and high-RFI animals 
were utilized for subsequent analyses. Low- (n = 14) or high- (n = 15) RFI was determined as 0.5 SD below or 
above the mean RFI, respectively.

Weekly, approximately 9 mL of blood was sampled via venipuncture from the coccygeal vein into serum 
separator tubes (Corvac, Kendall Health Care, St. Louis, MO). Blood samples were centrifuged at 2,000 × g for 
20 min at 4 °C. Serum was decanted into 5 mL plastic culture tubes and stored at −80 °C for further analyses. 
Approximately 100 mL of rumen content was collected via esophageal tubing and any content remaining on the 
filtered strainer was also collected36. Samples were transferred to 50 mL conical tubes, pH was measured using a 
portable pH meter, and stored at −80 °C until further processing.

DNA extraction and amplification. Samples containing the rumen content were centrifuged for 15 min 
at 4,000 rpm, and the supernatant was then decanted and discarded. A volume of 0.5 mL of the remaining pellet 
was aliquoted for the extraction of DNA utilizing the PowerViral® Environmental RNA/DNA Isolation Kit (Mo 
Bio Laboratories, Inc., Carlsbad, CA, USA). The V1-V3 hypervariable regions of the bacterial 16S rRNA gene 
were amplified via the 27F37 and 534R38 primers modified for Illumina sequencing following the standard pro-
tocols Q5® High-Fidelity DNA Polymerase (New England Biolabs, Inc., Ipswich, MA, USA). The PCR amplicon 
products were then confirmed using 2% agarose gel electrophoresis. The products were purified utilizing AMPure 
XP beads (Beckman Coulter, Brea, CA, USA). According to standard protocols39, the purified libraries were sub-
sequently quantified and sequenced on the MiSeq Platform (Illumina, San Diego, CA, USA). De-multiplexing of 
the raw fastq reads was performed on the MiSeq Platform (Illumina, San Diego, CA, USA).

Phylogenetic analysis. The raw read data were phred33 quality filtered at a cutoff of 20 and adapter 
sequences trimmed using Trim Galore40. Following trimming and quality filtering, the remaining reads were 
filtered for low-complexity reads, cross-talk41, and PhiX. The 16S-based sequence clustering and taxonomic clas-
sification was executed using USEARCH UNOISE and SINTAX (v10.0.240)42,43 with the 16S rRNA database 
from RDP44. Each sample was filtered for sequencing depth at a minimum of 2,000 reads per sample45. Samples 
with fewer than 2,000 sequences were considered too low for adequate depth and were excluded from subsequent 
analyses.

LC-MS analysis. LC-MS analysis has been described previously34,46,47. Briely, a volume of 50 μL from the 
serum samples (50 μL) of each steer was extracted for untargeted metabolomic analyses via 0.1% formic acid in 
acetonitrile:water:methanol (2:2:1). Separation of metabolites was completed utilizing a Synergy Hydro-RP col-
umn (100 × 2 mm, 2.5 μm particle size). The mobile phases were A: 97:3 H2O:MeOH with 11 mM tributylamine 
and 15 mM acetic acid and B: MeOH. The following comprised the gradient: 0.0 min, 0% B; 2.5 min 0% B; 5.0 min, 
20% B; 7.5 min, 20% B; 13 min, 55% B; 15.5 min, 95% B; 18.5 min, 95% B; 19 min, 0% B, and 25 min, 0% B. A con-
stant flow rate of 0.200 mL/min was utilized with the column temperature remaining at 25 °C. A temperature of 
4 °C was maintained in the autosampler tray and a sample volume of 10 μL was injected into the Dionex UltiMate 
3000 UPLC system (Thermo Fisher Scientific, Waltham, MA). To introduce the samples into an Exactive Plus 
Orbitrap MS (Thermo Fisher Scientific, Waltham, MA), electrospray ionization was used, conduted under an 
established method47,48.

As described previously34,46, the raw files were acquired from the Xcalibur MS software (Thermo Electron 
Corp., Waltham, MA) and ProteoWizard49 was used to convert data into the mzML format. The converted files 
were imported into the MAVEN software package (Metabolomic Analysis and Visualization Engine for LC-MS 
Data)50. Within MAVEN, the known metabolite peaks were picked, which automatically calculates peak areas 
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across samples after implementing non-linear retention time correction. This uses a retention time window of 
five min and a preliminary mass error of ±20 ppm. The method of Rabinowitz and coworkers48 has been repli-
cated and expanded by the UTK Biological and Small Molecule Mass Spectrometry Core (BSMMSC) and using a 
library of 263 retention time-accurate m/z pairs taken from MS1 spectra, final metabolite annotations were made. 
As part of establishing the method, the annotation parameters have been previously verified with pure stand-
ards. The metabolite mass had to be within ±5 ppm of the expected value and the eluted peak had to be found 
within two min of the expected retention time for a metabolite to be annotated as a known compound. Using the 
MAVEN software package50, metabolite identities were confirmed and the Quan Browser function of the Xcalibur 
MS Software (Thermo Electron Corp., Waltham, MA) was used for integration of peak areas for each compound.

Statistical analyses. Beta diversity analysis was performed through Robust Aitchison PCA via deicode51 
and the resulting biplot was visualized through EMPeror52. Compositional transformation of both the bacte-
rial and metabolite data tables were performed through the centered log-ratio transform (clr)53 with a pseudo 
count of one. Feature ranking and supervised machine learning was performed on clr transformed data through 
Random Forests54. The clr transform and Permutational Multivariate Analysis of Variance (PERMANOVA) for 
beta diversity significance was performed through scikit-bio (http://scikit-bio.org/), data wrangling through pan-
das55, visualization through seaborn56 and matplotlib57. Random Forest Classification (RF) was performed on 
bacterial compositions and Linear Support Vector Classification (LSVC) was performed on metabolite compo-
sitions with default parameters through scikit-learn58. Additionally, ten-fold stratified K-Folds cross-validation 
was used to generate receiver operating characteristic (ROC) curves to evaluate the prediction accuracy under the 
curve (AUC) for each classification through scikit-learn.

Measurements of α-diversity, including equitability, Simpson’s Evenness E, Shannon’s Diversity Index, and 
Observed OTU, were assessed for normality using SAS 9.4 (SAS Institute, Cary, NC). All variables were found to 
follow a non-normal distribution, and were analyzed using Wilcoxon Rank Sum and Kruskal Wallis test.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author(s) 
on reasonable request.
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