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fast and slow dynamics for classical 
and quantum walks on mean-field 
small world networks
Andre M. c. Souza1* & Roberto f. S. Andrade2,3

this work investigates the dynamical properties of classical and quantum random walks on mean-
field small-world (MFSW) networks in the continuous time version. The adopted formalism profits 
from the large number of exact mathematical properties of their adjacency and Laplacian matrices. 
exact expressions for both transition probabilities in terms of Bessel functions are derived. Results 
are compared to numerical results obtained by working directly the Hamiltonian of the model. for the 
classical evolution, any infinitesimal amount of disorder causes an exponential decay to the asymptotic 
equilibrium state, in contrast to the polynomial behavior for the homogeneous case. The typical 
quantum oscillatory evolution has been characterized by local maxima. it indicates polynomial decay 
to equilibrium for any degree of disorder. The main finding of the work is the identification of a faster 
classical spreading as compared to the quantum counterpart. it stays in opposition to the well known 
diffusive and ballistic for, respectively, the classical and quantum spreading in the linear chain.

Quantum walks (QW)1 have great relevance for a large number of fundamental problems in physics, mathemat-
ics, optical devices, material properties in atomic and nano scales, and other natural sciences2.The increasing 
number of QW models have been mostly cast into two well characterized sets, which depend on whether evolving 
dynamics occur under the assumption of discrete (DTQW)3–7 or continuous time (CTQW)8–12. For CTQW’s, the 
unitary time evolution operator of probability transition between two quantum states is an exponential function 
of the Laplacian matrix representing the substrate. This approach is similar to the one used to describe continuous 
time transport by random walkers (CTRW) in classical non equilibrium statistical physics9.

The classical master-equation-type formalism, widely employed within the CTRW scheme13, can be 
extended to incorporate quantum-mechanical aspects. The resulting mathematical formulation, akin to that of 
tight-binding Hamiltonian models, reflects the similarity between time-evolution operators in statistical and 
in quantum mechanics. Within this analogy, CTQW stands as a linear problem, benefitting from many CTRW 
general results, as eigenvalue and eigenvector properties. Like CTRW, many QW models now describe transport 
properties in diverse substrates, which simply requires writing the local transition probability in terms of the 
proper adjacency matrix of complex networks.

In spite of similar algebraic structures, the time evolution of CTQW and CTRW indicate vastly different phys-
ical properties, no matter whether the system is defined on regular or complex substrates. For instance, the faster 
ballistic spreading of CTQW as compared to the CTRW’s classical diffusive behavior, the fact that, in the absence 
of traps, CTQW’s are time-inversion symmetric and no energy equipartition takes place at long times. Further, 
the quantum system keeps memory of the initial conditions, as evidenced by the occurrence of quasi-revivals14. 
We also remark that CTQW models coherent exciton transport on a connected network, replacing the system’s 
Hamiltonian by the Laplace matrix15.

A large number of works have reported properties of both DTQW and CTQW on complex networks, includ-
ing geometrically defined structures, like the Apollonian network16,17, or complex networks with different degrees 
of randomness, e.g., Erdös-Rényi, Watts-Strogatz small-world, Barabasi-Albert scale-free, dendrimer, or poly-
mer14,18–26. In this work we investigate the dynamical properties of CTQW and CTRW on the so-called mean-field 
small-world (MFSW) networks26. They have been recently explored in several studies of physical models on net-
works using analytical approaches. A main reason supporting this choice is the fact that, once they are represented 
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by circulant adjacency matrices, several exact properties of their eigenvalue spectra are known. Here, we advance 
far beyond the basic ideas developed in26 to derive exact analytical results for the transition probabilities. The reli-
ability of our approach is illustrated through the comparison with numerical results obtained by working directly 
the Hamiltonian of the model.

The two-parametric (k, q) family of MFSM networks with N nodes is defined by a weighted adjacency matrix26 
with the circulant property, which must have the following structure27:
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Since the network is assumed to be undirected, the elements cl occupying the successive diagonals also satisfy 
cl = cN−l. The elements cl of a MFSW network can assume assume only two different values, so that the connec-
tions must belong to one of two subsets denoted by S1 and S2. The two possible values of cl are defined in terms of 
two parameters k and q according to
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The connections in S1 correspond to the elements cl and cN−l, with labels l = 1,2, ..., k/2;...; N − k/2, ..., N − 1, 
while those in set S2 are associated to labels l = 1 + k/2, ..., N − 1 − k/2. k ∈ [2,N − 1] and q ∈ [0,1] represent, 
respectively, the average node degree and topological randomness as compared to a closed chain where each node 
is connected to its closest k neighbors. The condition k = 2, q = 0 corresponds to the usual nearest neighbor (NN) 
circular chain. The network topology resulting from this definition can be exemplary visualized in Fig. 1, for the 
case N = 8, k = 4 and q = 0.1. It clearly shows that each site of the network receives links from its k/2 nearest neigh-
bors on both sides. The extreme values of q = 0 and 1 correspond, respectively, to a uniform circle graph with k 
neighbors and a homogeneous complete graph, while intermediate values of q are fully connected networks with 
two distinct weights. The conditions for a small-world network are obtained by small non-zero q values26. For the 
sake of simplicity in deriving some analytical expressions, in this paper we assume that N and k are even integers.

Results
Adjacency matrix spectrum. The matrix AMF

ˆ  also represents a tight-binding Hamiltonian for a quantum 
particle system, for which the CTQW dynamics is described by the Laplacian matrix

= −ˆ ˆ ˆL c I A , (4)o MF

where co = k and Î  represents the N × N identity matrix.
It is well known27 that the eigenvalues and eigenvectors of any circulant matrix of order N can be written, 

respectively, in terms of the following analytical expressions

Figure 1. Illustration of a small-world mean-field network, for N = 8, k = 4 and q = 0.1. Blue and red bounds 
correspond, respectively, to elements of S1, for which cl = −31/34, and of S2, for which cl = −4/34.
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From Eqs. (2) and (4) it is easy to see that the ground state eigenvalue and eigenvector are, respectively, 
c 0j j0Λ = ∑ =  and 
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1α| 〉 = , a general property of Laplacian matrices. Furthermore, using 
Λ0 = 0, cl = cN−l, and substituting Eq. (2) into Eq. (5) leads to
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In the thermodynamic limit N → ∞, using that limN→∞(1 − w) = 1 and limN→∞wN = kq, from Eqs. (7) and (8)  
we obtain

k q N k q q R( , , ) (1 ) (1 ) (9)l l k
l

,0δΛ → ∞ = − − − .

As we are considering N and k even, we have Rk
N−l = Rk

l and ΛN−l = Λl for l = 1, 2, ..., N/2 − 1. With the excep-
tion of the non-degenerated levels Λ0 = 0 and ΛN/2, all eigenvalues are double degenerated.

Analytical results for the transition probabilities. The CTRW dynamics on a network is described by 
the probability P of finding the w of time, which obeys the equation ∂P/∂t = −LPˆ . Within the CTQW framework, 
the time evolution of a quantum particle is described by the operator U t e( ) iLt/= −ˆ ˆ  that acts on the state vector 
|Ψ(j, t)〉, with position j and time t. We set  = 1 and assume the particle starting at time t = 0 on a position j0 of 
the network, that corresponds to state |Ψ(j, t)〉 = |j0〉 = δj,j0. The state |j0〉 represents one of the states of the set 
|1〉 = [1, 0, 0, ..., 0], |2〉 = [0, 1, 0, ..., 0], …, |m〉 = [0, 0, ..., 1, ..., 0],…, |N〉 = [0, 0, 0, ..., 1], that form a complete, 
ortho-normalized basis of the Hilbert space. From Eq. (6), it is easy to see that

α〈 | 〉 = = ... .π− −m
N
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(10)l
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The classical and quantum transition probabilities between two states (thinking as nodes on a network) are, 
respectively,
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Using Eqs. (6) and (10) into Eqs. (11) and (12), we obtain
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Both general equations for the classical (13) and quantum (14) cases can be expanded in terms of real expo-
nential and cosine functions, from which asymptotic expressions can be obtained in terms of Bessel functions. 
Therefore, after inserting Eq. (7) into Eq. (13) we obtain, for the classical probabilities
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where C0 = (1 − q)(1 − w)[k + 1 − (−1)(k/2)] + wN and Cl = (1 − q)(1 − w)(Rk
0 − Rk

l) + wN.
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On the other hand, in the quantum cases it is easy to see, from Eq. (14), that
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where θmj
l(t) = tΛl + 2πl(j − m)/N. We can observe that in both the classical and quantum cases the transitions 

depend only on the difference | j − m|.
The limit q = 1 is trivial and has already been explored in the literature15,19. It is the network in which every 

sites are linked with the same hopping energy. It is easy to see that
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In the next section we analyse the case 0 ≤ q < 1. We illustrate properties of classical and quantum dynamical 
behavior based on the evaluation of Eqs. (15) and (16). These equations are start points for the derivation of 
asymptotic expressions in terms of Bessel function.

classical dynamics. Figure 2 shows Pmj(t) as a function of t, for q = 0, N = 10 and 100, and different values 
of |m − j|. For small t, the probability curves for different N overlap almost exactly indicating no significant differ-
ence. For t → ∞, the result =→∞P tlim ( )t mj N

1  indicates equal probability 1/N for every site transition at long time. 
This asymptotic result is valid for any q, as a result of Eq. (15) and from the fact that Cl > 0. Figure 2 indicates that, 
for a fixed N, the asymptotic regime is reached at approximately the same time for any value of |m − j|. Thus, we 
can define the classical equilibrium time tec, at which every Pmj(tec) converges to 1/N, from the expression for 
Pjj(tec). Namely, the equilibrium time tec(N) is defined as the minimum value of t that satisfies the condition

−
≤ 

P t( )
,

(20)

jj ec N

N

1

1

where  is a small dimensionless constant.
For q = 0, an analytical estimation for tec(N) in the limit N ≫ 1 can be derived. As in this situation, 

0 = Λ0 < Λ1 = ΛN−1 ≪ Λl, l ∈ [2,N − 2], all but the three dominant terms in Eq.(13) can be neglected. After 
some algebraic manipulations with Eq. (7), we obtain Λ1(2, 0, N) ≈ 4(π/N)2, Λ1(4, 0, N) ≈ 20(π/N)2, …, Λ1(k, 0, 
N) ≈ Ak(π/N)2, where Ak is successively defined by Ak+2 = Ak + k2. This leads to the result

Figure 2. Time evolution of the classical transition probability Pmj(t) for q = 0. Black (red) curves corresponds 
to N = 10 (N = 100) for |m − j| = 0, 1, 2, 4 and 50 (only for the case N = 100). Curves are analytical results from 
Eq. (15).
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Figure 3(a) shows numerical and analytical results for tec(N) as a function of N when q = 0, for k = 2, 4 and 20. 
The analytical estimation for tec(N) given by Eq. (20) is consistent with the numerical results, indicating a power 
law divergence with exponent 2. As we can not neglect the eigenvalues Λl (l > 1) when q > 0, it has not been pos-
sible to derive a general analytic expression valid for all q. Figure 3(b) presents tec versus N when q = 0.1, k = 2, 4 
and 20, where the numerical values were obtained from Eq. (15). We observe that tec(N) is several orders of mag-
nitude smaller than for the case q = 0, a feature that is also valid for the whole interval 0 < q < 1. Thus, tec(N) no 
longer follows a power law dependence with respect to N, but converges exponentially to a finite value. The results 
indicate that the asymptotic value for tec(N) in the limit N → ∞ is tec ≈ (kq)−1.

Figure 4 shows Pmj(t) versus t, for N = 100, q = 0.01 and 0.1, and different values of |m − j|. It shows that, for 
a fixed N, the convergence of Pmj(t) to = 1/N is faster when q increases. The behavior for Pj,j(t) as a function of t 
is shown in Fig. 5 for N = 10000. In panels (a) and (b) we show, respectively, curves for different values of k and 
constant q, and different values of q and constant q. We see that the higher the values of k and/or q, the faster 
is the decay of Pj,j(t) to its equilibrium value. Such overall behavior is somewhat expected, once the number of 
connections in the network increases with k, while the energy for jumps between sites of the network decreases 
when q increases.

In the limit N → ∞, this behavior can be explained by the following steps. First insert Eq. (9) into Eq. (13), 
and note that28

e I t e( ) ,
(22)

t x

n
n

inxcos( ) ∑=
=−∞

∞

where In(t) is the Modified Bessel function. Next, after straightforward calculations, we obtain

Figure 3. Equilibrium time tec(N) defined by Eq. (20) as a function of N, for  = 2e−π2 ≅ 0.0001034. (a) q = 0 and 
k = 2, 4 and 20. Symbols and curves represent, respectively, numerical results from Eq. (15) and analytical 
approximation in Eq. (21). (b) q = 0.1 and k = 2, 4 and 20. Symbols represent numerical result from Eq. (15), 
while curves are eye guides.
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where = −t q t2(1 )˜ . From the above expression, we can easily re-obtain the results to one-dimensional 
nearest-neighbor chain (q = 0 and k = 2)

Figure 4. Time evolution of the classical transition probability Pmj(t) for N = 100. Black (red) curves 
corresponds to q = 0.1 (q = 0.01) for |m − j| = 0, 1, 10 and 50. Values of |m − j| are localized close the curves. 
Curves are analytical results from Eq. (15).

Figure 5. Time evolution of the classical transition probability Pmj(t) for N = 10000. (a) q = 0.1 for k = 2, 4, 10, 
20 and 100. (b) k = 20 for q = 0, 0.001, 0.01, 0.1 and 0.2. Curves are analytical results from Eq. (15).
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For t ≫ 1, it is possible to use the asymptotic limit of the Modified Bessel function for large t π≈I t e t( ) / 2n
t 28. 

Two different situations, which have been discussed before, emerge from the expression in (23): when (i) q = 0, a 
polynomial decay ≈ −P t t( )jj

1
2  is observed for all k; (ii) for q ≠ 0, the behavior changes sharply into an exponential 

decay Pjj(t) ≈ e−kqt. Thus, we see that any infinitesimal disorder is sufficient to completely change the approach to 
the asymptotic regime.

To study the diffusion of the classical particle in the system, we can also define x t jP t( ) ( )j mj〈 〉 = ∑  and 
x t j P t( ) ( )j mj

2 2〈 〉 = ∑ , which are independent of m. From Eq. (23), we obtain that

〈 〉 = 〈 〉 = − .−x t x t x t A q te( ) 0, ( ) ( ) (1 ) (25)k
kqt2

The last expressions shows again a sharp transition from a normal diffusion at q = 0 to an exponential 
sub-diffusive behavior for q > 0.

Quantum dynamics. Figure 6(a) shows Πmj(t) versus t for q = 0 and the same parameter values of N and 
|m − j| used in Fig. 2. Unlike the classical behavior, characterized by an asymptotic value for the transition prob-
ability, a clear oscillatory pattern for Πmj(t) is the signature of the quantum case. It is always present, either when 
q > 0, as shown in Fig. 6(b), or for much larger values of N. In this case, the decay of the oscillation amplitudes, 
which can already been identified for small systems, becomes quite evident. This is made evident in Fig. 7, for 
both the short and asymptotic time regimes, when the case N = 104 is considered.

In order to measure the time decay of the transition amplitudes, we generate two discrete series { t( )}jjΠ  and 
{τ}, the values of which are defined the local maxima of Πjj(t), and the corresponding values of t where they occur. 
By removing the fluctuating part, we can work with a very small fraction of all points shown in Figs. 6 and 7. The 
behavior of the discrete set of selected points is illustrated in Fig. 8 for different combinations of k and q. It shows 
that three distinct decay regimes can be identified. Indeed, for small times ( t t0 1 x1< ≡ ), ( )jj τΠ  is first char-

Figure 6. Time evolution of the quantum transition probability Πmj(t) for (a) q = 0 and k = 2 for N = 10 (upper 
panel) and N = 100 (lower panel). Curves represent: |m − j| = 0 (black), 1 (red), 2 (green), 4 (blue), and 50 (cian) 
(only for the case N = 100). (b) N = 100 and k = 20 for q = 0.1 (upper panel) and q = 0.01(lower panel). Curves 
are analytical results from Eq. (16), corresponding to |m − j| = 0 (black), 1 (red), 10 (green), and 50 (blue).
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acterized by a fast transient exponential decay, at the end of which it becomes vanishingly small. This defines the 
first crossover time tx1, which depends on the values of q and k. Then, a sharp transition occurs, in which ( )jj τΠ  
recovers some 5–10% of it’s initial value, marking the starting point of a second decay regime. It encompasses 
intermediate time interval  t t tx x1 2, when ( )jj τΠ  has a polynomial decay. As before, tx2 also depends on q and 
k. Finally, in the interval t tx2  , the maxima amplitude enters a third and last regime, in which it has roughly 
stabilized behavior. Therefore, it is legitimate to identify tx2 with the quantum equilibrium time teq, as it plays the 
same role of tec defined by Eq. (20) for the classical case.

Approximate analytical estimations for teq, as well as for the average value about which Πjj(t) fluctuates for t > teq, 
are much more complex to be obtained as compared to the classical case. Nevertheless, a few steps towards this goal 
can be done. Taking into account that the short time contribution is averaged out in the t → ∞ limit, let us first define

T
t dtlim 1 ( ) (26)mj T

T
mj

0∫χ = Π .
→∞

After inserting Eq. (16) into Eq. (26), and performing some lengthy but straightforward calculations, it is 
possible to obtain
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From the definition of Λl given by Eq. (7), we observe that δΛl,Λp is independent of q (for q ≠ 1). Because of this, we 
can simplify the above notations, i.e., χmj(k,q,N) = χmj(k,N). Therefore, for any q < 1, in the case m = j we can write

k N
N

( , ) 1

(28)
jj

l

N
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N

2
0

1

0

1

,l p∑ ∑χ δ= .
=

−

=

−

Λ Λ

For k = 2, which corresponds to the one-dimensional NN circular chain, we can use Eq. (7) to write the follow-
ing equation for the eigenvalue difference

Figure 7. Time evolution of the quantum transition probability Πmj(t) for N = 10000. (a) q = 0.1 for k = 2 
(black), 4 (red), 10 (green), 20 (blue), and 100 (cian). (b) k = 20 for q = 0 (black), 0.001 (red), 0.01 (green), 
0.1 (blue), and 0.2 (cian). Logarithmic time axis in both insets highlights the asymptotic behavior. Curves 
correspond to analytical results in Eq. (16).
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We note that the first sine function has N zeros, whenever l = p. In addition, the second function has N − 2 
zeros, when the condition l + p = N is satisfied. Hence,

χ = − .q N
N N

(2, , ) 2 2
(30)jj 2

We understand that a similar expression for the general case j ≠ m, as well for other values of k, can hardly be 
obtained due the complexity of the involved expressions. For instance, even in the case k = 2 this would require 
count all cases for which 
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Using a similar approach to that in the previous subsection, let us consider the expression (see28)
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where Jn(t) denotes the Bessel function. Proceeding along the same lines to the classical case, we find that in the 
N → ∞ limit, the corresponding quantum expression becomes
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For the one-dimensional NN chain (k = 2), we obtain again

t
J t m j

J t m j
( )

[ ( )] , for ,

2 ( ) , for (33)
mj

m j

0
2

2Π =







=





 ≠ .| − |

Figure 8. Local maxima of quantum transition probability ( )jj τΠ  as a function of τ for N = 10000. In (a) q = 0 is 
fixed, while k = 2 (black circles), 20 (red squares), 100 (green diamonds) and 1000 (blue triangles). In (b) 
k = 1000 is fixed, while q = 0 (black circles), 0.1 (red squares), 0.5 (green diamonds) and 0.9 (blue triangles).
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For large t, Jn(t) ≈ t−1/2 28, with the consequence that Πmj(t) ≈ t−1 for any k and q. This also leads to the asymptotic 
behavior χmj → 0.

Finally, the analysis of the quantum diffusion based on = ∑ Πx t j t( ) ( )j mj  and x t j t( ) ( )j mj
2 2= ∑ Π , independ-

ent of m, leads to the results

x t x t t( ) 0 and ( ) , (34)2 2= ≈

which corresponds to the expected ballistic diffusion. This result is valid for any value of k.
Figure 9 shows numerical results for the dependence of tec and teq with respect to k/N. Different values of q for 

CTRW and CTQW are considered The important aspect shown in the graph is that, irrespective of exponential or 
power law convergence to the equilibrium value, the classical spreading becomes more rapid on MFSW for any 
value of q and sufficiently large k. Thus, it reverts a well-known behavior resulting from the comparison between 
CTQW and CTRW spreading times, first obtained for the simple k = 2 circle chain. Since this conclusion follows 
from an exact analytical approach, it uncovers one more interesting property of CTQW.

Discussion
This work presented a comprehensive analysis of quantum walks on MFSW networks. To achieve this goal, it sys-
tematically explored mathematical properties of the eigenvalue spectra of circulant matrices. Analytical expres-
sions for the walker transition probability were derived for both the classical and quantum cases, which have been 
expressed in terms of modified and standard (In(t) and Jn(t)) Bessel functions respectively. As expected, for any 
finite substrate with N sites, both transition probabilities converge to an asymptotic equilibrium value. Here we 
remind that, although the oscillatory behavior never settles down for the CTQW, other measures like the average 
value over suitable time period or largest maxima over the same interval can be taken as a indicative that an equi-
librium state has been reached.

A most amazing result from our analysis follows when they are compared with the scenario for continuous 
time models on the linear chain with limited number of neighbors: there, well characterized diffusive and ballistic 
spreadings indicate that classical dynamics proceeds at a slower pace than the quantum dynamics. Here, however, 
our results indicate the opposite scenario: the behavior of the classical and quantum transition probability as a 
function of time indicate, respectively, exponential and power law decay to the equilibrium value. Only when the 
disorder parameter q vanishes a typical power law behavior characteristic for the linear chain is recovered.

We finally comment that, as in MFSW networks all sites are interconnected even in the limit of infinitesimal 
but non-zero disorder, it does not allow to a satisfactorily tractable analysis of DTQW model. For instance, in 
such case, the coin operator would have to be represented by a high rank matrix, e.g, the N × N Fourier operator. 
Nevertheless, the reversion of the slow and fast dynamics identified for the continuous time regime hints that 
unexpected results may also be found in DTQW models.

Methods
All analytical results for the classical and quantum transition probabilities were derived with classical mathemati-
cal methods with widespread use in quantum walks2,14. These include Fourier transforms, general matrix algebra, 
general properties of the eigenvalue spectrum of circulant matrices, and asymptotic properties of Bessel functions.

The numerical results were obtained from the evaluation of the time dependent transition probability. The numer-
ical values of the exact analytical expressions were obtained by codes written by the authors in FORTRAN language.
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Figure 9. Quantum and classical equilibrium time (teq and tec) as a function of k/N when N = 104 for 
corresponding QW and CW walkers. Results for QW’s when q = 0, q = 0.5 and q = 0.9. Results for CW’s when 
q = 0, q = 0.0013 and q = 0.1 are also included, using the same parameter values for tec as in Fig. 3.

https://doi.org/10.1038/s41598-019-55580-2


1 1Scientific RepoRtS |         (2019) 9:19143  | https://doi.org/10.1038/s41598-019-55580-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
 1. Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687 (1993).
 2. Venegas-Andraca, S. E. Quantum walks: a comprehensive review. Quant. Info. Proc. 11, 1015–1106 (2012).
 3. Karski, M. et al. Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009).
 4. Zähringer, F. et al. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010).
 5. Nayak, A. & Vishwanath, A. Quantum walk on the line. arXiv:quant-ph/0010117 (2000).
 6. Souza, A. M. C. & Andrade, R. F. S. Coin state properties in quantum walks. Sci. Rep. 3, 1976 (2013).
 7. Zeng, M. & Yong, E. H. Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy. Sci. Rep. 7, 

12024 (2017).
 8. Farhi, E. & Gutmann, S. Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998).
 9. Mulken, O. & Blumen, A. From continuous-time random walk to continuous-time quantum walks: disordered network, in 

Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale (eds Davron Matrasulov, H. Eugene Stanley), cap. 14, pp. 189 
(2014).

 10. Solenov, D. & Fedichkin, L. Continuous-time quantum walks on a cycle graph. Phys. Rev. A 73, 012313 (2003).
 11. Mulken, O. & Blumen, A. Slow transport by continuous time quantum walks. Phys. Rev. E 71, 016101 (2005).
 12. Mulken, O. & Blumen, A. Efficiency of quantum and classical transport on graphs. Phys Rev E 73, 066117 (2006).
 13. Sokolov, I., Klafter, Y. & Blumen, A. Fractional Kinetics. Phys. Today 55, 48 (2002).
 14. Mulken, O. & Blumen, A. Continuous-time quantum walks: Models for coherent transport on complex networks. Phys. Rep. 502, 37 

(2011).
 15. Xu, X.-P. Exact analytical results for quantum walks on star graphs. J. Phys. A: Math. Theor. 42, 115205 (2009).
 16. Xu, X.-P., Li, W. & Liu, F. Coherent transport on Apollonian networks and continuous-time quantum walks. Phys. Rev. E 78, 052103 

(2008).
 17. Almeida, G. M. A. & Souza, A. M. C. Quantum transport with coupled cavities on an Apollonian network. Phys. Rev. A 87, 033804 

(2013).
 18. Mulken, O. & Blumen, A. Quantum transport on small-world networks: A continuous-time quantum walk approach. Phys. Rev. E 

76, 051125 (2007).
 19. Anishchenko, A., Blumen, A. & Mulken, O. Enhancing the spreading of quantum walks on star graphs by additional bonds. Quant. 

Info. Proc. 11, 1273 (2012).
 20. Mulken, O., Dolgushev, M. & Galiceanu, M. Complex quantum networks: From universal breakdown to optimal transport. Phys. 

Rev. E 93, 022304 (2016).
 21. Galiceanu, M. & Strunz, W. T. Continuous-time quantum walks on multilayer dendrimer networks. Phys. Rev. E 94, 022307 (2016).
 22. Méndez-Bermúdez, J. A., Alcazar-López, A., Martinez-Mendoza, A. J., Rodrigues, F. A. & Peron, T. K. DM. Universality in the 

spectral and eigenfunction properties of random networks. Phys. Rev. E 91, 032122 (2015).
 23. Zhang, Z., Lin, Y. & Guo, X. Eigenvalues for the transition matrix of a small-world scale-free network: Explicit expressions and 

applications. Phys. Rev. E 91, 062808 (2015).
 24. Jurjiu, A., Maia Júnior, D. G. & Galiceanu, M. Relaxation dynamics of generalized scale-free polymer networks. Sci. Rep. 8, 3731 

(2018).
 25. Jurjiu, A. & Galiceanu, M. Dynamics of a polymer network modeled by a fractal cactus. Polymers 10, 787 (2018).
 26. Grabow, C., Grosskinsky, S. & Timme, M. Small-world network spectra in mean-field Theory. Phys. Rev. Lett. 108, 218701 (2012).
 27. Davis, P. J. Circulant Matrices 66–73 (John Wiley & Sons, 1970).
 28. Gradshteyn, I. S. & Ryzhik, I. M. Tables of Integrals, Series and Products (ed. Jeffrey, A. and Zwillinger, D.) 910-942 (Academic Press, 

2007).

Acknowledgements
The authors acknowledge the financial support of the Brazilian agency CNPq. They also acknowledge the National 
Institute of Science and Technology for Complex Systems.

Author contributions
A.M.C.S. and R.F.S.A. designed research, performed calculations, analyzed results, and wrote the paper.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.M.C.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-55580-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Fast and slow dynamics for classical and quantum walks on mean-field small world networks
	Results
	Adjacency matrix spectrum. 
	Analytical results for the transition probabilities. 
	Classical dynamics. 
	Quantum dynamics. 

	Discussion
	Methods
	Acknowledgements
	Figure 1 Illustration of a small-world mean-field network, for N = 8, k = 4 and q = 0.
	Figure 2 Time evolution of the classical transition probability Pmj(t) for q = 0.
	Figure 3 Equilibrium time tec(N) defined by Eq.
	Figure 4 Time evolution of the classical transition probability Pmj(t) for N = 100.
	Figure 5 Time evolution of the classical transition probability Pmj(t) for N = 10000.
	Figure 6 Time evolution of the quantum transition probability Πmj(t) for (a) q = 0 and k = 2 for N = 10 (upper panel) and N = 100 (lower panel).
	Figure 7 Time evolution of the quantum transition probability Πmj(t) for N = 10000.
	Figure 8 Local maxima of quantum transition probability as a function of τ for N = 10000.
	Figure 9 Quantum and classical equilibrium time (teq and tec) as a function of k/N when N = 104 for corresponding QW and CW walkers.




