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cosolvent Analysis toolkit (cAt): 
a robust hotspot identification 
platform for cosolvent simulations 
of proteins to expand the druggable 
proteome
Francesc Sabanés Zariquiey1,2, João V. de Souza1,2 & Agnieszka K. Bronowska1*

Cosolvent Molecular Dynamics (MD) simulations are increasingly popular techniques developed 
for prediction and characterization of allosteric and cryptic binding sites, which can be rendered 
“druggable” by small molecule ligands. Despite their conceptual simplicity and effectiveness, the 
analysis of cosolvent MD trajectories relies on pocket volume data, which requires a high level of 
manual investigation and may introduce a bias. In this work, we present CAT (Cosolvent Analysis 
Toolkit): an open-source, freely accessible analytical tool, suitable for automated analysis of cosolvent 
MD trajectories. CAT is compatible with commonly used molecular graphics software packages such 
as UCSF Chimera and VMD. Using a novel hybrid empirical force field scoring function, CAT accurately 
ranks the dynamic interactions between the macromolecular target and cosolvent molecules. To 
benchmark, CAT was used for three validated protein targets with allosteric and orthosteric binding 
sites, using five chemically distinct cosolvent molecules. For all systems, CAT has accurately identified 
all known sites. CAT can thus assist in computational studies aiming at identification of protein 
“hotspots” in a wide range of systems. As an easy-to-use computational tool, we expect that CAT will 
contribute to an increase in the size of the potentially ‘druggable’ human proteome.

Over 75% of proteins relevant as disease targets cannot be readily targeted by conventional structure-based and 
chemical biology approaches1,2. Cryptic binding pockets, i.e. pockets that form in a protein upon ligand binding, 
but are not apparent in the crystal structure of the apo (unliganded) protein, and transient pockets, i.e. pockets 
with transiently form in a subset of an ensemble of protein conformations, offer immense opportunities to target 
proteins deemed ‘undruggable’ by conventional structure-based drug design (SBDD) approaches and are thus of 
considerable interest in academia and the pharmaceutical industry. Unfortunately, these ‘hotspots’ are not only 
notoriously difficult to identify, but the molecular mechanisms by which they form are still debated2,3.

Protein ‘hotspots’ are usually comprised of a set of residues that make a considerable contribution to the 
binding free energy. In past years, identifying them has been considered a key to target ‘undruggable’ proteins. 
Techniques such as Multiple Solvent Crystal Structures (MSCS)4, alanine scanning5 and structure-activity rela-
tionship by nuclear magnetic resonance (SAR by NMR)6 have been able to identify hotspots in a number of 
proteins. These methods tend to be highly resource- and time consuming, therefore the interest in developing 
computational tools able to identify ‘hotspots’ has emerged, resulting in approaches involving machine learning6 
and Multiple Copy Simultaneous Search (MCSS)7, among others. Methods involving machine learning rely on 
experimental data, i.e. cryptic pockets solved by X-ray crystallography, whose number is very limited8. The major 
shortcoming of MCSS is the fact that the probes do not interact with one another, which results in the loss of any 
possible cooperativity in their binding. Another limitation lies in the static structure of the protein target ana-
lyzed: any ligand-induced conformational changes cannot be observed, which precludes its applicability to the 
identification of cryptic and transient pockets.
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An approach devoid of these shortcomings is all-atom molecular dynamics (MD) simulation. However, 
attempts of identifying ‘hotspots’ by conventional MD simulations in an aqueous solvent are limited by relatively 
short timescales accessible (nanoseconds to single-digit microseconds), precluding observation of significant 
conformational changes that occur on microseconds to milliseconds timescales.

 Enhanced sampling techniques have proven effective at overcoming the timescale limitations of conventional 
equilibrium MD simulations and have successfully sampled cryptic pocket formation in several recently reported 
cases9, but those methods are restricted to the community of specialists in molecular simulations. To overcome 
the accessibility problem, easy to use tools for non-experts offering scans for potential cryptic, allosteric, and 
transient pockets have been established and they have gained popularity in recent years10–14.

One of the most common pocket detection tools is the FTMap15 webserver. A fast, easy to use method based 
on the sampling of a series of probe molecules ranked by an interaction-druggability scoring function, resulting 
in a set of top clusters. Though FTMap achieves a remarkable agreement with experimental data15,16, it presents 
some caveats. Mainly, the lack of a longer sampling through dynamics affecting the overall cleft formation, which 
restricts its ability to identify new cryptic binding sites.

An alternative yet simple approach to map molecular hotspots is relying on cosolvent MD simulations. This 
technique, involving simulating the target protein in a mixture of small molecular fragments (cosolvents) and 
water, was introduced in 200917, and it is being increasingly applied towards the discovery of novel binding sites 
and structure-based development of small molecule allosteric inhibitors. Success stories of cosolvent MD sim-
ulations include MixMD18,19, MDMix20, SILCS21, and others22. Simulations containing multiple fragment types 
require fewer simulations than comparable methods that simulate each fragment separately, but the extent to 
which this influences the predicted binding sites remains unclear.

Cosolvent MD simulations, while being straightforward to carry out by experts and non-experts alike, suffer 
similar shortcomings as the conventional MD simulation: namely, these are limited by the timescale. In addition, 
hydrophobic fragments tend to aggregate during cosolvent MD runs, which imposes constraints on the concen-
trations used23.

Another factor which hampers a wide use of cosolvent MD approaches is within data analysis. Traditionally, 
analysis of cosolvent MD simulations required a great deal of manual inspection to identify relevant sites, which 
made those simulations difficult to use for medicinal chemists and structural biologists. To enable fast and effi-
cient cosolvent MD simulation data analysis, we have developed CAT (Cosolvent Analysis Toolkit). CAT has been 
designed as an open-source analytical platform, compatible with commonly used molecular graphics software 
packages such as UCSF Chimera24 and VMD25. This feature is similar to Graham’s Probeview19, in which a PyMol 
plugin is developed to analyze the results of their cosolvent analysis approach. Conventionally, protein pockets 
have been identified by overlapping density from multiple fragment molecules. Such approach, although straight-
forward to implement, is prone to certain errors arising from e.g. stacking of aromatic of hydrophobic fragments 
due to hydrophobic effect.

CAT relies on a robust hybrid empirical-force field scoring function, which uses a softcore potential26 to the 
non-covalent interaction energy terms (see Methods). By utilising it, CAT avoids several pitfalls commonly found 
within the analysis of cosolvent MD trajectories. First, the softcore potential smooths the interaction energy 
landscape, fending off transient atomic clashes and improving the overall receptor-ligand shape complementarity. 
Along with that, the energy score implemented in CAT includes the regional average depth and the cosolvent 
retention time in the respective region. This results in an accurate measurement of the dynamical effects of bind-
ing directly incorporated in the ranking by CAT.

CAT incorporates two types of analysis: identification and ranking of the entire ‘hotspots’, and identification 
and ranking of the molecular fragments suitable for targeting those ‘hotspots’. The former serves as a general 
detector and can be readily used to guide structural biology experimental efforts, while the latter brings useful 
information about the inhibitor/ligand design from the structure-guided standpoint. The performance of CAT 
has been validated using four benchmark proteins: H-Ras GTPase, protein tyrosine phosphatase 1B (PTP1B), 
ligand binding domain of human androgen receptor (AR-LBD) and cyclin-dependent kinase 2 (CDK2). Two of 
these proteins have both orthosteric and allosteric binding sites. The results obtained were compared to the results 
obtained by FTMap. For all systems tested, CAT successfully identified allosteric sites, which were challenging 
to FTMap.

Methods
Selection of the benchmarking molecules and probes. To assess CAT’s efficiency on filtering and 
ranking hotspots, a set of probe molecules and protein targets were selected. Probe molecules (acetamide, ben-
zene, acetanilide, imidazole and isopropanol) were selected based on three criteria: first, this set has a range of 
solubility characteristics, going from fully hydrophobic molecules such as benzene to more hydrophilic molecules 
like acetamide. Second, all the probes are widely used molecular fragments, as crystallization co-factors, probes 
employed in fragment-based drug discovery (FBDD) efforts, and as moieties present in known small molecule 
ligands. Third, it is a set validated in previously reported studies on allosteric hotspot mapping16,19,22,27.

Regarding the target selection, our focus was set on proteins with reported crystallographic structures of 
their orthosteric binding site with more than one reported allosteric site; which have been used in benchmarks 
of similar techniques28. After a careful curation, four targets were selected: the ligand-binding domain of the 
androgen receptor (AR-LBD), protein-tyrosine phosphatase 1B (PTP1B) and GTPase HRas. Additionally, the 
cyclin-dependent kinase 2 (CDK2) has also been tested, as novel allosteric sites have been recently described29. 
As this set includes members of four distinct protein families, there is no bias towards any protein family in this 
benchmark.
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Structure preparation. The crystal structures used as starting conformations for the cosolvent MD sim-
ulations were in the apo state, whenever available (PDB codes are listed in Table 1). Structures were stripped of 
water molecules and any present cofactors and/or ligands. For structures with missing loops, the MODELLER30 
interface in UCSF Chimera24 was used to rebuild the missing fragments. The best ZDOPE scored loops were 
selected to complete the model.

Incomplete side chains were replaced using the Dunbrack rotamer library31, implemented in UCSF Chimera. 
For side chains with multiple locations, the highest occupancy conformations have been selected. Structural 
hydrogens were added and the following protein parametrization was performed using the Gromacs 2016.0332 
suite with AMBERFF99SB-ILDN33 force field. A cubic box was centered around the protein target with 1 nm dis-
tance between the protein extreme to the edge. A pre-defined number of molecular probes (cosolvent molecules) 
were randomly inserted into the system, ensuring that after the following solvation with TIP3P waters there was a 
10% (m/m) probe concentration in water in order to avoid phase separation and/or probe clustering. Each simu-
lation used a single type of cosolvent molecule. The probe selection criteria consisted of using a series of drug-like 
small molecular fragments with a broad range of relevant properties, including hydrophilicity/hydrophobicity, 
aromaticity, and the number of hydrogen-bonding acceptors/donors, with a diverse range of logP values. The 
following molecules were used: acetamide, benzene, acetanilide, imidazole and isopropanol. To diminish the 
effect of phase separation and π−π stacking of aromatic and highly hydrophobic cosolvent molecules such as 
benzene, an approach similar to Mackerell and colleagues was chosen, which relied on placing a dummy atom 
with a negligible negative charge (e = −0.01) in the center of the 6-membered ring. All probes were parametrized 
using GAFF34 with AM1-BCC35 charges assigned by ACPYPE/ANTECHAMBER36.

MD simulation protocol. Sodium and chloride ions were added to a concentration of 0.1 M. Bonds were 
constrained using the LINCS37 algorithm, with a 2 fs time step. The electrostatic interactions were calculated 
using the particle-mesh Ewald method, with a non-bonded cut-off set at 0.1 nm. All structures were minimized 
via the steepest descent algorithm for 20000 steps was stopped when the maximum force fell below 1000 kJ/
mol/nm using the Verlet cutoff scheme. After the minimization, heating via NVT ensemble was performed for 
100 ps with a time step of 2 fs with position restraints (1000 kJ/mol/nm2, applied in all three dimensions) applied 
to the backbone. The temperature coupling was set between the protein and the non-protein entities by using a 
Berendsen thermostat, with a time constant of 0.1 ps and the temperature set to reach 300 K with the pressure 
coupling off. Sequentially, a pressure NPT ensemble equilibration was performed followed by 100 ps, and three 
NPT ensemble production run replicas of 50 ns, totalling 150 ns for each different combination of protein and 
cosolvents, including the control simulations that are comprised of only protein-water systems. All production 
runs were unrestrained simulations38. The temperature was set constant at 300 K by using a modified Berendsen 
thermostat(τ = 0.1 ps)39. Pressure was kept constant at 1 bar by Parinello-Rahman isotropic coupling (τ = 2.0 ps) 
to a pressure bath.

Data analysis has initially been done within the Gromacs package. For each data set, the analysis involved 
calculating root-mean-square deviation (RMSD), root-mean-square fluctuations (RMSF), the covariance matri-
ces and principal component analysis (PCA) and solvent accessible surface area (SASA) to analyze convergence 
of the runs. Afterwards, CAT was employed for every dataset to identify any potentially ‘druggable’ hotspots. To 
assess the convergence, the cluster centroids (Supp. Figs. 13–16) and radial distribution functions (RDF; Supp. 
Figs. 17–20) were calculated for each replica, for all cosolvent simulations.

CAT analysis and the description of the scoring function. To create a reliable analytical method for 
the detection of molecular hotspots, the development of a scoring function was required. From a molecular 
interaction standpoint, such scoring function should include three characteristics: calculation of the interaction 
energy between the protein and cosolvent molecules, the retention time of the cosolvent molecule at the binding 
site, and the overall depth of the binding site relative to the protein surface. Therefore, the scoring function per 
residue can be written as follows (Eq. 1):

=S S S S (1)Residue Interaction Stability Depth

To calculate the interaction scoring part per residue in the protein, CAT defines a sphere surrounding each 
residues centre of geometry (dashed blue circle in Fig. 1). Hence, the interaction energy between the protein and 
every probe inside the sphere is calculated. To avoid atomic clashes, softcore potentials26 were used, as described 
in Eq. 2.

Molecule Starting structure Benchmark structures

AR Ligand Binding Domain (AR-LBD) 2PIO 2PIQ, 2PIR, 2PIT, 2PIU, 2PIV, 2PIW, 2PIX, 2PKL

Protein-tyrosine phosphatase 1B (PTP1B) 1XBO 1T4J42, 1T48, 6B9543

GTPase HRas (HRas) 1P2S 1P2T, 1P2U, 1P2V, 3K8Y, 3K9L, 3K9N, 3RRZ, 3RS0, 3RS2, 3RS3, 3RS4, 
3RS5, 3RS7

Cyclin-dependent Kinase 2 (CDK2) 4EK3 6Q3C, 6Q3B, 6Q3F, 6Q49, 6Q48,6Q4B, 6Q4A, 6Q4C, 6Q4D, 6Q4F, 6Q4E, 
6Q4J, 6Q4I, 6Q4H, 6Q4G, 6Q4K.

Table 1. PDB codes of the crystal structures used for our benchmarking, codes highlighted in bold correspond 
to the structures used for the cosolvent simulations.
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where r is the interatomic distance, ε corresponds to the depth of the Lennard-Jones potential, σ is the finite 
distance to the zero potential, K is the Coulombic constant in kcal/mol, δlj and δelec are the softcore deltas for the 
Lennard-Jones potential and Coulombic potential respectively26.

With the assigned sphere, the average number of cosolvent molecules 〈M〉 inside can be calculated. Sinteraction 
then can be calculated, in a simulation with N frames, as the ratio between the average interaction energy though 
the trajectory and the average number of molecules inside the sphere (Eq. 3):
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For the stability score, the RMSD of the total number of cosolvent molecules ∆M2  inside the sphere was 
used in (Eq. 4):
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Sstability values range from 0 to 1, allowing the highest values for low variance, representing more stable interac-
tions and molecules being retained for a longer time.

For the third scoring term, CAT counts the number of protein atoms (Jcontacts) inside each residue sphere 
(Fig. 1), assigning to it a volumetric score Sdepth. Afterwards, it is normalized by the highest scored residue, to set 
the range between 1 and 0, as Eq. 5 shows:

Figure 1. Clustering scheme of CAT: A sphere is generated per residue, which encapsulates shells of interacting 
cosolvent molecules (yellow circular regions defined by the variable Rresidue). Afterwards, a secondary clustering 
region (blue shaded area, defined by the variable Rcluster) defines close side-chains centres of geometry, resulting 
in a series of representative clusters of interest.
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To define the regions, dummy atoms are created for every residue in its corresponding center of geometry, 
with its respective Sinteraction (Eq. 1) assigned to it.

To define binding regions, CAT systematically scans through the protein backbone, defining a new spherical 
region (Fig. 1) which clusterizes the dummy atoms. This “CAT cluster” has a SRegion assigned as (Eq. 6):

∑=S
N

S1
(6)

Region
Residues
Inside

Inside
Residue

CAT generates a PDB file with dummy atoms highlighting the areas of interest regarding the Sresidue per residue 
and SRegion per region, ranked from the best to worse. This is depicted in Fig. 1.

In this study, values for the electrostatic and Lennard-Jones softcore delta were scanned (Supplementary 
Information). The best result was attained with deltas set to 1 Å. The sphere radius for the residue–cosolvent 
interaction was set at 8 Å, to incorporate approximately 3 shells of solvation. The clustering sphere radius set at 
5 Å, which encapsulates inter Cα distances for different secondary structures.

Validation. In order to compare our results with other pocket detecting tools, all molecules studied in this 
work were also tested in the FTMap webserver, a well-known tool for the study of allosteric binding sites. FTMap 
method consists of accelerated molecular dynamics to calculate and equilibrate the structure, on which the sur-
face is interacting with a series of probes. To determine whether FTMap has found the allosteric binding site, the 
probes shown in FTMapmust be interacting with residues which comprise the binding site of interest.

Results
Driven by an increasing interest in identifying potential allosteric, transient, or cryptic sites for structure-based 
drug discovery (SBDD), Cosolvent Analysis Toolkit (CAT) has been developed to discover potential druggable 
hotspots from atomistic MD simulations. An in-depth study of the molecules used to test the accuracy of the 
scoring function and its corresponding ranking is done in this paper. The obtained results are directly compared 
to the FTMap webserver, a robust, powerful and widely popular ‘hotspot’ detecting tool. The comparison con-
cludes that the explicit solvent/cosolvent interactions and MD sampling is crucial for the right assessment of 
cryptic binding sites, and CAT scoring function can filter and reasonably rank binding regions.

Androgen receptor ligand binding domain (AR-LBD). The androgen receptor is a multimeric 
DNA-binding transcription factor that regulates expression of genes critical for the development and mainte-
nance of the male sexual phenotype. Through its ligand binding domain (LBD) it binds to steroid hormones such 
as testosterone, androsterone, or dihydrotestosterone; the binding event occurs at the orthosteric binding site. 
Furthermore, the presence of auxiliary allosteric binding sites has been reported in two of the solvent exposed 
regions of the protein: at the activation function 2 (AF-2) between helices 3 and 4 and at the binding function 3 
(BF-3) close to helix 9 (Fig. 2).

The average structure with its respective CAT clusters have been superimposed to a series of 
experimentally-solved structures with bound ligands both in orthosteric and allosteric regions (Table 1)28. 
Binding poses of these ligands and their corresponding interactions with protein residues have been considered 
in the analysis. CAT finds both allosteric regions with fragments interacting with some of the key residues that 
achieve interactions with the crystallized ligands, as shown in Fig. 2. At the allosteric AF-2 binding site (Fig. 2), 
several highly-ranked clusters are placed mainly in helix 3(H3), including key residues K720 and V716 that pres-
ent hydrophobic interactions with the ligand, as depicted Fig. 2c. This is consistent with the values of energy 
scores, as highest-ranked clusters in that area correspond to fragments with hydrophobic groups such as benzene 
and acetanilide. The more polar fragments also detect the H3 area but with a slightly lower cluster rank (Table 2). 
Nevertheless, these fragments are interacting with R726 and N727, two very flexible residues that can enclose 
or open the pocket. By visual inspection and covariance analysis (Supplementary Information), the shape of the 
pocket can considerably vary, given by the influence of these two residues, acting as the gatekeepers. Considering 
the small size of this binding site, the success of detection of this area as a potential ‘druggable’ hotspot is very 
encouraging. CAT identifies regions that not only interact with a couple of H3 residues, but with the majority 
of the residues within this site and surrounding sidechains that could contribute to the further pocket opening. 
The interaction of the cosolvents with helix 4 region is not as favorable as with other areas, as no highly-ranked 
clusters are found close to it.

For the BF-3 allosteric binding site, CAT also gives satisfying results when compared with the experimental 
data. Although there is a higher number of CAT clusters in this area, especially around H9, the scoring rank of 
them is worse than the ones placed in AF-2. Key residues that give shape to the binding site, such as R840, Y834, 
G829 and F826, presented a CAT cluster, as Fig. 2d shows. In this case, acetamide is the fragment with most 
affinity to the area. Enclosing the site, CAT also detects interactions with the N-terminal area at F673 and the 
“gatekeeper” residues from AF-2 site: R726 and N727. To summarize, all clusters detected within AF-2 include 
the majority of the residues from this binding site. These residues are listed in Table 2.

The crystal structure of the AR dimer has been recently reported40, where the interactions between the AR 
monomers are observed. These interactions are crucial for the DNA binding and disrupting them could be a novel 
way to inhibit the protein. Interestingly, parts of the region involved in protein-protein interactions were detected 
by CAT along the dimerization interface. This highlights an applicability of CAT: mapping of novel and unique 
superficial interaction hotspots.
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6Scientific RepoRtS |         (2019) 9:19118  | https://doi.org/10.1038/s41598-019-55394-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

The only known AR binding site that CAT does not find is the orthosteric binding pocket. This site, which 
is a deep pocket binding dihydrotestosterone (DHT), is too enclosed inside the protein core and shielded from 
the surface for the cosolvent molecules to detect it. To observe the opening of this pocket it would require large 
conformational changes and thus simulations longer than performed in this study. It is very likely that in the 
timescales required some of the cosolvent molecules would undergo phase separation, therefore not appropriate 
for CAT analysis.

Comparison between CAT and FTMap shows some interesting results. FTMAP clearly identifies the ortho-
steric binding site as a potential ‘druggable’ hotspot (Table 2), as the highest populated clusters are mapped to 
that site. However, FTMAP fails to identify the allosteric binding sites: only one sparsely populated cluster is 
placed at the AF-2 site and none at the BF-3 site (Fig. 2). Moreover, unlike CAT, FTMap does not identify any 
dimer-forming regions of AR as potential hotspots. Therefore, an apparent strength of CAT is to reliably detect 
the hotspots that are challenging to FTMap.

PTP1B. Tyrosine-protein phosphatase non-receptor type 1 (PTP1B) is a negative regulator of the insulin sig-
naling pathway. It has emerged as a promising drug target for obesity and type II diabetes mellitus and obesity. 
Numerous potent PTP1B inhibitors have been discovered during last years, unfortunately nearly all medicinal 

Figure 2. Androgen receptor LBD hotspots found by CAT. Clusters have the following colors assigned: 
acetamide – blue, benzene – purple, acetanilide – orange, imidazole – yellow, and isopropanol – green. The 
crystallographic ligand is colored cyan. (a) Panoramic representation of LBD domain centered on the AF-2 
site compromised around the H3 and the respective top cluster given by CAT; (b) Panoramic representation 
centered around the BF-3 region and the respective CAT clusters. Simulations with all 5 probes found the site 
with a high rank, as described in Table 1. For the second site, only acetamide and benzene show high ranks. (c) 
AF-2 site and its key residues; K720, V716 and H714, that form part of H3, are detected by simulations with all 
5 fragments. (d) BF-3 and its key residues; simulations with acetamide detected N833 and N727 as key residues 
for the site, but with a lower ranking than the clusters found in AF-2 site.
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chemistry efforts have been hampered by lack of selectivity and inhibition of related proteins, especially T-cell 
protein tyrosine phosphatase (TCPTP).

PTP1B orthosteric binding site is formed by three loops: the WPD with W179, P180 and D181, a phos-
photyrosine (pTyr) loop including Y46, and a Q loop with G26241. An allosteric site (BB site) has been discov-
ered by X-Ray crystallography, which has paved a new path to design selective PTP1B inhibitors. This site is 
located between helices 3 and 6, forming protein-ligand interactions with residues L192, A193, F196, E276 and 
F280. (Fig. 2)42. Furthermore, a series of binding events and allosteric sites have been identified by the means of 
multi-temperature crystallography, fragment screening, and covalent tethering. This last study includes more 
than hundred crystal structures and different binding events but for the sake of analysis, we will focus on the two 
newly tested and identified allosteric sites: the allosteric 197 site, close to the previously known BB allosteric site 
and the loop 16 (L16) site.

CAT analysis for the cosolvent MD simulations in the apo/open state (PDB code: 1XBO) identified both bind-
ing sites: orthosteric and allosteric. For the orthosteric site, all cosolvent molecules tested interacted with various 
regions of the site. As showed in Fig. 2a,b, imidazole mapped all regions of interest: WPD-, pTyr-, and Q- loops. 
Isopropanol interacted preferentially with the WPD loop, while acetamide, acetanilide, and benzene interacted 
with the pTyr loop residues. For the BB allosteric site, CAT placed clusters for all cosolvents except imidazole, 
with clusters centered at the binding site (Fig. 2c). Helix 3 was mapped in its entirety, as it was the helix 4 region 
that comprised the pocket along with its key residues. The close proximity of the 197 site to the BB site might 
mislead the analysis from CAT clusters as both pockets share residues. Although both pockets might be included 
for the same cluster the 197 site is mapped by CAT, mainly by acetanilide and benzene. Most of the clusters from 
this pocket included K197, the mutated residue in the work by Keedy and coworkers, to reassure the ‘druggability’ 
of this pocket43. Regarding the L16 site, CAT placed a series of highly ranked clusters close in the proximity of 
the binding site but in contact with just one, two or no pocket residues. Nevertheless, the level of mapping was 
sufficient enough to determine the area as a potential binding site region.

FTMap has not identified the allosteric binding site (Table 3), which further emphasizes the strength of CAT 
in detection the allosteric hotspots that are difficult to find by FTMap. The comparison between CAT and FTMap 
shows a remarkable performance and robustness of the scoring function and the clustering method implemented 
in CAT. The drug-like small molecule bound at the allosteric PTP1B site reported by Wiesmann and coworkers 
using X-ray crystallography42 shows that this binding site is a bona fide ‘druggable’ site which can be used as start-
ing point for a structure-guided design, which has been validated in the follow-up drug discovery efforts42. As 
shown in Fig. 3, CAT ranks the clusters at the orthosteric site high, yet it is not biased towards deep pockets, being 
able to report all experimentally detected pockets in the top-ranked 10 CAT clusters, including the allosteric site 
undetected by FTMap.

Fragment hotspot screening – GTPase HRas. The main difference of the three isoforms of the human 
Ras proteins, HRas, KRas and NRas, lies within the primary sequence of the hypervariable region and its 
post-translational modifications44. The catalytic G-domains of the three respective Ras proteins are highly con-
served, with only a 10% average difference in primary sequence identity in the C-terminal lobe (residues 87 to 
171)45. The N-terminal lobe 1 carries the catalytic binding site with all the G-domains switches (Fig. 4)46.

The “effector lobe” contains the small molecule binding sites of Ras, including the allosteric site consisting of 
residues R97, D107 and Y137 (denoted as the allosteric lobe)47. This allosteric site is connected to the active site 
in HRas by helix 3 (H3), one edge of the inter-lobe linker, and one of the switches of the N-terminal lobe at the 
other. This is showed in Fig. 4.

Due to the sensitivity regarding the conformational changes of the HRas, the cosolvent MD simulations prior 
to the CAT analysis were run only in the “off ” state, to enable the direct comparison with the experimental MSCS 
(Multiple Solvent Crystal Structure) results on the H-Ras8,48. The MSCS showed several hotspots formed in differ-
ent regions of the protein in the “off ” conformation. The CAT analysis shows that our method can detect several 
of these hotspots in highly-ranked clusters.

Two major ‘hotspots’ were identified for HRas: one found in the inter-lobe linker region, and another one in 
the allosteric lobe (Fig. 4). Both hotspots involve H3 helix, but each of them is situated on either side of the helix. 

Target Binding site Protein contacts Cosolvent CAT rank
Found by 
FTMap?

AR-LBD

Orthosteric E706, V746, R752, F764, 
H874, F878 Not found — ✓

AF-2 Allosteric I672, F673, V716, K720, 
P723, G724, N727, K734

Acetamide 9

×

Acetanilide 1,2,9

Benzene 1

Imidazole 5,7

Isopropanol 2

BF-3 Allosteric F826, E829, Y834, E,833, 
R840, E897

Acetamide 1,3

×
Acetanilide 6,7

Benzene 10

Isopropanol 8

Table 2. AR-LBD results and comparison with FTMap.
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Cluster 1, as numbered in the study by Buhrman et al.49, is located near to the active site, between H3 and switch 
II, showing R68 and Y96 as the major contributors. Several highly-ranked CAT clusters interacted with cluster 1 
residues, mainly in helix H3. All fragments but acetamide interacted with the key residues R68 and Y96. Although 
acetamide did not interact with these amino acids, it placed its highest-ranking cluster around a large region of 
H3. Cluster 2, found between helices H3 and H4, mapped to one of the largest hotspots. In this case, CAT inter-
acted with both helix 3 and 4, with residues I93 and H94 from helix 3 and virtually all residues from helix 4. There 
were no acetamide clusters found around the pocket, which may indicate that this region has a low affinity for 
highly polar moieties. Cluster 4 consisted of a pocket in the inter-lobe linker region very close to the nucleotide 
substrate. It was comprised of D30 and K147; the latter being a target for ubiquitination on Ras-GTP50. There 
were only two CAT clusters that interacted with the residues from this pocket. Acetamide interacted with D30, 
while imidazole did with K147. Remaining clusters mapped to the pockets that overlapped with sites occupied by 
effector Ras binding (RBD) or cysteine-rich (CRD) domains and RasGAP.

At the inter-lobe linker region and at the region overlapping with Raf-CRD, CAT has mapped cluster 7. 
Clusters 3 and 6 overlapped with the RasGAP binding site. Although CAT mapped all experimentally detected 
sites, its performance for the lower-ranking clusters was worse than for the first two hotspots. Not all the cosol-
vents interacted with these binding sites. Interestingly, binding sites mapped by MD simulations using our most 
polar cosolvent, acetamide, did not overlap with hotspots detected by other fragments (and vice versa). This may 
imply that putative hotspots detected by acetamide might not be druggable, or that they may be very small hence 
not amenable for fragment growth and structure-based ligand design.

FTMap detected only hotspots marked by clusters 1 and 2; both being among highly-ranked FTMap clusters. 
On the other hand, FTMap detected the calcium acetate binding site51 whereas neither CAT nor MSCS succeeded 
(Table 4).

Novel allosteric sites prediction on CDK2. Cyclin-dependent kinase 2 (CDK2) is a serine/threonine 
ATP-binding kinase that interacts with several different cyclins52. It is comprised of two regions known as C and 
N lobes, connected by a hinge, with a significant role in the cell cycle, in the transcription regulation53. CDK2 
directly acts on the protein expression related to the transition from the G1 to S phase of the cell cycle. Hence, 
it is an interesting protein target for cancer drugs. Functionally, CDK2 goes through a series of conformational 
changes to reach an active state. The interlobe region interacts with cyclins (preferably A and E), shifting the acti-
vation loop (located between residues A149 to T165) and subsequently revealing the ATP binding site. This allows 
the phosphorylation of the threonine located in the active site, reaching a final active configuration.

Recently, CDK2 was used in a novel experimental approach for the identification of binding sites called 
Fraglite. Wood and coworkers experimentally mapped a series of allosteric sites using X-ray crystallography, 
resulting in a set of 5 regions with known fragment binding. One of the main features in these set of structures is 
the fragments were designed to achieve hydrogen bonds, improving the assessment on its allosteric druggability 
and tractability.

To further assess the capacities of the CAT scoring function, cosolvent runs were made with all five previously 
cited probes. Since most of these sites are recently discovered, it should result in an evidence of non-biasing of our 
described energetic scoring function. Hence, CAT is able to rank all 5 novel fragment binding sites described in 
Wood et al. along with the ATP binding site. Description of found hotspots is shown in Table 5.

Site 2 (Fig. 5) is located exactly on the activation loop. CAT was able to highlight all residues comprising this 
loop, including T160, with overlapping clusters of several different cosolvents. This threonine goes through a 
phosphorylation event, being one of the main contributors of binding site stabilization. The region along site 3 
represents the dimerization area where the binding of cyclin partners occurs, being found by CAT with different 
cluster ranks. Protein-protein areas are commonly highlighted by CAT scoring function, given the calculated 

Target Binding site Protein contacts Cosolvent CAT rank
Found by 
FTMap?

PTP1B

Orthosteric Y46, W179, P180, D181, G262

Acetamide 3

✓
Benzene 5,6

Imidazole 6

Isopropanol 2

Allosteric L192, A193, F196, E276, F280

Acetanilide 1,3,10

×
Benzene 2

Imidazole 1,5,7

Isopropanol 3,6,7

197 R105, D148, K150, Y152, Y153, E157, N193, K197

Acetanilide 4,5,7

×Benzene 2,6

Isopropanol 5,6

L16 K237, K239, S242, I281

Acetanilide 1

×Benzene 1

Imidazole 10

Table 3. PTP1B results and comparison to FTMap.
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energetic aspect which can filter highly favorable interactions within shorter residence periods of cosolvent 
molecules.

Sites 4 and 5 (Fig. 5) are located in the C-Lobe region. Site 4 is directly related to the C-lobe loops and it is a 
novel binding site for CDK2. It interacts with polar residues (such as T221 and R245), which explains its high 
affinity with acetanilide. This pocket represents areas that, when constrained, could change the dynamics of the 
semi-unstructured T221-D247 C-Lobe loop, which is related to the cyclin dimerization stabilization event, result-
ing in an interesting site for structured based drug design. Site 5 is found at the end of the α-helix bundle that 
comprises most of the C-lobe sequence. It is highly ranked in CAT, especially for cosolvents highly polar probes, 
such as acetamide and acetanilide. As described in Wood and coworkers29, fragments using in their study should 
be tailored to accurately find a specific binding region by the usage of fragments prone to form hydrogen interac-
tions. Hence, the used structures should represent highly specific interactions, resonating with the results given 
by CAT, ranking polar molecules in the same manner.

Figure 3. PTP1B hotspots found by CAT. Clusters have the following colors assigned: acetamide – blue, 
benzene – purple, acetanilide – orange, imidazole – yellow, and isopropanol – green. The crystallographic 
ligand is colored cyan. (A) Panoramic view centered on the allosteric binding sites; (B) View centered on the 
orthosteric binding site. CAT performs well finding and scoring the binding site for PTP1B since 4 out of 
the 5 cosolvent molecules are able to interact with the site residues. Only isopropanol and benzene find the 
orthosteric binding site, and acetamide interacts with neighbor key residues. (C) BB allosteric binding site and 
its main residues; all cosolvent molecules but acetamide rank clusters in the allosteric binding site, principally 
isopropanol, which shows interactions with N193, F196 and F280. (D) 197 site recently identified by Keedy  
et al.43. CAT maps the whole site, including K197.
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Discussion
The correct assessment of the structural changes within the protein target is crucial for the right evaluation of 
possible time-dependent binding sites. As such, an accurate tool is pivotal for selecting possible contact regions 
to be further studied. While standard analysis of hotspot mapping quantifies primarily the volume of the binding 
region, cosolvent MD simulation followed by CAT analysis focuses on the cosolvent-induced conformational 
changes, to map, assess, and rank the putative ‘hotspots’, via an empirical scoring function. This characteristic 
gives the algorithm presented herein a high level of robustness and reliability in searching and ranking hotspots, 
as shown by the comparison with experimental data and FTMap predictions. The scoring function implemented 
in CAT makes it unique and distinct from computational methodologies reported in the literature.

Upon inspection of the androgen receptor ligand binding domain (AR-LBD), CAT outperformed FTMap, by 
finding both allosteric binding site from cosolvent MD simulations data employing several different cosolvent 
molecules. CAT analysis found, on average, 70 clusters mapping to putative interacting regions aka ‘hotspots’, and 
it was able to correctly rank the clusters which represented both of the binding sites in the top 10 clusters (Table 2 
and Supp. Table 1). FTMap failed to find known AR-LBD allosteric sites. This demonstrates the robustness of the 
framework behind the scoring function implemented in CAT: unlike the scoring method used in FTMap, CAT 

Figure 4. HRas hotspots found by CAT. The clusters are colored as follows: acetamide – blue, benzene – 
purple, acetanilide – orange, imidazole – yellow, and isopropanol – green. The crystallographic fragment is 
colored cyan. (a) Panoramic view of the HRas and the highest-ranked cluster for each cosolvent molecule. (a) 
Depiction of Site 3, (b) Site 5, (c) Site 6 (d) Site 7 and (e) Site 8, Following the naming and numbering from 
Buhrman et al.49. As shown, acetamide and benzene perform better than the other 3 cosolvent molecules, but 
the combination of the 5 different cosolvents are able to find most of the superficial binding sites and CAT score 
is able to find the interacting residues to different crystalized molecular fragments.
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does not involve any knowledge-based potential, thus not having any comparative bias regarding known binding 
modes.

Similar performance has been observed for PTP1B: CAT has successfully mapped and correctly ranked the 
allosteric binding sites of PTP1B along with its orthosteric site; a task that FTMap was unable to accomplish. 
The BB allosteric binding site of PTP1B is prone to undergo conformational changes upon the formation of the 
orthosteric complex and although both 197 site and L16 sites have been recently identified and it has been deter-
mined their allosteric role. The protein in the cosolvent environment is able to bind cosolvent molecules to its 

Target
Binding 
site Protein contacts Cosolvent CAT rank

Found by 
FTMap?

HRAS

Site 1 R68, Q95, Y96, Q99, D92

Acetamide 1

✓

Acetanilide 2,7

Benzene 1,5

Imidazole 1,4,5

Isopropanol 2,4

Site 2 H94, L133, S136, Y137

Acetanilide 1,5,9

✓
Benzene 8

Imidazole 4,7,10

Isopropanol 2,5,6

Site 3 S17, I21, Q,25, H27, V29, D33, T35, D38, Y40
Acetamide 3,9

×
Imidazole 8

Site 4 F28, D30, K147
Acetamide 3

×
Imidazole 9

Site 5 A11, G12, N86, K88, S89, D92

Acetanilide 9

×
Benzene 3

Imidazole 4

Isopropanol 5,6

Site 6 D30, E31, Y32 Acetamide 3 ×

Site 7 L23, N26, K42, V44, V45, R149, E153, Y157

Acetanilide 6,8

×Benzene 4,6

Isopropanol 7

Site 8 G13, Y32, N86, K117
Acetamide 3

×
Benzene 2

Table 4. HRas results and comparison to FTMap.

Target Binding site Protein contacts Cosolvent CAT rank
Found by 
FTMap?

CDK2

Orthosteric E12, G13, Q131, N132, D86, L134, L134, D145
Acetamide 1

✓
Imidazole 4,8

Site 1 K33, K34, Y77, K6, Y19, L32, K75, K34, H71L

Acetanilide 1,9

×Benzene 1,3

Isopropanol 2,3

Site 2 T160, H161, R157, T158

Acetamide 7

×
Imidazole 6

Benzene 5

Isopropanol 4

Site 3 L124, R150, G147, H125, R126, C177, J178, 
Y179

Acetamide 3

✓

Acetanilide 2, 4, 5

Benzene 5, 8

Imidazole 9

Isopropanol 8

Site 4 T221, P222, D223, L219, R245, L267, Y262
Acetanilide 2, 4

×
Imidazole 10

Site 5 R199, T198, M192, T97, I104

Acetamide 3

×Acetanilide 2, 8, 10

Isopropanol 7

Table 5. CDK2 results and comparison to FTMap
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orthosteric site, which facilitates the opening of the allosteric binding site. This allosteric communication cannot 
be probed using the FTMap methodology, which does not take into the account changes in correlated motions 
upon the binding event. The H-Ras case further tested the robustness of CAT and its predictive power towards 
novel molecular hotspots. As shown by Burhman et al., FTMap was able to find all putative binding sites validated 
by MSCS but failed to find a series of hotspots found in the crystal structures. CAT, on the other hand, was able 
to find 7 out of the 8 crystallographically identified binding sites. It should be emphasized, however, that all sites 
identified by MSCS are shallow and very small, and very likely these are too small to be considered as bona fide 
‘druggable’ binding sites.

CDK2 novel sites were correctly mapped and ranked by CAT. The ATP binding site is found in the acetamide 
runs as the top cluster. This differentiates from the previous tests, which were unable to find deeper sites, showing 
that CAT is also able to find deeper regions of interest. For the allosteric sites, CAT was able to map all five novel 
binding regions. Two sites are directly related to the cyclin-CDK dimerization interface (sites 2 and 3). Site 3 in 
specific is in direct interaction with T160, but might not represent a ‘druggable’ region given its superficiality.

CAT is a tool that eases the analysis of cosolvent MD simulations, reducing the manual observation of every 
trajectory to a set of clusters ranked through a scoring function based on energy and geometrical parameters.

CAT is not the first cosolvent tool in the literature, and it might still show some flaws compared to its pre-
decessors, like for example the identification of androgen receptor’s deep-buried orthosteric binding site. CAT 
ease of use and complementarity with most popular visualization tools for current users is what makes it a really 
orthogonal option. Alongside that, CAT was built in a readily customizable way, to accepted auxiliary parameters. 
Thus, different force fields or charge models can be easily imported and used. Furthermore, the use of a scoring 
function based on both geometrical and energy values could additionally help future structure-based drug design 
such as identification of pockets key residues or design of pharmacophore models.

It is interesting to remark the recent development of a Pymol plugin based on the MixMD approach called 
ProbeView. With a similar idea to CAT, Probeview helps deepen the understanding of cosolvent probing for 
allosteric binding sites, but it is restrained to Pymol. A significance is on visualization: the fact that a CAT output 
can be seen in any visualization tool, not only Pymol, can make the usability higher. Probeview, used alongside 
CAT, may represent a useful orthogonal scoring methodology to assess a diverse range of binding sites.

The scoring function implemented in CAT can successfully filter and rank hotspots in a dynamical envi-
ronment provided by cosolvent MD simulations. In the present study, we have developed, tested and validated 
the applicability of CAT analysis to detect several potentially ‘druggable’ allosteric sites, which were detected by 
X-Ray crystallography studies. The usage of five different cosolvent molecules demonstrated, at the same time, a 
broad sample space regarding interacting molecules and provides an insight on the chemical nature of the puta-
tive ligand moieties that would preferentially bind to the respective site. CAT is robust yet versatile: the analysis 
can be performed on cosolvent trajectories using any cosolvent molecule of choice.

The major shortcoming of CAT observed so far was its inability to map some deep buried pockets. This could 
be attributed to insufficient sampling during MD simulation, however, FTMap performs very well on this task. 
Although this issue may be easily sorted by longer MD simulation in water prior to cosolvent MD simulations, a 

Figure 5. CDK2 Hotspots found by CAT. The clusters are colored as follows: acetamide – blue, benzene – 
purple, acetanilide – orange, imidazole – yellow, and isopropanol – green. The crystallographic fragment is 
colored cyan. (a) Panoramic view of the HRas and the highest ranked cluster for each cosolvent molecule. (a) 
Depiction of CDK2 and highest scored clusters, (b) Orthosteric site, (c) Site 1 (d) Site 2 (e) Site 3 (f) Site 4 (g) 
Site 5. As shown, acetamide and acetanilide perform better than the other 3 cosolvent molecules, given the 
nature of the experimental X-ray mapped crystallographic binding regions. Site 4 and 5 in specific shows high 
ranked clusters for these 2 probes, given by the high polarity of the site’s side chains.
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combination of both tools could be a viable approach. We understand that the principle in which FTMap is based 
is not the same, although they share some features. Our main goal while choosing this tool as a comparison with 
CAT relied on the ease of use and fast results one could get. The use of cosolvent tools such as CAT can give more 
insights into the dynamics and “crypticity” of the target in comparison to FTMap.

In future works, we aim to explore CAT analysis applied to multi-cosolvent trajectories and to address the 
sampling problem which underlies the sub-optimal performance in mapping the buried pockets.

Data availability
The authors declare that all the data supporting the findings of this study are available within the article and the 
Supplementary Information, and upon request. The CAT source code, tutorial and respective test files can be 
found in https://github.com/ammvitor/CAT.
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