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Genome wide association study 
of 5 agronomic traits in olive (Olea 
europaea L.)
Hilal Betul Kaya1,3*, Deniz Akdemir2, Roberto Lozano  3, Oznur cetin4, Hulya Sozer Kaya4, 
Mustafa Sahin4, Jenny L. Smith5, Bahattin tanyolac6 & Jean-Luc Jannink3,7

Olive (Olea europaea L.) is one of the most economically and historically important fruit crops 
worldwide. Genetic progress for valuable agronomic traits has been slow in olive despite its importance 
and benefits. Advances in next generation sequencing technologies provide inexpensive and highly 
reproducible genotyping approaches such as Genotyping by Sequencing, enabling genome wide 
association study (GWAS). Here we present the first comprehensive GWAS study on olive using GBS. 
A total of 183 accessions (FULL panel) were genotyped using GBS, 94 from the Turkish Olive GenBank 
Resource (TOGR panel) and 89 from the USDA-ARS National Clonal Germplasm Repository (NCGR 
panel) in the USA. After filtering low quality and redundant markers, GWAS was conducted using 
24,977 SNPs in FULL, TOGR and NCGR panels. In total, 52 significant associations were detected for 
leaf length, fruit weight, stone weight and fruit flesh to pit ratio using the MLM_K. Significant GWAS 
hits were mapped to their positions and 19 candidate genes were identified within a 10-kb distance 
of the most significant SNP. Our findings provide a framework for the development of markers and 
identification of candidate genes that could be used in olive breeding programs.

Olive is among the most important trees worldwide. Current world production of table olive and olive oil is over 
19.21 and 32 million tons, respectively. Olive tree products are some of the main components of the Mediterranean 
diet that contribute to good health3. Olive fruits and leaves contain various functional compounds, such 
as hydroxytyrosol and oleuropein, beneficial for human health4,5. Olive trees are predominantly located in 
Mediterranean and Asian countries though there is increasing cultivation in Argentina, the United States, Chile 
and Australia1 due to high consumption of olive products. It is thought that olive domestication began in the 
region closest to the border between Turkey and Syria about 6000 years ago, before olive cultivars spread through-
out the Mediterranean countries via different routes6. Turkey has seen continuous cultivation of olive trees since 
then. In Turkey, olive growing regions occupy a large area including western and southern coastal strips of the 
country. This has led to the rich variety of cultivars in Turkey. In the long-term conservation efforts of plant 
genetic resources, olive germplasm collections play an important role7. There are more than 100 olive germplasm 
collections at international, national and regional levels in mostly Mediterranean countries for conservation and 
breeding purposes8. These collections have been extensively used in molecular studies including identification, 
molecular characterization and also mapping studies9–11.

In olive breeding programs, clonal selection and cross-breeding have been conducted for developing novel 
cultivars12, however, these efforts are slowed down by olive’s juvenile period and complex genome13. As a result, 
very few mapping studies have been reported for dissecting agronomic traits in olive and limited numbers of 
markers have been identified as related to fruit traits14,15, flower traits, tree growth traits such as trunk diameter14 
and olive oil quality traits16.

Genome-wide association studies (GWAS), which emerged as an alternative to classical linkage mapping17, 
utilizes historical recombination in a diverse population18. Compared with QTL mapping, GWAS mostly provides 
a higher mapping resolution19 and does not need to use an experimentally developed segregating population. 
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GWAS has evolved as a powerful tool to dissect the genetic architecture of complex traits in large germplasm sets. 
It does, however, require a large number of markers for whole genome scans in crops with low linkage disequilib-
rium (LD) and high haplotype diversity20.

Next generation sequencing (NGS) technologies have allowed discovering and genotyping thousands of mark-
ers in large and diverse germplasm collections21. Single-nucleotide polymorphisms (SNPs) have become popular 
in QTL mapping and GWAS in plants20,22. They are co-dominant and bi-allelic markers that are distributed along 
the whole genome23. Genotyping by Sequencing (GBS) is a simple and inexpensive technique originally devel-
oped for high-resolution association studies in maize24, which involves reducing genome complexity25 by using 
restriction enzymes. GBS has been implemented in many crops such as maize24, barley26, wheat26,27, soybean28, 
rice29, oat30 and cassava31,32 for purposes of genetic characterization, GWAS, linkage analysis and genomic selec-
tion. The GBS technique, which does not require prior knowledge of the genome, is preferred for species that do 
not have reference sequence information25,30. Genetic mapping with SNPs generated by GBS has been extensively 
used in tree species including peach33, grapevine34, sweet cheery35, eucalyptus36, oil palm37, and apple38, and found 
to be effective to identify marker traits associations. In olive, GBS technology was used to assess the genetic diver-
sity in Italian cultivars39 and to construct linkage maps in F140–42 and F243 populations. However, there are no 
reports of using GBS based SNP markers for association mapping study in diverse olive accessions.

Most genetic studies in olive genotypes have focused on characterization of this species and QTL mapping44. 
GWAS in olive has been used by our group in Turkish olive genotypes using AFLP, SSR and SNP markers45. Here, 
we report the development and application of GBS in a diverse set of olive germplasm from Turkey and the USA. 
Our objectives were to (1) identify SNPs within olive genotypes based on GBS analyses and (2) perform a com-
prehensive GWAS to identify significant marker trait associations. Successful application of GBS in olive would 
suggest that the method can be used in other tree species.

Results
Evaluation of phenotypic data. The descriptive statistics of leaf length (LL), leaf width (LW), fruit weight 
(FW), stone weight (SW) and fruit flesh pit ratio (FFPR) showed substantial variation was observed in all traits 
(Supplementary Table S1). Trait phenotypes ranged from 40.51 to 77.37 mm for LL, 7.30 to 26.10 mm for LW, 
0.99 to 16.33 g for FW, 0.21 to 4.72 g for SW and 72.29 to 92.57 for FFPR. The statistical distribution of traits 
divided over geographical origin of accessions showed that year had a substantial effect on traits of accessions 
from NCGR, more so than TOGR (Supplementary Fig. S1). Relatively high H2 was calculated for FW and SW, 
0.73 and 0.74, respectively (Supplementary Table S1). Heritability was moderate (0.52) for LW. The H2 estimates of 
LL (0.36) and FFPR (0.43) were low compared with other traits. The BLUPs of phenotypic values exhibited a near 
normal distribution for FULL, TOGR and NCGR panels (Fig. 1). Pearson’s correlation among the phenotypic 
traits showed that the highest degree of correlation was observed between FW and SW (r = 0.89). LL correlated 
positively with FW and SW (0.33 and 0.37, respectively). FW and SW also correlated positively with FFPR (0.6 
and 0.28, respectively). There was no significant correlation between LW and other traits (Supplementary Fig. S2).

Genotyping-by-sequencing and SNP detection. The fragment size distributions of GBS libraries from 
olive genomic DNA digested with EcoT22I and PstI restriction enzymes are shown in Supplementary Fig. S3. 
The size distribution curve was smoother for EcoT22I (majority of fragments are <500 bp) than for PstI and 
there was no highly repetitive DNA amplified (as would be evidenced by the presence of strong, discrete peaks or 
bands). The PstI library, however, contained a large amount of repetitive DNA (discrete peaks/bands). EcoT22I 
was chosen for reducing genome complexity in olive. The sequencing produced a total of 469,721,669 raw reads, 
an average of 2.56 million reads per sample, and those reads produced 3,415,115 tags. A set of 61,892 unfiltered 
SNPs were obtained from the FULL panel. The percentage of missing data and minor allele frequencies for all 
accessions are shown in Supplementary Fig. S4. SNPs were filtered based on minor allele frequency (MAF > 0.05) 
and missing rate (<0.20). A final set of 24,977 SNPs were obtained and used for genetic diversity, population 
structure and GWAS.

Genetic diversity and structure analysis. The genetic structure of the FULL panel was estimated using 
two complementary approaches. We estimated the marker-based kinship and found 67.2% of the kinship coeffi-
cients ranged from 0 to 0.2, indicating that most accessions have weak genetic relationship with the other acces-
sions. This wide genetic diversity among olive accessions was also supported by their broader Euclidean genetic 
distance (28.74 to 162.28, mean: 120.61) (Supplementary Table S2). The maximum genetic dissimilarity between 
genotypes was 162.28 for Samsun Yaglik (GENO2) and Halhali 1 (GENO62). The minimum genetic dissimilarity 
was 28.74 for Gordal Sevillana (DOLE 13) and Koroneiki (DOLE 149). The genetic relationship for the FULL 
panel was visualized in the heatmap of the distance matrix (Fig. 2).

PCA of the SNP dosage matrix was used to assess the clustering of genetic variation in olive accessions 
(Fig. 3a). PC1 explained 8.56% of the variation in the genotypic data, whereas PC2 and PC3 explained 5.68% 
and 5.37% of the variation, respectively (Fig. 3b). Although PCA analysis did not sort accessions based on their 
geographical locations, a subtle geographical pattern of distribution among Turkish genotypes may be deduced.

The optimum number of clusters (K) in the population was inferred to be six based on maximum likelihood 
and delta K (ΔK) values (Supplementary Fig. S5). When using a probability of membership threshold of 70%, 106 
accessions were assigned into the six subgroups (Supplementary Fig. S6), while the remaining 77 accessions were 
classified into a mixed subgroup (Supplementary Table S3). Most accessions of Group 1 came from NCGR with 
only 2 from TOGR. Group 2 had the highest number of accessions among the groups with 23 and 22 accessions 
from TOGR and NCGR, respectively. The accessions of Group 3 were only from TOGR while the accessions of 
Group 6 included only accessions from NCGR. The accessions of Group 4 were primarily from TOGR with just 
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six accessions from NCGR. Group 5 contained the fewest genotypes, with one from TOGR and four from NCGR. 
The Mixed group contained accessiong from both TOGR (36 accessions) and NCGR (41 accessions).

To investigate the extent of population differentiation between groups from STRUCTURE analysis, Fst values 
were calculated using the filtered markers (Supplementary Fig. S7). Genetic differentiation was higher between 
Group 5 and Group 6 (Fst = 0.417). The lowest degree of differentiation was found between Group 2 and Group 
4 (Fst = 0.170). Fst values between the groups suggested that there was significant divergence across all groups.

Linkage disequilibrium. A total of 20,799 (4.81%) pairs of markers showed a significant LD value (D’) at 
P < 0.01 while 2,678 pairs of markers showed a significant LD at P < 0.001. Based on r2 estimates, 28.4% and 14.7% 
of the marker pairs showed a significant LD value of r2 ≥ 0.05 and r2 ≥ 0.01, respectively. The r2 values for all sig-
nificant loci ranged from 0.05 to 1. The mean r2 and D’ for all pairs was 0.05 and 0.01, respectively. Supplementary 
Fig. S8 shows the distribution of the r2 values of all (left panel) and r2 ≥ 0.1 (right) for all marker pairs.

Genome-wide association study. Of the 3 three statistical models tested, the MLM_PCs + K model and 
the MLM_K model had similar power and showed a significant improvement in goodness of fit compared with 
the MLM_Q + K model. Increasing the number of PCs in the models did not decrease the type I error inflation 
(Supplementary Fig. S9). Hence, we kept only two PCs in the MLM_PCs + K model. Based on this information and 
on QQ plots of observed vs. expected P-values (Fig. 4), we chose the MLM_K model for association analysis and 
all subsequent results are based on it. Multiple testing burden was controlled using FDR correction46 at a 5% rate.

In total, 52 significant associations were detected in the FULL panel (Supplementary Table S4). Among these 
associations, 12, 19, 18 and 4 markers were associated with LL, FW, SW and FFPR respectively. No significant 
associations were detected for LW. The data listed in Supplementary Table S4 also showed that some of the 
markers were associated with more than one trait, e.g., S1_904125, S1_12591134, S1_1899635, S1_4122458 and 
S1_9030959 markers were associated with FW and SW. The most significant marker (S1_13767032) had a P-value 
of 9.11E-08 and was associated with SW (Fig. 5).

The twelve significant SNPs, which were identified for LL, explained 13.7% of phenotypic variance on average 
(8.5–20.4% for different loci). FF exhibited 19 significant SNPs that explained 5.27–27.8% of the phenotypic 

Figure 1. The distribution of BLUPs for phenotypic values used for the GWAS. Distribution of BLUPs of 
phenotypic values in TOGR (Turkish Olive GenBank Resource) and NCGR (National Clonal Germplasm 
Repository) panels. Black and red lines are normal distribution approximations for the TOGR and NCGR 
panels, respectively.
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Figure 2. Heatmap based on genotypic pairwise Euclidean distances.

Figure 3. PCA of olive FULL panel a) Scatter plot of the first two principal components (PC1 and PC2). (a) The 
genetic variation explained by the first ten 10PCs (b).
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Figure 4. Comparison of QQ plots obtained with different GWAS models for five traits in the FULL panel.

Figure 5. Manhattan plots summarizing genome-wide association results for LL, FW, SW and FFPR in the 
FULL panel. The FDR significance threshold is shown in black.
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variance with an average 15.08%. A total of 18 significant SNPs was identified for SW, which explained 6.29–
27.4% of the phenotypic variance with an average 13.18%. Variance explained by significant SNPs for FFPR 
ranged from 11.6 to 18.6% with an average of 14.7%.

Two recently published olive genomes were used to align sequence reads of significant SNPs. Out of the 53 sig-
nificant associations in our study, 27 SNPs (51%) were mapped in the wild olive reference genome41 while 40 SNPs 
(75%) were mapped in the genome of Olea europaea L. subsp. europaea var. europaea cv. ‘Farga’47 (Supplementary 
Tables S5 and S6). Chromosomal positions of significant SNPs determined according to wild olive reference 
genome41 located SNPs far from each other. Four SNPs associated with LL were identified on chromosomes 
2, 4 and 23. The 8 SNPs associated with FW were present on chromosomes 1, 6, 9, 11, 15 and 19 while the 10 
SNPs associated with the SW were located on chromosomes 6, 12, 16, 18, 21, 22 and 23. Lastly, the 2 SNPs asso-
ciated with the FFPR content were present on chromosomes 10, and 19. Among the significant SNPs, 5 were 
associated with both FW and SW. Three of them were mapped on chromosomes 8, 10, and 11. The most signif-
icant SNP marker (S1_13767032) explaining 19.8% of the phenotypic variance was located on chromosome 16 
(Supplementary Table S5).

To assess the extent of association mapping, triangle plots for pairwise LD between significant markers were 
created for each trait (Fig. 6). The pattern of LD blocks shows that significant LD was not only detected between 
significant markers located on same chromosomes but also between significant markers on different chromo-
somes (chromosome information in Supplementary Table S5). The highest LD was obtained between two signif-
icant markers (S1_6412238 and S1_11607122, r2 = 0.88) associated with FW which were not aligned to the wild 
olive reference genome.

In the TOGR and NCGR panels, GWAS detected a total of 15 and 23 significant SNPs respectively 
(Supplementary Table S7 and S8, Supplementary Figs. S10 and S11). No significant SNP was detected for LW 
in either panel. The most significant SNP marker (S1_4640124) in TOGR panel had a P-value of 1.82e-05 and 
explained 25.5% of the phenotypic variation. Out of the 15 significant associations in TOGR panel, 7 SNPs 
(47%) were mapped in the wild olive reference genome (Supplementary Table S9)41 while 14 SNPs (93%) were 
mapped in genome of Olea europaea L. subsp. europaea var. europaea cv. ‘Farga’ (Supplementary Table S10)47. In 
the NCGR panel, the SNP marker (S1_13473561) was the most significant SNP with a P-value of 7.15e-07 and 

Figure 6. A heatmap of LD (r2) between significant SNPs, where darker blue colors represent stronger positive 
correlations between SNPs, (a) LL, (b) FW, (c) SW, (d) FFPR.
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explained 18% of the phenotypic variation. Twelve (52%) and 11 (48%) significant SNPs in NCGR panel were 
mapped in wild olive reference genome41 (Supplementary Table S11) and genome of Olea europaea L. subsp. 
europaea var. europaea cv. ‘Farga’47 (Supplementary Table S12) respectively.

Candidate genes. Significant SNP tags were aligned against the wild olive reference genome. Regions within 
10 kb were searched for candidate genes. A total of 19 unique genes were identified within these regions (Table 1), 
most of which are annotated to a protein that are responsible for developmental and physiological processes. For 
LL, two particular genes were found close to marker S1_1842014 on chromosome 2. We discovered 8 candidate 
genes for FW on chromosome 1, 9, 10, 11, 15 and 19. Two candidate genes for FW were present within a 2 kb win-
dow of S1_7336035 marker on chromosome 15. For SW, 8 genes were predicted on the chromosome 10, 12, 16, 
18, 21 and 22 and three genes were found close to marker S1_6292562 on chromosome 22. On chromosome 10, 2 
candidate genes were identified at upstream and downstream of S1_138350 marker that was significant for FFPR.

Discussion
Understanding the genetics behind fruit, endocarp and leaf related traits is a key element for the improvement 
of olive accessions for breeding purposes. This study is the first comprehensive report of association analysis on 
olive using GBS markers. We used a diverse panel of 183 olive accessions from two different Genbank resources 
(TOGR and NCGR) to identify significant markers associated with LL, LW, FW, SW and FFPR. The large var-
iation in traits observed among accessions as well as the significant correlations between some traits indicates 
the large phenotypic trait diversity among accessions. Three traits (LL, FW and SW) showed a larger than 3-fold 
difference between minimum and maximum values (Table S1). Previous studies in cultivated and wild olive gen-
otypes indicated similar high correlations between FW and SW14,48 and large variation in fruit, leaf and endocarp 
related traits49. Arias-Calderon et al.50 observed significant phenotypic variability in traits such as fruit weight, 
stone weight and flesh/stone ratio among progenies, which agrees with our findings. Phenotypic measurements 
were carried out for two and four years in TOGR and NCGR accessions, respectively and considerable pheno-
typic variation was found for each year in all traits (Supplementary Fig. S1). Similar year variations for fruit and 
endocarp related traits have also been reported in other olive studies14,48. BLUPs were used in GWAS to reduce 
environmental deviation in association analysis as suggested by Piepho et al.51.

The estimates of H2 for SW, FW, LW, FFPR, and LL were high to low, ranging from 0.74 to 0.36. SW and FW 
were among the highly heritable (0.74 and 0.73 respectively) traits in this study (Table S1). High heritability 
estimates are indicative of high quality of the data obtained52. Moderate to high H2 estimates of LW, FW and SW 
obtained in this study imply that these traits are under strong genetic control. Heritability estimates are critical 
in plant breeding and genetics, but experimental approaches are difficult to implement especially in long-lived 
plants such as trees53. Only a limited number of studies that estimate broad sense and narrow sense heritability 
of tree, fruit, endocarp and oil related traits have been published in olive50,54–59 and, consistent with our results, 
relatively high heritability estimates for fruit and endocarp characteristics were obtained. Arias-Calderon et al.50 
reported high narrow sense heritability (0.82) while Fanizza et al.58 reported a moderate heritability estimate 
(0.6) for FW. Zeinanloo et al.59 obtained higher H2 estimates (0.85) for FFPR than we did, and they also obtained 
H2 estimates for FW (0.42) and SW (0.31). Contrary to our study, Padula et al.55 reported higher H2 estimates 

Trait Marker IDs Nearest gene(s) Location of gene(s) Distance to SNP (kb) Description

LL S1_1842014 Oeu008156.1, 
Oeu008157.1 chr2:29784048..29784539, chr2:29793765..29794750 upstream 1.346, 

downstream 7.817
No apical meristem protein, E3 ubiquitin-
protein ligase

FW S1_7858740 Oeu033444.1 chr1:2176890..2179212 upstream 0.223 Act domain-containing protein

FW S1_403246 Oeu048296.1 chr9:3228595..3228900 downstream 0.141 Mitochondrial ATP synthase g subunit 
(ATP-synt_G)

FW S1_12085523 Oeu014982.1 chr11:9787762..9791084 upstream 6.349 Nucleolar protein 58 (NOP58)

FW S1_13002224 Oeu017663.1 chr11:15125620..15131290 upstream 2.537 Calponin homology and kinesin motor 
domain-containing protein-related

FW S1_7336035 Oeu060693.1, 
Oeu060694.1 chr15:20313657..20314145, chr15:20316141..20318953 upstream 0.381, 

downstream 1.669
Polynucleotidyl transferase, ribonuclease 
h-like superfamily protein

FW S1_10019163 Oeu025341.1 chr19:13106491..13106931 upstream 8.408 Zinc-binding in reverse transcriptase 
(zf-RVT)

SW S1_11074838 Oeu054419.1 chr12:20699067..20703923 interior bZIP transcription factor (bZIP_1)

SW S1_13767032 Oeu046142.1 chr16:11635780..11640029 downstream 0.497 Phd finger transcription factor

SW S1_984251 Oeu059021.1 chr18:18573156..18573656 downstream 2.256 Late embryogenesis abundant protein 
(LEA_3)

SW S1_13164923 Oeu041791.1 chr21:8827612..8830227 upstream 4.166 Beta catenin-related armadillo repeat-
containing

SW S1_6292562
Oeu057828.1, 
Oeu057830.1, 
Oeu057831.1

chr22:669428..671698, chr22:679506..679862, 
chr22:682550..684409

upstream 5.820, 
downstream 1.928, 
downstream 4.972

Sodium-bile acid cotransporter, fimbrin/
plastin, fimbrin/plastin

FFPR S1_138350 Oeu048482.1, 
Oeu048483.2 chr10:34975051..34975731, chr10:34976473..34978039 upstream 0.839, 

downstream 50.20
L-ascorbate peroxidase 3, two-
component sensor histidine kinase

FW, SW S1_904125 Oeu040505.2 chr10:37947127..37953467 upstream 1.959 HIV Tat-specific factor 1 (HTATSF1)

Table 1. List of the SNPs and nearest gene(s) for LL, FW, SW and FFPR.

https://doi.org/10.1038/s41598-019-55338-w


8Scientific RepoRtS |         (2019) 9:18764  | https://doi.org/10.1038/s41598-019-55338-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

for FFPR than FW. These findings imply that accessions had abundant genetic variation and were suitable for 
marker-trait association mapping. Previous studies indicated that core collections of different numbers of olive 
genotypes from Genbank collections showed abundant phenotypic and genetic variation9–11. To investigate suit-
ability of the olive core collections for association mapping studies, different sampling approaches and different 
numbers of genotypes from the World Olive Germplasm Bank (WOGB) in Cordoba, Spain9,10 and the WOGB in 
Marrakech, Morocco11 were analyzed. The studies reported that both core collections contained mostly Western 
Mediterranean cultivars9,10 but core collections with cultivars that reflect the full geographic distribution of olive11 
are suitable for association mapping.

We present the first application of GBS in diverse olive accessions from two different Genbank resources. 
The few GBS studies in olive to date have focused on genotyping F1 and F2 individuals40–43 and Italian cultivars39. 
SNP calling in highly heterozygous species such as olive is more difficult than inbred lines34,38. The GBS protocol 
we implemented enabled the discovery of thousands of SNPs. The EcoT22I restriction enzyme was used for the 
reduction of genome sequence complexity. Ipek et al.40 used ApeKI while Unver et al.41 selected a combination 
of PstI-MseI restriction enzymes to perform GBS in olive. D’Agostino et al.39 used EcoT22I restriction enzyme in 
GBS of Italian cultivars. A total of 24,977 SNPs were obtained after filtering which is higher than the number of 
SNPs detected in other GBS studies in olive40,41. The average number of sequence reads per sample we obtained 
(2.56 million) was similar to what was reported in other olive studies by Ipek et al.40 (2.1 million) and D’Agostino 
et al.39 (2.6 million).

Analysis of the population structure and genetic relatedness between accessions in a GWAS has critical impor-
tance for elimination of spurious marker-trait associations18,20. The PCA visualization did not show separation of 
accessions into subpopulations on the basis of geographic origin (East, Central, and West Mediterranean Basin, 
North America and Japan). Predictably, most Turkish genotypes were clustered together however, some fell into 
clusters comprised of European genotypes from NCGR. Diez et al.9. reported an indistinct geographical pattern 
of distribution among olive accessions from WOGB in Cordoba. Contrary our study, Belaj et al.10 and El Bakkali 
et al.11 showed that PCA analyses clustered olive accessions based on their geographic origin (western, central, 
and eastern Mediterranean).

The FULL panel in this study was divided into 6 groups by STRUCTURE analyses (Supplementary Fig. S6). 
Seventy-seven accessions (42%) were categorized as admixed with varying levels of membership in the 6 groups. 
Previous research has reported genetic admixture on olive60–63. Differentiation between groups due to genetic 
structure was measured with Fst values and an Fst value greater than 0.15 can be considered significant64. The 
pairwise Fst values between all groups were higher than 0.15, indicating high genetic differentiation in our FULL 
panel. We observed concordance between distance-based cluster analysis (Fig. 2) and model-based STRUCTURE 
analysis (Supplementary Fig. S6). Neither cluster nor STRUCTURE analysis distinguished the accessions based 
on their geographic origin. The lack of concordance between geographic and genetic distance may come from 
olive trees being transported among ancient civilizations around the Mediterranean basin65.

Other studies on population structure and genetic diversity of olive also reported high genetic variation 
among olive accessions, supporting our findings7,60,66,67. Precise evaluation of population structure and genetic 
diversity of germplasm collections is crucial for not only GWAS studies but also for efficient management of 
accessions in terms of conservation of genetic variability. Similar to other fruit trees, use of synonyms and homo-
nyms are among the most common issues in cultivar designation of olive. Synonyms and homonyms in olive were 
widely reported using various marker techniques such as AFLP, SSR, SNP68,69. Koehmstedt et al.69 and Barranco et 
al.68 stated that ‘Oblonga’ and ‘Frantoio’ accessions were synonymous according to their findings obtained using 
limited number of SSRs. In our study, two separate approaches (model-based STRUCTURE and distance-based 
clustering) located these accessions close to each other. Frantoio (Dole 181 from Albany) and Oblonga (Dole 
3 from France) accessions were closer to each other than any other pair of accessions. Also, the other Frantoio 
accession (Dole 2 from Albany) was located in same cluster with those accessions. Finally, some accessions that 
had the same accession name but different code numbers (DOLE 118 and DOLE 124, DOLE 10 and DOLE 28, 
DOLE 114 and DOLE 115, DOLE 6 and DOLE 13, DOLE 54 and DOLE 174, DOLE 11, DOLE 49 and DOLE 58) 
collected from different locations were located side by side in the heatmap (Fig. 2).

Linkage disequilibrium between markers is one of the critical factors in association mapping studies since it 
provides information related to mapping resolution and strength70. Different descriptors of the amount of LD, 
D’ and r2, were estimated for every pairwise combination of SNPs. In all, 28.4% of the marker pairs showed 
significant LD at r2 > 0.05. To date, very few studies attempted to estimate LD in olive using various numbers 
of accessions. El bakkali et al.11 obtained significant LD scores in 59.5% and 26.5% of the pairwise comparisons 
analyzing different number of accessions. LD measured in Turkish Genbank accessions45 was quite low in terms 
of r2. Low LD scores in a small data set of olive accessions also reported by Reale et al.71. The mating system of 
the species is one the most important factors that affects LD72. The creation of new recombination leads to low 
LD in out-crossing species70. The low LD we observed is similar to those other outcrossing tree species such as 
conifers73, almond74, eucalyptus75 and coffee76.

Fruit weight, stone weight and pulp stone ratio are agronomically important traits in olive tree similar to other 
fruit trees77. After proving that olive leaves are also a rich source of secondary metabolites78, leaf traits have also 
been included among important traits in olive. Limited information exists in olive on QTL linked to agronomic 
traits including flowering related traits15, fruit related traits14, trunk diameter and oil content14,16. To the best of 
our knowledge only three studies have been reported on association mapping in olive for fruit related traits45,79, 
oil content80 and plant vigor45. In two of these studies only 1879 and 2280 olive accessions were used while a study 
published by our group45 included 94 olive accessions. We tested three models on the FULL panel. The MLM_K 
model and MLM_PCs + K showed a similar expected distribution of P-values. We used the MLM_K model since 
it showed a significant improvement in goodness of fit. The MLM_K model also has a shorter computational time 
and it does not need any additional steps such as obtaining population structure81,82. Comparisons of different 
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statistical models for GWAS were also conducted in other tree species such as apple83, pine84, and almond74. 
Previous studies in almond74 and grapevine85 reported that The MLM model with kinship matrix had a better fit 
by controlling population structure and relatedness.

We found 53 significant markers associated with four traits in the FULL panel, including 12 associations 
with LL, 19 associations with FW, 18 associations with SW and 4 associations with FFPR. Two significant mark-
ers (S1_6412238 and S1_11607122) associated with FW were in high LD (r2 = 0.88, Fig. 6). The most signif-
icant marker (S1_13767032, P-value = 9.11E-08), associated with SW, was in relatively high LD with marker 
S1_12591134 (r2 = 0.65). GWAS was also conducted for TOGR and NCGR panels separately. Fifteen and 23 
significant markers were detected in TOGR and NCGR panels, respectively. None of these were common with 
each other or with significant markers found in FULL panel.

We identified significant SNP marker locations using two recently published olive reference genomes. Among 
the 53 significant SNPs, 27 SNPs (51%) and 40 SNPs (75%) were mapped in the wild olive reference genome41 
and the genome of Olea europaea L. subsp. europaea var. europaea cv. ‘Farga’47, respectively. We mapped more 
significant SNPs in genome of Olea europaea L. subsp. europaea var. europaea cv. ‘Farga'47 which is likely due 
to its higher genome coverage (95%) compared to wild olive reference genome (42%). However, this refer-
ence genome47 does not have chromosome assignments so mapped significant SNPs could not be assigned to 
a particular chromosome using this reference genome (Supplementary Table S6). Chromosomal positions of 
27 significant SNPs according to wild olive reference genome41 located them far from each other. Some sig-
nificant markers (S1_12085523 and S1_13002224, S1_11607122 and S1_7336035) associated with FW were 
found on chromosome 11 and 15, respectively. Also, 6 significant markers associated with SW were found on 
chromosomes 12 (S1_11074838 and S1_13555831), 18 (S1_984251 and S1_2244037) and 23 (S1_7495520 and 
S1_8195416). Although these pairs of markers were located on same chromosome, they were distant from each 
other. Comparison of chromosomal locations between this study and previously published studies could not be 
done due to the use of different molecular marker techniques. It is also important to explore whether significant 
markers we found are located in the same regions as in the previously reported QTL studies. Limited information 
exists in olive identifying QTLs linked to the traits analyzed. In a QTL mapping study published by Sadok et al.15, 
8 QTLs linked to fruit weight were identified on different 7 linkage groups using ISSR, SSR and AFLP markers. In 
another QTL mapping study14, one QTL was identified for fruit weight on linkage group 17, while 3 QTLs were 
identified linked to pulp/stone ratio on linkage groups 10 and 17 using DArT-SSR markers.

We found 19 candidate genes close to significant markers in the FULL panel within a 10-kb region window 
in either direction of a significant SNP. The most significant SNP marker, S1_13767032, was located on 0.497 kb 
upstream of the Oeu046142.1 gene. This gene is annotated as a PHD finger transcription factor and the family 
to which this gene belongs, plays a key role in regulating plant growth and development86. The analysis of tran-
scriptomes provides genomic resources for functional annotation to discover genes for olive breeding87. To date, 
several transcriptome studies have been performed for olive using different organs at different developmental 
stages41,47,87–89. There have been attempts to identify candidate genes associated with important traits such as plant 
architecture90 and juvenility91 in olive, but no putative candidate genes underlying QTL have been reported. More 
studies are still required to facilitate validation of these results in different olive populations.

Materials and Methods
Plant materials. We used 94 accessions from Turkish Olive GenBank Resources (TOGR) panel in Izmir, 
Turkey and 89 accessions from the USDA, ARS, National Clonal Germplasm Repository (NCGR) panel in 
Davis, CA, USA. Detailed information of these accessions (FULL panel) is provided in Fig. 7 and Supplementary 
Table S13. The map in Fig. 7 was generated using the ‘ggmap’ package92 in R version 3.4.293. Fresh leaf tissue 
was harvested from the youngest leaves of each tree in the leaf shooting stage. Leaf tissue samples were stored at 
−80 °C until DNA was extracted.

Phenotypic data. Phenotypic data for the following five traits was evaluated: leaf length (LL), leaf width 
(LW), fruit weight (FW), stone weight (SW) and fruit flesh to pit ratio (FFPR). For 94 accessions from TOGR, 
phenotypic data measurements (FW and SW) were carried out during 2011 and 2013 and this data was obtained 
from a previously published study by Kaya et al.45. LL, LW and FFPR measurements were carried out according 
to the methodology proposed by the International Olive Oil Council (IOOC). Phenotypic data for 89 accessions 
from NCGR in Davis was downloaded from USDA-GRIN (Germplasm Resources Information Network system) 
website for four seasons from 2005 to 2008 (Available at www.ars-grin.gov/npgs and accessed May 2017). To 
show the statistical distribution of traits divided over geographical origin of accessions and year, box plots were 
generated using R93. Phenotypic data from different years was averaged and used for descriptive statistical analysis 
using the pastecs package in R.93.

To eliminate the effect of environment variation, the best linear unbiased prediction (BLUP) values of lines 
were calculated for each trait using mixed linear model (1):

= + + +Y b p aX W Z e (1)

where X, W and Z are incidence matrices, b is the vector of fixed effect for country and p and a are vectors of 
random effects for genotype and year, respectively. The random effects and residual errors are assumed to be 
normally distributed independent of each other and each of them have covariance structure proportional to an 
identity matrix. We fitted the model using the lmer function from the lme4 R package94. The predictions for the 
random effects for GIDs (BLUPs) from this model were used as phenotypic data for the GWAS.
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Variance components were extracted from the lmer output and broad-sense heritability (H2), based on clone 
means, was estimated according to Hallauer et al.95. The H2 for each trait was estimated by the Eq. (2) using vari-
ance components from lmer.

H VG/(VG VE) (2)2 = +

where VG and VE represent estimates of genetic and environmental variance, respectively. In addition, heritabil-
ity value estimates were calculated for TOGR and NCGR panels, separately. Pearson correlations between traits 
were estimated from BLUPs using the “cor” function in R and distributions of BLUPs in the two locations were 
plotted in R.

DNA extraction and genotyping-by-sequencing. Genomic DNA was extracted by the CTAB method 
of Doyle96 with some minor modifications. The Chloroform: Isoamyl Alcohol (24:1) extraction step was applied 
twice to improve removal of phenolic compounds. DNA was quantified with Qubit dsDNA BR Assay Kit 
(Invitrogen) on a Qubit 2.0 Fluorometer (Invitrogen) according to the manufacturer’s instructions. DNA samples 
were diluted to 20 ng/μl and subsequently used for GBS library preparation.

The GBS libraries were constructed in 96-plex where each plate included a single random blank well as con-
trol. For choosing appropriate restriction enzymes for olive genotypes, two different restriction enzymes, EcoT22I 
(ATGCAT) and PstI (CTGCAG) (both 6-base cutters), were tested to make GBS libraries and EcoT22I was 
selected. PCR amplification was performed to generate the GBS libraries and DNA was sequenced on an Illumina 
HiSeq. 2000 (Illumina Inc., USA). GBS was carried out at the Institute of Genomic Diversity (Cornell University, 
Ithaca, NY, USA) as described by Elshire et al.24.

SNP calling, filtering and imputation. SNPs were identified using the TASSEL UNEAK (non-reference) 
GBS pipeline97 in the TASSEL 3 bioinformatics analysis package. SNPs were filtered to remove markers with 
more than 80% missing data and genotypes with more than 80% missing SNP calls in using R version 3.4.293. 
After filtering, the SNP dataset was converted to numeric coding (1, 0, −1) from nucleotide coding for statistical 
analysis in R version 3.4.293. The A.mat function from rrBLUP package in R was used to remove markers with 
minor allele frequency (MAF < 0.05) and impute the missing marker data based on expectation maximization 
(EM) algorithm.

Genetic diversity and population structure analysis. To assess genetic structure, we applied 
both model-based and distance-based approaches. The Admixture-based clustering model we applied was 
STRUCTURE v.2.3.498. Each simulation included 10,000 burn-in and 50,000 iterations. Ten independent runs 
were performed for each K value ranging from 1 to 10 with an admixture model and correlated allele frequencies. 
The optimal K was chosen based on Evanno’s methods99 using the STRUCTURE HARVESTER software100. To 
visualize the population structure, a bar plot was obtained with sort by Q option based on the optimum K value. 
Genotypes with membership probabilities higher than 0.7 were assigned to one of the subpopulations. Otherwise, 
they were considered to be admixed. The membership coefficient matrix (Q matrix) that shows the percentages 

Figure 7. Geographical distribution of accessions. Origin of accessions is represented by a dot on the world 
map. Accessions without origin information (4 accessions from NCGR) are not shown in here.
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of admixture of each accession given by the STRUCTURE software was used as cofactors in the association anal-
yses. Calculation of pairwise genetic differentiation (Fst) between the groups from STRUCTURE was performed 
using VCFtools101. Principal component analysis (PCA) was also carried out to study the structure of the geno-
types using the function prcomp in R93. First two principal components (PCs) were plotted using the ggplot2 R 
package102. To apply the distance-based approach, a Euclidean marker distance matrix was obtained using the dist 
function and a graphical representation of distance matrix was created using the heatmap function in R.

Estimation of linkage disequilibrium. The LD between marker pairs was calculated based on D’ and r2 
using TASSEL. Permutation testing was applied to examine the significance level of LD between loci. Pairwise 
LD analysis between significant markers for the best GWAS model based on marker score correlations (r2) was 
performed separately on the FULL panel and was visualized as a heatmap using heatmap function in R.

Association analyses. Genome wide association analyses were performed using the SNP dataset consisting 
of 24,977 SNPs in FULL, TOGR and NCGR panels. For association analysis, three different models were tested 
for controlling population structure with the R package rrBLUP103. Mixed Linear Model (MLM) that accounts 
only for relative kinship (MLM_K model), MLM that accounts for both relative kinship and model-based popu-
lation structure (MLM_Q + K) and MLM with first two PCs and K-matrix as correction for population structure 
(MLM_PCs + K) were compared. Q is the matrix of sub-population membership probabilities obtained from 
STRUCTURE98, K is the kinship matrix calculated using the A.mat function in the rrBLUP R package103 and the 
number of PCs was selected based on the scree plot of the variance explained by the first 10 PCs. We also exam-
ined the effect of including different numbers of PCs (first two PCs, first three PCs, first four PCs, first five PCs, 
first 10 PCs, first 15 PCs) as covariates in MLM_PCs + K model.

Correction for multiple testing was carried out using the false discovery rate (FDR) values according to the 
procedure by Benjamini and Hochberg46. Markers with FDR < 0.05 were considered significant. The proportion 
of phenotypic variance explained by each significant marker was estimated via R2 by fitting a regression between 
phenotypes and marker profiles using R93. The quantile–quantile (QQ) plots were used for selecting the best 
GWAS model. The QQ plots were produced using the R qqman package104 and Manhattan plots were visualized 
using R93.

Mapping the significant hit to the olive reference genome. The significant GWAS hits were mapped 
to their positions in the two recently published olive genomes. The first genome, Olea europaea var. sylvestris,41 
includes ~1.1 Gb of sequence and is available at https://phytozome.jgi.doe.gov. Only ~573 Mb of this assembly is 
mapped to its chromosomal position (n = 23). The second olive genome, Olea europaea L. subsp. europaea var. 
europaea cv. ‘Farga’47 has a total length of 1.31 Gb which represents 95% of the genome’s estimated size (1.38 Gb). 
This genome has no chromosome assignments and is divided in more than 50k scaffolds with an N50 of 443Kb.

Briefly, the significant GWAS hits were linked to their 64mer sequence tag using the TOPM file produced by 
the UNEAK GBS calling pipeline97. A multi-fasta was created using the marker identifier and the 64mer sequence. 
We then used Blast +105 to map each GWAS hit with its most probable location in both genomes. The best blast 
hit was chosen based on the percentage of alignment and E-value.

Identification of candidate genes. To find candidate genes associated with significant SNPs, the Jbrowse 
feature of Phytozome v.12.1 (http://phytozome.jgi.doe.gov/pz/portal.html)106 was used to browse the wild olive 
reference genome41. Candidate genes were searched within 10 kb upstream and downstream of each significant 
SNP region in the genome browser.

Data availability
Raw FASTQ data have been submitted to the NCBI Short Read Achieve with accession number SRP113625.
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