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5D Flow Tensor MRI to Efficiently 
Map Reynolds Stresses of Aortic 
Blood Flow In-Vivo
Jonas Walheim1*, Hannes Dillinger1, Alexander Gotschy1,2 & Sebastian Kozerke1

Diseased heart valves perturb normal blood flow with a range of hemodynamic and pathologic 
consequences. In order to better stratify patients with heart valve disease, a comprehensive 
characterization of blood flow including turbulent contributions is desired. In this work we present a 
framework to efficiently quantify velocities and Reynolds stresses in the aorta in-vivo. Using a highly 
undersampled 5D Flow MRI acquisition scheme with locally low-rank image reconstruction, multipoint 
flow tensor encoding in short and predictable scan times becomes feasible (here, 10 minutes), enabling 
incorporation of the protocol into clinical workflows. Based on computer simulations, a 19-point 
5D Flow Tensor MRI encoding approach is proposed. It is demonstrated that, for in-vivo resolution 
and signal-to-noise ratios, sufficient accuracy and precision of velocity and turbulent shear stress 
quantification is achievable. In-vivo proof of concept is demonstrated on patients with a bio-prosthetic 
heart valve and healthy controls. Results demonstrate that aortic turbulent shear stresses and turbulent 
kinetic energy are elevated in the patients compared to the healthy subjects. Based on these data, 
it is concluded that 5D Flow Tensor MRI holds promise to provide comprehensive flow assessment in 
patients with heart valve diseases.

Imaging is playing an increasing role in assessing the hemodynamic and structural consequences of aortic valve 
diseases1. Time-resolved volumetric mapping of blood flow velocities using 4D Flow MRI2 offers insights into 
changes of mean and peak velocities3, flow displacement4, vorticity and helicity5, wall shear rates6 and relative 
pressure gradients7. Besides the assessment of time-resolved velocity vector fields, the intensity of stochastic 
velocity fluctuations as encountered in transient and turbulent flows can be probed8.

In general, turbulence dissipates energy and increases resistance to flow, generating additional load for the 
cardiovascular system9. Moreover, the effective coefficient of friction in turbulent flows is higher compared to 
normal flow and hence shear forces acting on the formed elements in blood are accentuated, potentially leading 
to blood cell damage10–12.

It has been shown that by quantifying Turbulent Kinetic Energy (TKE), i.e. the energy stored in velocity 
fluctuations, important additional information is obtained relative to current clinical information in heart valve 
patients13. Beyond quantifying TKE, all components of the Reynolds stress tensor (RST) may be obtained using 
appropriate changes of the MRI pulse sequence design14, a concept that has been validated using simulation and 
simplified in-vitro experiments recently15,16. Such an approach may offer improved mapping of pressure gradients 
across heart valves and stenotic vessel sections15–17.

A key practical challenge to quantifying the RST in-vivo relates to the extended scan times required in order 
to encode velocity fluctuations along the minimum number of six non-collinear axes. In addition, the dynamic 
range of velocity fluctuations encountered in-vivo demands at least two measurements along each non-collinear 
axis18, leading to scan times well beyond clinically acceptable limits.

The objective of the present work was to develop an approach to efficiently map the RST and hence turbulent 
shear stresses in-vivo within clinically acceptable scan times. Our approach is based upon recent advances in com-
pressed sensing and sparse recovery of respiratory-motion resolved 4D Flow MRI data, which we have presented 
previously19. Here we propose a framework to efficiently quantify velocities and the RST using a highly under-
sampled acquisition scheme with locally low-rank image reconstruction20,21 and multipoint encoding per axis 
including Bayesian estimation of average velocity per voxel as well as intravoxel velocity standard deviations18. We 
term this approach 5D Flow Tensor MRI.
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Using a total of 19 velocity encodings, 5D Flow Tensor MRI requires 10 min of scan time and hence enables 
data acquisition in a clinical setting. To demonstrate accuracy and precision of 5D Flow Tensor MRI, results of 
computer simulations based on previously collected in-vivo data and in-vitro particle tracking velocimetry of 
valvular flow are shown. In-vivo proof of concept of 5D Flow Tensor MRI is demonstrated on patients with a 
bio-prosthetic heart valve revealing elevated turbulent shear stresses and turbulent kinetic energy compared to 
healthy controls.

Results
MRI data acquisition and reconstruction. Figure 1 illustrates the 5D Flow Tensor MRI concept includ-
ing data acquisition, multipoint encoding, data reconstruction and Bayesian processing. Data are sparsely sam-
pled using a Cartesian golden angle trajectory and retrospectively sorted into discrete respiratory motion states 
and cardiac phases19. Each velocity encoding is reconstructed separately using a locally low-rank reconstruction 
approach. Velocities are encoded in six non-collinear directions using three velocity encodings per axis to cover 
the range of turbulence intensity and mean velocities for patients and healthy controls.

Distributions of and sensitivity to intravoxel standard deviations. To make an appropriate choice 
of the number and strength of velocity encodings per spatial axis, the distribution of velocity intravoxel standard 
deviations (IVSD)8 was compared based on retrospective 4D Flow MRI data of patients with moderate and severe 
aortic valve stenosis (N = 28) and healthy controls (N = 9) collected as part of a previous study13. As shown 
in Fig. 2a, ISVD reaches up to 0.8 m/s in patients, while peak ISVD values of 0.3 m/s are measured in healthy 
controls. Since the MR signal magnitude is non-linearly related to ISVD, velocity encodings per axis need to be 
distributed in a non-equidistant manner. As illustrated in Fig. 2c, a velocity encoding (VENC) of 0.5 m/s shows 
high sensitivity to IVSD in the healthy controls whereas a VENC of 1.50 m/s is optimal to probe IVSD in the aor-
tic stenosis patients. Figure 2d illustrates the resulting uncertainty in IVSD quantification with noisy data. Using 
Monte-Carlo simulations, for each value of IVSD σ, 105 samples with additive white Gaussian noise were gen-
erated and mean and standard deviation of the IVSD estimates σest were determined. In case σ is too high or too 
low, σest decreases in accuracy. Moreover, values of σ for which the signal magnitude vanishes cannot be discerned 
and lead to a plateau in the plot. As can be seen, an encoding velocity of 0.5 m/s, which would cover the range of 
IVSD in healthy aortae, cannot discern elevated values in patients. To ensure an accurate estimate of IVSD over 
the entire observed range, a distributed encoding scheme with 0.5 m/s, 1.5 m/s and 4.5 m/s is proposed. The first 
two values cover the range of turbulence, whereas the latter value prevents aliasing in the mean velocity field.

Spatial resolution and Signal-to-Noise requirements. The effect of different signal-to-noise ratios 
(SNR) and the impact of image resolution on TKE and maximum principal turbulent shear stress (MPTSS) quan-
tification was assessed using data previously acquired with particle tracking velocimetry (PTV)22 as summarized 
in Fig. 3. For low SNR, an increase in mean values is observed for MPTSS. For TKE, the average mean values 
remain stable for low values of SNR (1.7% increase at 20 dB) while an increase in standard deviation is observed 
for decreasing SNR (e.g. 6.8% increase at 20 dB). At an SNR of 30 dB, as estimated for the in-vivo scans, MPTSS is 
overestimated by 3.6% on average whereas TKE values show no relevant increase in mean value (0.2%). Figure 3b 
shows the impact of different image resolutions for an SNR of 30 dB. Exemplary images show an increase of 
MPTSS and TKE at the jet core for increased voxel sizes. For large voxel sizes, the distribution of MPTSS values is 
skewed towards higher values with a corresponding increase in mean values and standard deviation. At a resolu-
tion of 2.5 mm, as used for the in-vivo exams, MPTSS are overestimated by 15.9% on average. TKE distributions 
are also skewed towards higher values for large voxel sizes with an overestimation of 3.1% at 2.5 mm.

Accuracy and precision of TKE and MPTSS quantification were simulated in a Monte-Carlo simulation with 
40 repetitions. Mean and standard deviation over the repetitions are provided in Table 1 for varying SNR at the 
highest resolution and Table 2 for different resolutions at an SNR of 30 dB respectively. Table 1 shows an increase 
in the random error for decreasing SNR. However, the random error on mean and standard deviation of the value 
distribution remains below 1% for all metrics. Table 2 shows the effect of increasing voxel sizes for a fixed SNR 
of 30 dB. For increasing voxel sizes, a systematic overestimation can be observed for all metrics. Moreover, mean 
and standard deviation of MPTSS and TKE distributions show a higher random error for increased voxel sizes.

At 2.5 mm resolution and an SNR of 30 dB, TKE values show a mean of 511.8 ± 1.4 J/m3 and a standard devia-
tion of 198.9 ± 4.6 J/m3 whereas MPTSS has a mean of 174.9 ± 1.6 Pa and a standard deviation of 110.7 ± 10.0 Pa.

In-Vivo measurements. Flow in the aorta of two patients with a bioprosthetic aortic valve (65 yrs, female 
with a SJM Trifecta Aortic Valve TFGT-21A, 21 mm, and 80 years, female with an Edwards SAPIEN 3, 23 mm) 
and two healthy controls (26 yrs, female and 58 yrs, female) was acquired using the 5D Flow Tensor MRI approach 
on a clinical 1.5 T MRI system (Philips Healthcare, Best, The Netherlands) and a 5-channel receive array.

Figure 4a shows exemplary results in a single slice for a patient and a healthy control (patient 65 yrs, 
female, and volunteer 26 yrs, female). The highest values of TKE and MPTSS can be seen downstream of the 
bio-prosthetic valve in the patient. Figure 4b shows value distributions of velocity magnitudes, TKE, and MPTSS 
in the ascending aorta during systole. Increased values of TKE and MPTSS in the patients relative to the controls 
were found. (For TKE, patients: 199.7 ± 115.4 J/m3 and 148.1 ± 157.9 J/m3 vs. volunteers: 47.8 ± 32.1 J/m3 and 
76.0 ± 32.8 J/m3, and for MPTSS, patients: 161.3 ± 158.3 Pa and 102.1 ± 146.0 Pa vs. volunteers: 44.1 ± 41.3 Pa 
and 77.2 ± 48.9 Pa). Mean velocities in the patients were 0.53 ± 0.34 m/s and 0.38 ± 0.19 m/s compared to 
0.66 ± 0.11 m/s and 0.53 ± 0.18 m/s for the healthy controls.
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Figure 1. Illustration of in-vivo 5D Flow Tensor MRI: (a) K-space data are continuously acquired on a 
Cartesian golden angle trajectory during free breathing of the subject. (b) Velocities are encoded along six non-
collinear directions with different velocity encodings VENC for improved accuracy of ISVD quantification over 
the desired range. (c) Each readout is assigned to a discrete respiratory motion state and cardiac phase, leading 
to undersampling patterns as required by compressed sensing reconstructions. (d) Images for each velocity 
encoding are reconstructed separately by exploiting correlations over cardiac and respiratory dimensions using 
a locally low-rank reconstruction. (e) For each direction, the measurements with different VENCs are combined 
using a Bayesian approach which selects the most likely values v  and σ given the signal model Skv and the 
measured data dkv.
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Discussion
This study has demonstrated in-vivo turbulent flow assessment using 5D Flow Tensor MRI in clinically feasible 
scan times for the first time. A multi-point encoding scheme was employed to probe the mean and fluctuating 
velocity components using non-collinear encoding directions, similar to concepts used in diffusion tensor imag-
ing23. The approach permits, besides the assessment of time-resolved mean velocity vector fields, the quantifica-
tion of Reynolds stresses and hence turbulent kinetic energy and turbulent shear stresses in-vivo.

Distributions of IVSD in the aortae of healthy subjects and patients with aortic valve disease were analyzed to 
choose velocity encodings (Fig. 2a,b). As illustrated in Fig. 2c,d, the choice of velocity encoding has considerable 
impact on the accuracy of IVSD quantification. This makes the choice of an appropriate encoding velocity crucial, 
when using a single encoding velocity per axis as in conventional 4D Flow MRI. To probe IVSD with an increased 
dynamic range, encoding of the RST was combined with a multipoint scheme18. In the present study, encoding 
velocities of 0.5 m/s, 1.5 m/s and 4.5 m/s were selected. As indicated in Fig. 2a, encoding velocities of 0.5 m/s and 
1.5 m/s cover the expected range of IVSD. The additional velocity encoding at 4.5 m/s was used to avoid phase 
wraps in the reconstructed mean velocity fields. Of note, the particular choice of encoding velocities was made 
with respects to the range of observed IVSD, to prevent aliasing artifacts in the mean velocity fields, and to make 
echo times not too long. However, the encoding scheme yields further potential for optimization. In particular, 
the use of advanced phase unwrapping methods24 might allow to leave out the highest VENC.

Simulation of the MRI acquisition and encoding process revealed an overestimation of TKE and MPTSS for 
large voxel sizes. The overestimation amounted to about 3.1% for TKE and to approximately 15.9% for MPTSS at 
the given acquisition resolution of 2.5 mm and at an estimated SNR of 30 dB. The impact of image resolution can 

Figure 2. Exemplary distributions of IVSD in healthy and pathological aortae and illustration of IVSD 
encoding accuracy. (a) For healthy volunteers, IVSD is distributed mainly between 0 m/s and 0.3 m/s. For 
patients, a wider distribution can be observed with values of IVSD up to 0.8 m/s. (b) Examples of the region of 
interest for healthy controls and patients with aortic stenosis. (c) IVSD leads to a reduction in signal magnitude 
which depends on the encoding velocity VENC. The signal shows a high sensitivity to changes in IVSD within 
a limited range. For low values, the magnitude changes little, whereas for high values the signal vanishes 
completely. (d) Uncertainty of IVSD considering noisy data with an SNR of 30 dB. If ISVD is too high or too 
low, the IVSD estimates decrease in accuracy. Moreover, IVSDs for which the signal magnitude vanishes cannot 
be discerned and lead to a plateau in the plot.
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be related to the assumption of Gaussian intra-voxel velocity distributions in the derivation of turbulence, which 
is not fulfilled for coarse image resolutions as shown in previous studies25.

The impact of SNR on quantification of TKE and MPTSS was found to be relatively low compared to the 
impact of resolution. Starting at low SNR values below 25 dB, an overestimation of MPTSS was observed whereas 

Figure 3. Impact of SNR and image resolution on quantification of TKE and MPTSS. (a) Decreasing SNR 
leads to an overestimation of TKE and MPTSS. At an SNR of 30 dB, as estimated for in-vivo experiments, this 
overestimation is relatively low. (b) Increasing voxel sizes lead to a skewed distribution of TKE and MPTSS. 
At a resolution of 2.5 mm, as used for in-vivo experiments, TKE is overestimated by 3.1% and MPTSS is 
overestimated by 15.9% on average.
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TKE estimates were robust even at lower SNR values. SNR was estimated at ca. 30 dB in this study. In this range, 
noise played only a minor role in the assessment of TKE and MPTSS.

As shown in the Monte-Carlo simulation, the error in real-world experimental conditions is mostly due to 
a loss in accuracy for reduced image resolutions, whereas the random fluctuations for repeated experiments is 
comparatively low. However, increasing image resolution would lead to a decrease in SNR and noise would start 
to compromise the assessment of turbulent quantities. Therefore, rather than increasing acquisition resolution, 
efforts to mitigate the effect of large voxel sizes by e.g. data assimilation approaches26 are considered potential 
future options.

The feasibility of 5D Flow Tensor MRI to quantify distributions of MPTSS and TKE in patients with a 
bio-prosthetic valve relative to healthy controls has successfully been demonstrated. Distributions of TKE and 
MPTSS revealed distinct differences, while differences in mean velocity magnitudes were partly overlapping 
(Fig. 4b). In the healthy controls, the highest values of TKE and MPTSS were found near the vessel walls, which 
can be attributed to partial volume effects (there were also some differences between the two volunteers which can 
be related to the difference in age27). In contrast, flow downstream of the prosthetic valves showed highest values 
of MPTSS and TKE in the proximal aorta, reaching values of up to 500 Pa and 600 J/m3, respectively. MPTSS val-
ues were found to be below the threshold of elevated risk of red blood cell damage which was estimated between 
ca. 600 Pa10 and 800 Pa28. While mechanical heart valves have been associated with blood cell damage12, modern 
bio-prosthetic valves typically do not lead to complications29. An increase in shear stresses without reaching a 
critical level was therefore expected. It should, however, be noted that the implantation of bio-prosthetic valves 
is primarily indicated in the elderly population, while mechanical heart valves are preferred in younger patients. 
Accordingly, future work using 5D Flow Tensor MRI should include patients with mechanical heart valves to 
assess and compare TKE and MPTSS levels.

Of note, the fixed scan time of 10 minutes which was set for the in-vivo study was sufficient for all subjects 
examined in this study. However, in cases where patient geometry requires a much larger field of view, an increase 
in scan time might be required.

A limitation of the present study is that no ground truth data was available to assess the accuracy of the in-vivo 
scans. Accordingly, computer simulations were used to provide estimates of accuracy and precision. However, 
the simulations were based on PTV measurements with a resolution of 0.625 mm. Thus, the reference data were 
already subject to some discretization error and availability of higher resolution ground truth data might show 
an even higher overestimation of turbulence. Another practical drawback relates to the long data reconstruction 
times (ca. 1.5 h to 2 h on a workstation with two 14 Core Intel Xeon E5-2680 CPUs and 256 GB RAM) which 
implies that data evaluation can only be performed after the scan session. Currently ongoing work is addressing 
this inconvenience by using variational neural networks30 which have already been shown to perform compressed 
sensing reconstruction of standard 4D Flow MRI data in less than a minute31.

In conclusion, 5D Flow Tensor MRI provides comprehensive quantification of turbulent flow in clinically 
feasible scan times. Its ability to assess elevated TKE and MPTSS in-vivo has successfully been demonstrated. 
Efficient in-vivo turbulence quantification will contribute also to methods aiming at quantifying irreversible pres-
sure loss downstream of heart valves and stenotic sections.

SNR (Res = 
0.625 mm)

TKE mean 
(mean ± std)

TKE std 
(mean ± std)

MPTSS mean 
(mean ± std)

MPTSS std 
(mean ± std)

40 dB 496.2 ± 0.0 193.6 ± 0.0 151.2 ± 0.0 68.4 ± 0.0

35 dB 496.4 ± 0.1 193.8 ± 0.1 152.4 ± 0.1 69.2 ± 0.1

30 dB 496.9 ± 0.1 194.6 ± 0.1 156.0 ± 0.1 71.6 ± 0.1

25 dB 498.6 ± 0.2 197.3 ± 0.2 167.0 ± 0.2 79.1 ± 0.2

20 dB 504.1 ± 0.4 206.1 ± 0.3 199.8 ± 0.4 101.5 ± 0.5

Table 1. Accuracy and precision for a resolution of 0.625 mm and varying SNR obtained in a Monte Carlo 
type experiment with 40 repetitions. For lower SNRs a bias towards higher values is observed and accuracy 
deteriorates.

Resolution (SNR 
= 30 dB)

TKE mean 
(mean ± std)

TKE std 
(mean ± std)

MPTSS mean 
(mean ± std)

MPTSS std 
(mean ± std)

0.625 mm 496.9 ± 0.4 194.7 ± 0.1 156.0 ± 0.7 71.7 ± 0.2

1.25 mm 499.4 ± 0.9 193.5 ± 2.6 161.2 ± 1.2 88.8 ± 6.6

1.875 mm 502.3 ± 1.3 194.1 ± 4.4 165.4 ± 1.5 100.5 ± 9.7

2.5 mm 511.8 ± 1.4 198.9 ± 4.6 174.9 ± 1.6 110.7 ± 10.0

3.75 mm 558.7 ± 2.6 236.1 ± 10.3 214.5 ± 2.6 153.2 ± 16.4

5 mm 684.6 ± 2.2 338.0 ± 3.6 328.9 ± 1.4 245.4 ± 3.7

Table 2. Accuracy and precision for a SNR of 30 dB and varying resolution (voxel size) obtained in a Monte 
Carlo type experiment with 40 repetitions. Increasing voxel sizes lead to an overestimation of MPTSS and TKE. 
No clear trend can be observed for accuracy.
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Methods
Measurement of reynolds stress tensor. In general, flow velocity vectors can be decomposed into a 
time-averaged mean vector v  and fluctuating components ′v  32:

v v v (1)′= + .

In the one-dimensional case, assuming a Gaussian intra-voxel velocity distribution (IVSD) of variance σ2, the 
MR signal S(kv) reads8:

Figure 4. In-vivo assessment of turbulent flow through healthy and a bio-prosthetic heart valves. (a) Shows 
exemplary slices of a healthy and a bioprosthetic heart valve. The flow field shows uniform distribution of 
velocity magnitudes throughout the proximal aorta for the healthy valve whereas a jet with high velocities 
can be observed for the bio-prosthetic valve. MPTSS and TKE are elevated downstream of the bio-prosthetic 
valve. Visual assessment shows highest MPTSS and TKE near the vessel wall for the healthy valve and elevated 
values throughout the proximal aorta for the bio-prosthetic valve. (b) Shows value distributions for the different 
metrics, with healthy 1 and bioprosthetic 1 corresponding to the examples from (a). MPTSS and TKE are 
elevated for the bio-prosthetic heart valves. Velocities are on average lower for the bio-prosthetic heart valve but 
are distributed over a larger value range.
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In this study, matrix H was designed according to:
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H

1 0 0
0 1 0
0 0 1

1/ 2 1/ 2 0
1/ 2 0 1/ 2

0 1/ 2 1/ 2 (7)

=













.

To mitigate the effect of non-linear encoding of the ISVD, a multipoint approach18 was used to probe the 
velocity field at different encoding strengths. Figure 1b illustrates the velocity encoding which encodes velocities 
in three orthogonal directions and their combinations along the diagonals with different encoding strengths. For 
each direction the different encoding velocities were combined with Bayesian multipoint unfolding18 as illustrated 
in Fig. 1e.

Measurement of mean velocities. Redundant encoding schemes provide additional information for esti-
mation of mean velocities33. Denoting the velocities encoded in n different directions by = …

∼V v v( , , )T
n1  with 

corresponding velocity encodings k k{ , , }v v n,1 ,… , the velocities in the Cartesian coordinate system 
=V diag v v v( , , )cart x y z  can be written as:

=





…






=

∼V
k k

k k
V AV

/

/ (8)

v v

vn vn
cart cart

1 1

A solution to this overdetermined system of linear equations is provided by the pseudo-inverse:












= = .

∼−V A A A V
v

v
v

0 0
0 0
0 0

( )

(9)
cart

x

y

z

T T1

Value range of intravoxel standard deviations. Datasets previously obtained in 9 healthy volunteers 
and 28 patients with aortic valve stenosis13 were retrospectively analyzed to determine the range of IVSD occur-
ring in the ascending aorta (Fig. 2b shows exemplary slices with the corresponding region of interest). The data 
were acquired and reconstructed with multipoint acquisition and Bayesian reconstruction18. Values of VENC 
were 4.50, 1.50, and 0.50 m/s for patients and 2.00, 0.67, and 0.40 m/s for the healthy control group.

The ascending aorta was segmented manually. To assess the distribution of the ISVD for the two groups, the 
relative probability p( )σ  of different values of IVSD in the segmented region was calculated for each subject and 
the mean and standard deviation of σp( ) were determined over the patient cohort and the healthy control group 
respectively.

Spatial resolution and Signal-to-Noise requirements. MRI acquisitions with varying SNR and image 
resolution were simulated based on flow through a 64% stenosis measured with particle tracking velocimetry 
(PTV). Details on acquisition and processing of the PTV data can be found in25,34. The dynamic and kinematic 
viscosity were 5.82 × 10−3 Pa and 4.85 × 10−6 m2/s, respectively, and the fluid density 1200 kg/m3. The 
velocity-to-noise ratio was determined to be larger than 103. The PTV data were mapped onto a voxel size of 
. × . × .0 625 0 625 0 625 mm3.

Based on the PTV data, the MRI signal was calculated according to Eq. 4. Encoding velocities were 0.5, 1.5, 
and 4.5 m/s. To limit the effect of artifacts in the numerical study a median filter of size 3 was applied to the com-
ponents of the RST.

To assess acquisition with different voxel sizes, the signal was transformed to k-space and sampled using a 
window function with a bandwidth inversely proportional to the desired downsampling rate. Complex-valued 
white Gaussian noise of different strength was added to the data to obtain the desired SNR

=










SNR 20 log Signal
SD(Noise) (10)

which was calculated over all velocity encodings.

In-Vivo measurements. In-vivo assessment of the RST was performed in two patients with bio-prosthetic 
aortic valves and two healthy controls on a 1.5 T MR system (Philips Healthcare, Best, The Netherlands). The 
study was approved by the Ethics Committee of the Canton of Zurich, Switzerland, and all subjects provided 
written informed consent.

Data were acquired using a cardiac- and respiratory-motion resolved Cartesian tiny golden angle acquisition 
scheme35,36 including the necessary velocity encodings for RST measurements. Acquisition and reconstruction 
of the data is illustrated in Fig. 1. During image reconstruction, data were sorted into four discrete respiratory 
motion bins. View sharing37,38 among respiratory motion states was used to ensure a minimum acceleration 
factor of 35 for each frame. Scan parameters were: voxel size of 2.5 mm × 2.5 mm × 2.5 mm, 25 cardiac phases, 
multipoint flow tensor encoding with VENCs of 0.5 m/s, 1.5 m/s, and 4.5 m/s, TE/TR = 3.9 ms/6.0 ms and scan 
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duration of 10 minutes compared to 71 minutes for a fully sampled scan (which could increase by a factor of ca. 2 
when using respiratory navigator gating).

Prior to reconstruction, noise pre-whitening was performed based on noise statistics from a separate scan 
acquired without radio-frequency excitation. Data for each velocity encoding strength and direction were recon-
structed separately with BART39, enforcing a locally low-rank model20,21 along cardiac phases and respiratory 
motion states19. The signal estimate Skv

ˆ  is thus obtained by iterative minimization of the cost term

S S d Sarg min ( ) ( )
(11)

kv
S

kv kvkv
b

b

2

2

kv

∑λ= Ω − +ˆ
⁎

FC R

with the undersampling operator Ω, Fourier transform  , coil sensitivities  and k-space data dkv. The operator 
b selects the b-th out of Nb blocks of size of size n n n 22 22 22x y z× × = × ×  in the image from all Nhp heart 
phase s and Nrs  respiratory motion states and transforms them into a Casorati matrix with dimensions 

×n n n N Nx y z hp rs. The reconstruction favors solutions for which this local Casorati matrix is low-ranked by penal-
izing its nuclear norm. The regularization weight λ was set to λ = .0 005. Both, block size and regularization 
weight were tuned for best agreement of magnitude images of the healthy control with a fully sampled reference 
measurement.

Following image reconstruction, only data in the expiratory motion state were considered for further process-
ing. SNR in the measured data was determined using the pseudo-replica method40 with 40 repetitions averaged 
over the ascending aorta and over the velocity encodings. Of note, approximate linearity is assumed with locally 
low-rank reconstructions. Accordingly, using Gaussian distribution of noise, the pseudo-replica method was 
considered the best approximation for SNR assessment.

Data analysis. Turbulent Kinetic Energy (TKE) in [J/m3] was calculated from the main diagonal of the RST 
as:

TKE v v v v v v
2

( ) (12)x x y y z z
ρ

= + + .′ ′ ′ ′ ′ ′

Principal stress analysis was performed and the maximum principal turbulent shear stress (MPTSS) was cal-
culated from the eigenvalues 1 2 3δ δ δ> >  of the RST as:

0 5( ) (13)max 1 3τ δ δ= . −

assuming a density of blood of kg m1060 / 3ρ = .
For quantitative evaluations of in-vivo data the ascending aorta was manually segmented using ITK-SNAP41 

and for the simulated data, the flow jet in was masked.

Statistical analysis. Value-distributions of TKE, MPTSS, and velocity magnitude were investigated using a 
Gaussian kernel density estimate42,43. Moreover, mean and standard deviations of the distributions were assessed.

Accuracy and precision of TKE and MPTSS quantification were assessed in a Monte-Carlo simulation with 40 
repetitions and mean and standard deviation over the experiment repetitions were determined.

Ethics approval. The study was approved by the Ethics Committee of the Canton of Zurich, Switzerland, 
and all subjects provided written informed consent. Imaging was performed at the Zurich University Hospital, 
Zurich, Switzerland. Anonymized data was analyzed at ETH Zurich with approval by the mentioned authority.

Written, informed consent was obtained before the experiment according to ethics approval and institutional 
guidelines.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request subject to restriction on use by the Ethics Committee of the Canton of Zurich.

A demo script with exemplary data will be provided online upon acceptance of this manuscript.
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