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Short-term Reproducibility of 
pulmonary nodule and Mass 
Detection in chest Radiographs: 
comparison among Radiologists 
and Four Different Computer-Aided 
Detections with convolutional 
neural net
Young-Gon Kim1,6, Yongwon cho1,6, Chen-Jiang Wu2,6, Sejin park3, Kyu-Hwan Jung3, 
Joon Beom Seo4, Hyun Joo Lee4, Hye Jeon Hwang4, Sang Min Lee  4* & namkug Kim  5*

To investigate the reproducibility of computer-aided detection (CAD) for detection of pulmonary 
nodules and masses for consecutive chest radiographies (CXRs) of the same patient within a short-
term period. A total of 944 CXRs (Chest PA) with nodules and masses, recorded between January 2010 
and November 2016 at the Asan Medical Center, were obtained. In all, 1092 regions of interest for the 
nodules and mass were delineated using an in-house software. All CXRs were randomly split into 6:2:2 
sets for training, development, and validation. Furthermore, paired follow-up CXRs (n = 121) acquired 
within one week in the validation set, in which expert thoracic radiologists confirmed no changes, 
were used to evaluate the reproducibility of CAD by two radiologists (R1 and R2). The reproducibility 
comparison of four different convolutional neural net algorithms and two chest radiologists (with 
13- and 14-years’ experience) was conducted. Model performances were evaluated by figure-of-merit 
(FOM) analysis of the jackknife free-response receiver operating curve and reproducibility rates were 
evaluated in terms of percent positive agreement (PPA) and Chamberlain’s percent positive agreement 
(CPPA). Reproducibility analysis of the four CADs and R1 and R2 showed variations in the PPA and CPPA. 
Model performance of YOLO (You Only Look Once) v2 based eDenseYOLO showed a higher FOM (0.89; 
0.85–0.93) than RetinaNet (0.89; 0.85–0.93) and atrous spatial pyramid pooling U-Net (0.85; 0.80–0.89). 
eDenseYOLO showed higher PPAs (97.87%) and CPPAs (95.80%) than Mask R-CNN, RetinaNet, ASSP 
U-Net, R1, and R2 (PPA: 96.52%, 94.23%, 95.04%, 96.55%, and 94.98%; CPPA: 93.18%, 89.09%, 
90.57%, 93.33%, and 90.43%). There were moderate variations in the reproducibility of CAD with 
different algorithms, which likely indicates that measurement of reproducibility is necessary for 
evaluating CAD performance in actual clinical environments.

In general clinical practice, chest radiography (CXR) is usually the first choice of imaging for patients with 
nonspecific symptoms for thoracic conditions. As CXR is easily available and inexpensive, it became a part of 
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screening tool to detect a disease in its earliest stages. However, there are several practical limitations for radiol-
ogists in assessing the results while maintaining a high quality of diagnosis; in fact, frequently missed diagnoses 
even by experienced radiologists were detected retrospectively1–3.

CAD has been introduced to help radiologists and showed added value in the detection of pulmonary nod-
ules in CXR4–6. Hoop, et al.7 demonstrated that the sensitivity of CAD is comparable to that of expert radiolo-
gists in identifying lung cancer with low-dose computed tomography (CT) screening. However, the sensitivity 
of stand-alone CAD in follow-up (F/U) CXR was found to be 71% with 1.3 false-positive findings per image8. 
Although CAD performance has improved significantly, it still requires better sensitivity and specificity to be 
integrated into routine clinical practice.

Several different types of CAD systems have been recently implemented as part of the picture archiving and 
communication system (PACS) technology9–14. In CXR, the chest CAD package might include automated detec-
tion of lung nodules, interstitial opacities, cardiomegaly, vertebral fractures, and interval changes. Moreover, deep 
learning with convolutional neural net (CNN) algorithms have been successfully adapted in computer vision 
technology and CAD in CXRs for the detection and classification of multiple lesions. Lakhani et al.11 showed 
that deep-learning techniques can accurately classify tuberculosis in CXR with an area under the curve (AUC) of 
0.99, which is higher than that described in a previous study (AUC of 0.87–0.90), with support vector machines10. 
Similarly, Islam et al.9 studied CXR-based diagnosis of pulmonary abnormalities and demonstrated a high per-
formance in the ensemble deep-learning model.

To introduce this novel technique in actual clinical practice, one of the most important requirements is repro-
ducibility as there are several variable parameters, such as breathing, posture, position, and device settings, that 
should be taken into account. However, there is not much information available on CAD reproducibility. Kumar 
et al.15 evaluated the reliability and validity of CXR between the best physician and best radiologist in the diag-
nosis of pulmonary tuberculosis. To the best of our knowledge, reproducibility of CAD based on CNN has not 
yet been intensively evaluated. In this study, we propose that reproducibility is an important indicator of CAD 
performance for clinical purposes.

Thus, we investigated the reproducibility of CAD with four different convolutional neural net algorithms such 
as Mask R-CNN16, RetinaNet17, YOLO (You Look Only Once) v218-based eDenseYOLO, and atrous spatial pyr-
amid pooling19 (ASPP) -based U-Net20 and two chest radiologists (with 13- and 14-years’ experience) for chest 
radiography (CXR) of the same patient with nodules and masses within a short-term period.

Materials and Methods
Subjects. The institutional review board for human investigation at the Asan Medical Center (AMC) 
approved our study protocol with removal of all patient identifiers from the images. The need for informed con-
sent was waived due to the retrospective nature of this study.

A total of 944 CXRs (Chest PA) with pulmonary nodules or masses captured between January 2010 and 
November 2016 at the AMC were obtained. Later, a total of 1092 regions of interest (ROIs) of the nodules or 
masses in initial CXRs were delineated by expert thoracic radiologists by consensus using an in-house software 
on the nearest corresponding CT images as the ground truth. The CXRs were randomly split into 6:2:2 sets for 
training, development, and validation, respectively. The average time interval between initial and F/U CXRs was 
(4.00 ± 3.69) days; the average interval between initial CXRs and CT scans captured at AMC was (5.92 ± 13.52) 
days while that in the case of CTs captured in other hospitals was (13.42 ± 8.53) days. To measure reproducibility, 
only 121 paired CXRs in the validation set were enrolled depending on the availability of F/U CXRs; these were 
recorded within one week and no disease change was confirmed by expert thoracic radiologists (Fig. 1). Detailed 
demographics were listed in Table 1.

Figure 1. Initial and follow-up (F/U) CXRs and CT images with a nodule. (a) Initial CXR in a 65-year-old 
male patient with 18.59 cm metastatic renal cell carcinoma (arrowhead) in the left upper lobe and (b) CT 
examination of patient (a). (c) F/U CXR of (a). (d) Initial CXR of an 81-year-old male patient with 15.13 cm 
metastatic adenocarcinoma (arrowhead) in the right middle lobe and (e) CT examination corresponding to (d). 
(f) F/U CXR of (d).
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Methods. To evaluate the reproducibility of CAD for nodules and masses, four different algorithms were 
trained and two board-certificated chest radiologists (R1 and R2 with 14- and 13-years’ experience, respectively) 
participated in this study.

We used different architectures based on CNN, viz. one-stage learning-based RetinaNet and modified 
eDenseYOLO, two-stage learning-based Mask R-CNN, and ASPP based U-Net. In this study, RetinaNet and Mask 
R-CNN were trained without architecture modification, while eDenseYOLO and ASPP U-Net were trained with 
modification from their original architecture to improve CAD performance. Simple augmentation methods, such 
as pixel windowing, histogram matching, rotation, blur, brightness, contrast, inversion, Gaussian noise, sharpness, 
shift, and zoom, were used when training Mask R-CNN, RetinaNet, and eDenseYOLO. For training ASPP U-Net, 
random crop, orientation, brightness adjustment, and Gaussian noise and Poisson noise were used as the aug-
mentation methods. Detailed hyper-parameters were summarized in Table 2. Five different cut-off thresholds for 
reproducibility were determined empirically as the number of average false positives (0.1, 0.2, 0.3, 0.4, and 0.5) in 
the free-response receiver operating characteristic (FROC) curve for analyzing the reproducibility of the validation 
set. A hit-criterion was defined as intersection over union between labeled box and predicted box is over 0.5.

Description of the four algorithms. The Mask R-CNN algorithm is divided into two steps; the first 
extracts candidate regions as a region proposal network and the second classifies or segments them. This algo-
rithm is designed not only to find object boundaries but also segment objects. Mask R-CNN with feature pyramid 
network (FPN) was used to train and infer nodules, which is more robust to various sizes of nodules than those 
with a single scale feature map.

RetinaNet is a one-stage detector and is simple and fast to train as the detection model. It is an FPN with 
cross-entropy loss replaced by focal loss and infers objects of different sizes at different scales in the feature map. 
The alpha and gamma values for focal loss were set at 0.25 and 2.0, respectively. Resnet50 was used as the back-
bone network and the three final layers were used for FPN.

We used the eDenseYOLO system, modified from its original YOLO architecture. The output layers of YOLO 
v2 with DenseNet201 as eDenseYOLO, modified to be robust at different nodule/mass sizes, are shown in Fig. 2. 
For example, if the input is 256 × 256, the feature map of the output layer takes various resolution forms, such as 
8 × 8, 16 × 16, or 32 × 32. The output layer is concatenated to fuse information together. The output layer is mod-
ified to exploit context information from regions with different resolutions (ensemble), including pooled features 
for each feature map with a foveal structure. It is effective to train and predict abnormalities (objects) of different 
scales in chest radiographs. This network predicts class confidence scores and locations of bounding boxes to 
detect multiple lesions in CXRs with individual layers.

Characteristic
Training and development 
set (N = 822 single CXRs)

Validation set (N = 121 
paired CXRs)

Age (per patient) 61.24 ± 10.74 60.74 ± 9.12

Male 632 (76.96%) 90 (74.38%)

Multiple lesions

One lesion 740 108

Multiple lesions (≥2) 82 13

Total 822 121

Size (mm)

≤10 mm 14 (1.49%) 2 (1.39%)

10–20 mm 117 (12.45%) 21 (14.58%)

20–30 mm 231 (24.57%) 23 (15.97%)

≥30 mm 578 (61.49%) 98 (68.06%)

Total 940 144

Location

Right upper 278 (29.57%) 45 (31.25%)

Right middle 80 (8.51%) 12 (8.33%)

Right lower 144 (15.32%) 24 (16.67%)

Left upper 244 (25.96%) 37 (25.69%)

Left lower 194 (20.64%) 26 (18.06%)

Total 940 144

Table 1. Demographics corresponding to training and validation sets.

Algorithm Mask R-CNN RetinaNet eDenseYOLO ASPP U-Net

Stages Two stages Single stage Single stage Single stage

Backbone Resnet101 ResNet101 DensNet201 ResNet50

Optimizer SGD SGD Adam Adam

Learning rate 1e-6 1e-6 1e-3 1e-3

Weight decay 0.0 0.0 0.0005 –

Momentum 0.9 0.9 0.9 0.9, 0.999

Table 2. Parameters used for training four different CNN-based algorithms for CAD.
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The ASPP U-Net, a modified version of the U-net architecture, was used to segment nodules and masses. The 
core of U-net architecture consists of an encoder-decoder scheme and a lateral skip connection. The encoder is 
followed by the ASPP layer to detect multi-scaled objects. ASPP uses atrous (dilated) convolutions of different 

Figure 2. Architecture of eDenseYOLO with a backend network of DenseNet201. The output layers of 
eDenseYOLO, i.e., YOLO v2 with DenseNet201, were modified for improved robustness with respect to disease-
pattern size. If the input is 256 × 256, the feature map for the last layer is 8 × 8, 16 × 16, or 32 × 32 with a skip 
connection.

Figure 3. Example of a confusion matrix for reproducibility analysis using initial and F/U CXRs.

Figure 4. FROC comparison for nodule detection by Mask R-CNN, RetinaNet, eDenseYOLO, and ASPP 
U-Net.
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rates to classify regions of an arbitrary scale. Atrous convolutions are special convolutions with a factor that 
expands the field of view. It expands (dilates) the convolution filter according to the dilation rate and fills the 
empty spaces with zeros, thereby creating a sparse filter. Using multiple parallel atrous convolutional layers with 
different sampling rates, we can aggregate a multi-scaled object detector into one model. To generate the bound-
ing box and the corresponding confidence of a detected nodule, we performed connected component labeling to 
softmax the output map of the segmentation network with a given threshold (0.05). For every bounding box, the 
confidence was calculated by averaging the softmax value of each pixel inside the bounding box.

Description of the two participating chest radiologists. Two expert thoracic radiologists (R1 and R2 
with 14 and 13 years’ experience, respectively, in chest radiology) were recruited to verify the results of human 
assessment. All patient information, except for the CXRs, were blinded. Signs of possible nodules were marked 
on the chest CXR (PA view) using an in-house software. Reading cases including initial and F/U CXRs were done 
at one session.

evaluation. To evaluate reproducibility, percent positive agreement (PPA)21,22 and Chamberlain’s percent 
positive agreement (CPPA) were used and can be defined as follows.

= ×
+ +

a
a b c

PPA 100 2
2 (1)

Figure 5. Confusion matrices for measuring reproducibility in initial and F/U CXRs. (a) Mask R-CNN, (b) 
RetinaNet, (c) eDenseYOLO, (d) ASPP U-Net, (e) R1, and (f) R2.

Algorithms and 
readers FOM (95% CI) PPA (%) CPPA (%)

Mask R-CNN 0.87 (0.83–0.91) 96.52 ± 0.51 93.18 ± 0.81

RetinaNet 0.84 (0.78–0.88)* 94.23 ± 0.00 89.09 ± 0.00

eDenseYOLO 0.89 (0.85–0.93) 97.87 ± 0.08 95.80 ± 0.22

ASPP U-Net 0.85 (0.80–0.89)* 95.04 ± 0.11 90.57 ± 0.19

R1 96.55 93.33

R2 — 94.98 90.43

Table 3. Figure of merit (FOM) (95% confidence interval) of jackknife free-response receiver operating curve 
(JAFROC) and reproducibility comparisons in terms of PPA and CPPA at five-different cutoff values (the 
number of false positives per CXR was 0.1, 0.2, 0.3, 0.4, and 0.5) of four CNNs based detection algorithms and 
two readers on nodule and mass case. (*p-value < 0.05 between eDenseYOLO and others for FOM).
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+ +

a
a b c

CPPA 100
(2)

Here, a is the number of cases in which the same nodule was detected in initial and F/U CXRs and b and c 
are the number of cases in which nodules were detected only in initial or F/U CXRs, respectively. Meanwhile, we 
defined another parameter, d, as the number of cases in which a given nodule was not detected in both initial 
and F/U CXRs; d was not used for measurements, such as PPA or CPPA, because our concept is to measure how 
consistently deep-learning models predicted lesions in patients with diseases that manifest nodules or masses in 
F/U CXRs. Figure 3 shows an example of a confusion matrix used to measure PPA and CPPA.

Results
The reproducibility of the four different chosen CNN algorithms and two chest radiologists (R1 and R2) for nod-
ule detection in CXRs was evaluated. The performance of each CNN-based model is shown in Fig. 4 in terms of 
FROC curves for the validation set.

Five different cut-off thresholds for reproducibility were determined as the number of average false positives 
(0.1, 0.2, 0.3, 0.4, and 0.5) in FROC curves for evaluating the reproducibility of the validation set. Five PPAs 
obtained by each model with the five different cut-off thresholds were averaged. In the same manner, CPPAs of 
each model were averaged. At the cut-off threshold 0.2, the sensitivities 0.80, 0.81, 0.83, and 0.79 were observed 
for Mask R-CNN, RetinaNet, eDenseYOLO, and ASPP U-Net, respectively. Figure 5 shows the confusion matri-
ces used for measuring reproducibility with initial and follow-up CXRs generated by the four different algorithms 

Figure 6. Examples of a mass in the initial and F/U CXRs analyzed by four different algorithms. (a) Initial CXR 
is at the top and F/U CXR is at the bottom. (b) Mass mask corresponding to the top of (a). The mass is located in 
the middle lobe of the right lung. (c–f) Nodule detection in initial and F/U CXRs (top and bottom, respectively) 
by Mask R-CNN, RetinaNet, eDe nseYOLO, and ASPP U-Net, respectively.

Figure 7. Example of a mass detected by eDenseYOLO in initial and F/U CXRs. (a) Initial CXR is shown at the 
top and F/U CXR is at the bottom. (b) Mass mask corresponding to the top of (a). The mass is located in the 
middle lobe of the right lung. (c–f) Nodule detection in initial and F/U CXRs (top and bottom, respectively) by 
Mask R-CNN, RetinaNet, eDenseYOLO, and ASPP U-Net, respectively.
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and two readers. Table 3 shows the figure of merit (FOM) of jackknife free-response receiver operating curve 
(JAFROC) and reproducibility of the four different algorithms and two readers in terms of PPA and CPPA. The 
PPA values were evaluated at 96.52% ± 0.51%, 94.23% ± 0.00%, 97.87% ± 0.08%, 95.04% ± 0.11%, 96.55%, and 
94.98% for Mask R-CNN, RetinaNet, eDenseYOLO, ASPP U-Net, R1, and R2, respectively. The CPPA values 
were calculated to be 93.18% ± 0.81%, 89.09% ± 0.00%, 95.80% ± 0.22%, 90.57% ± 0.19%, 93.33%, and 90.43% for 
Mask R-CNN, RetinaNet, eDenseYOLO, ASPP U-Net, R1, and R2, respectively. eDenseYOLO exhibited the high-
est PPA (97.87% ± 0.08%) and CPPA (95.80% ± 0.22%). Similar results were observed in all cases with respect to 
the relationship between PPA and CPPA.

Figures 6–8 show the results obtained using the four different models at a number of false positives of 0.2. 
Figure 6 shows the CXR of a patient with a mass located in the right upper lobe (3.98 cm as confirmed by CT). The 
mass was correctly detected in initial and F/U CXRs by the four algorithms and R1 and R2; this case was consid-
ered as a in the confusion matrix. Figure 7 shows another example of the CXR of a patient with a mass located in 
the upper lobe (3.36 cm as confirmed by CT). The F/U CXR was blurred compared to the initial CXR. A mass was 
detected in initial and F/U CXRs by eDenseYOLO, R1, and R2 as shown in Fig. 7(e). Figure 8 shows the CXR of a 
patient with a mass located in the right lower lobe on the diaphragm (3.41 cm as confirmed by CT). None of the 
algorithms could detect the mass; it was detected only by R1.

Discussion
In the past, many researchers measured model performance in terms of sensitivity, specificity, accuracy, AUC, and 
FROC10,12–14. Although these evaluation metrics are important, it is not clear whether these algorithms can per-
form well in the F/U CXR datasets for short-term periods; it is expected that lung disease patterns observed in the 
CXRs taken within a short-term period should be detected accurately despite changes in breathing, posture, posi-
tion, or parameter setting in devices. Therefore, in this study, we undertook to verify the reproducibility of CAD.

The reproducibility of four different algorithms and two chest radiologists in detecting nodules and masses 
in CXRs was evaluated in terms of PPA and CPPA. In the case of the four algorithms, different PPA and CPPA 
values were obtained due to a variation in performance metrics, such as sensitivity, at the same standard cut-off 
threshold. eDenseYOLO showed the highest sensitivity at the cut-off threshold as well as the highest PPA and 
CPPA. R1 exhibited the second highest PPA and CPPA. Nevertheless, the quality of some F/U CXRs was inferior 
to that of initial CXRs, which resulted in more false positives or false negatives. Because the F/U CXRs were 
mainly recorded in emergency situations, they could not be captured in the same conditions as initial CXRs, 
which resulted in blurry or quite different conditions for CXRs due to motion artifacts in emergency situations 
and different protocols and machines. In F/U CXRs, eDenseYOLO at a 0.2 threshold (the number of false posi-
tives was 0.2) predicted more false negatives (FNs) for small nodules (< 20 mm, FN ratio –  initial: 43%, F/U: 56%) 
than for large nodules or masses (≥ 20 mm, FN ratio – initial: 12%, F/U: 14%). One of the differences between 
eDenseYOLO and other algorithms (other than the overall architecture) is the use of a dense block that enables 
greater information propagation and the inclusion of an ensemble method that makes the model more robust 
in detecting lesions of various sizes. Thus, we suggest the use of a more efficient encoding block, an ensemble 
technique, and augmentation methods, such as smoothness, noise, pose rotation, and deformable transform, for 
training more robust models for variable conditions.

To employ deep-learning-based CAD systems in clinical settings, they must exhibit good performance as 
imaging biomarkers. Especially in clinical practice, a number of F/U CXRs may be generated for the same patient 
with no interval changes or minimal changes in nodule and mass, regardless of the inspiration level, position, and 
radiation dose. Because clinical physicians expect similar reports in F/U CXR evaluation, inconsistent reports 
are detrimental to a physician’s confidence. Previous conventional CAD systems without deep learning were not 

Figure 8. Examples of nodules in initial and F/U CXRs not detected by the four algorithms. (a) Initial CXR 
is shown at the top and F/U CXR is at the bottom. (b) Nodule mask corresponding to the top of (a). The 
mass is located in the right upper diaphragm. (c–f) Mass detection in initial and F/U CXRs (top and bottom, 
respectively) by Mask R-CNN, RetinaNet, eDenseYOLO, and ASPP U-Net, respectively.
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used in clinical practice as they generated a number of false positive lesions. However, recent CAD systems using 
deep-learning methods exhibit very good performance including a high sensitivity with few false positives, which 
is important for consistent results and clinical applications.

When developing CAD systems, the issue of reproducibility should be considered using multiple CXRs of the 
same patient in the training and validation sets.

However, our study has some limitations as well. First, we used only a single-center dataset. The trend followed 
by PPA and CPPA should be checked with more validation sets from multi-center studies. Second, only a simple 
augmentation method was used to train the model. Other augmentation methods can probably enhance model 
performance in terms of sensitivity, PPA, and CPPA.

In future, we aim to collect more CXRs and review the current gold standards stored in big data servers. To 
reduce false positives in reproducibility analyses, we plan to research deep-learning algorithms to use two or more 
deep-learning networks in CXR CAD and training methods that can perform reproducibly in dataset pairs within 
short-term periods. In this study, we did not use biopsy information to detect the type of cancer. However, CAD 
techniques for determining the type of cancer should be developed.

conclusions
We suspect that deep-learning-based CAD techniques can help radiologists improve reproducibility in detecting 
pulmonary nodules. However, we observed in our study that there exist moderate variations in the reproduci-
bility of CAD techniques with different CNN-based detection algorithms, which indicates that reproducibility 
is an important parameter in evaluating the performance of such techniques in clinical applications. Hence, it is 
important to train CAD models for reproducibility in paired datasets in medical environments.
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