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novel Bacteria-immobilized 
cellulose Acetate/poly(ethylene 
oxide) Nanofibrous Membrane for 
Wastewater treatment
Doaa Zamel1,2*, Ahmed H. Hassanin2,3, Rania ellethy1, Gamal Singer1 & 
Ahmed Abdelmoneim2,4

In this study, electrospun cellulose acetate - poly(ethylene oxide) nanofibrous membrane was found 
to be unique in immobilizing bacterial cells. Here, removal of methylene blue in aqueous media was 
achieved by using isolated species of bacteria (Bacillus paramycoides) from industrial wastewater 
and immobilized on cellulose acetate- poly(ethylene oxide) nanofibers using DMSO as a solvent. The 
decolorization time was varied from 0 to 72 h, different dye concentrations from 20 to 200 mg/L and 
bacterial cells count was investigated to achieve the maximum MB removal by bacteria-immobilized 
CA/PEO nanofibrous membrane. The effective dye decolorization was achieved within 48 h and MB 
removal % was around 93%. Furthermore, reusability of the bacteria-immobilized CA/PEO nanofibrous 
membrane was tested. It was found that after the 4th usage, 44% of the dye decolorization capacity 
still could be achieved. These results are promising and suggest that bacteria-immobilized CA/PEO 
nanofibrous membrane could be economically feasible and eco-friendly when used in MB removal from 
industrial wastewater. Combination of both adsorption and biodegradation methods was found to be 
effective in MB removal from aqueous media.

Dyes are used in industry in order to give color to several products such as textiles, leather, plastics and paper1. 
Many dyes are produced with huge amounts around 280,000 tons per year2. Most dyes do not bind to the tar-
get material, and this subsequently results in 10–50% excess dye that was discharged directly into wastewater3. 
Likewise, approximately 5000 tons of dyes are exhausted into effluents annually4. As a result, their discharge into 
the environment is a matter of concern as they may cause pollution for both toxicological and esthetical scales5. 
Methylene blue dye is a thiazine cationic dye which has widespread applications in industry, likewise in dying 
cotton, silk and wool6–8. However, it may cause eye burns which lead to permanent eye injuries in human and 
animals9,10. Besides, it may give rise to short periods of rapid heartbeats or difficult breathing in case of inhalation. 
Indeed, treatment of any effluent containing MB dye is of great importance due to its harmful impacts on water 
quality and perception. Different treatment methods were performed for effluents discharged from industries to 
decolorize dyes; such as biodegradation6,10, chemical oxidation11, foam flotation6, electro-coagulation7, adsorp-
tion10,12,13 and photodegradation by Titanium Dioxide13,14. However, the efficient, eco-friendly and cost-effective 
method for MB removal from aqueous systems remains a challenge. The biodegradation and biosorption methods 
of dyes using microorganisms such as bacteria, fungi and algae have been extensively cited, as they are considered 
as cost-effective and eco-friendly methods for dye removal3,15. Compared to other microorganisms, bacteria can 
decolorize a wide range of dyes with high efficiency as they are easier to culture, have a rapid growth and the capa-
bility to degrade pollutants under a wide range of environmental harsh conditions. Bacteria do not consume MB 
dye for nutrition, instead they perform biodegradation as a defense mechanism against the dye toxicity. The use of 
free bacterial cells in methylene blue biodegradation from industrial wastewaters has been formerly reported3,16. 
However, free bacterial cells in general cannot be harvested from wastewater after application, hence this may 
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develop another unavoidable source of pollution, and consequently they could not be applied on the industrial 
scale. The use of bio-integrated support for immobilizing bacteria could solve those drawbacks and bring addi-
tional advantages over free bacterial cells usage such as lower space and growth medium necessities, potential 
reusability and higher resistance to environmental extremes17. Due to simplicity, versatility and cost-effectiveness 
of electrospinning technique, besides its ability to control fiber morphology (e.g. higher surface area and poros-
ity), nanofibrous membranes have been recently presented as promising support for immobilization of microor-
ganisms used in dye bioremediation and water purification applications18,19. Previous studies on cellulose acetate 
electrospinning has been showed that it is a versatile material for fabrication as it is water-insoluble, biodegrad-
able, biocompatible and highly porous good support for bacteria immobilization16,20–23. Furthermore, cellulosic 
nanofibers exhibit a very high surface area which enriches their adhesion properties and this could be useful in 
bacterial immobilization24. Yet, several studies in the literature on immobilization of microorganisms on nano-
fibrous membranes suggest that the generated systems have good potential for use in many environmental prac-
tices. In a study of San et al.25, showed the effect of cellulose acetate (CA) nanofibers on immobilization of bacteria 
in MB decolorization by surface attachment method. Another study, Acinetobacter calcoaceticus STB1 cells were 
immobilized on electrospun CA nanofiberous mats in order to achieve enhanced ammonium removal in aqueous 
environments26. However, the weak adhesion properties between bacteria and nanofibrous membranes represent 
major obstacles in the real life application of these newly generated systems on the industrial scale. Likewise, 
bacteria shall be fallen easily from the nanofibers when applied in water systems. Hence, encapsulation of bacte-
ria inside nanofibers using electrospinning technique could be a pathway for efficient trapping of bacteria inside 
nanofibers and it recently appeared in the literature. For instance, Escherichia coli and Staphylococcus albus were 
embedded in poly(vinyl alcohol) solution and water was the solvent, the results showed the potential of electro-
spinning process in immobilization of both bacterial strains on PVA nanofibers27. Furthermore, the encapsula-
tion of Lysinibacillus sp. bacteria in water- soluble and biocompatible non-polymeric cyclodextrin fibers (CD-F) 
using electrospinning process has been recently touched before28. However, PVA and CD are water soluble and 
could not be effectively applied in wastewater applications. From that approach, cellulose acetate was best chosen 
as it exhibits water in-soluble properties. Nevertheless there are previous studies for CA electrospinning using 
organic solvents such as acetic acid, acetone and dimethyl fluoride, all these solvents are toxic on bacteria which 
may lead to bacterial death. Consequently, the choice of an organic solvent for CA electrospinning that is safe on 
bacterial cells remains a challenge. This is why it was arranged to prepare cellulose acetate/poly(ethylene oxide) 
nanofibrous membrane using dimethyl sulfoxide (DMSO) as a new solvent because it is safe on bacterial cells and 
maintains their viability29–31. Furthermore, the present work aims to investigate the electrospinning technique 
on the immobilization of the isolated Bacillus paramycoides on cellulose acetate- poly(ethylene oxide) nanofibers 
and asses the combination of the biodegradation and adsorption methods on methylene blue removal. This novel 
membrane could be easily handled, affordable, economical and reusable for more than three times in industry.

Results
Morphological characterization of bacteria-free CA/PEO and bacteria-immobilized CA/PEO 
nanofibers. The morphologies of cellulose acetate- poly(ethylene oxide) and Bacteria-immobilized cellulose 
acetate- poly(ethylene oxide) nanofibers were investigated using scanning electron microscope (SEM) as shown 
in Fig. 1. As there is a lack in research studying DMSO as a solvent for cellulose acetate in electrospinning and 
nanofibers production, optimum conditions for the electrospinning such as polymer concentration had to be 
optimized. Generally, bacteria-free CA/PEO solution was successfully electrospun into bead-free and uniform 
fibers that have smooth morphology and the nanofibers prepared from solution precursor containing 15 wt% CA/
PEO showed the least mean average in fiber diameter distribution. Therefore, it was selected as an ideal matrix 
for trapping bacterial cells and examining their distribution and morphology after electrospinning. The incorpo-
ration of Bacillus Paramycoides into CA/PEO blend solution did not significantly affect the electrospinning and 
nanofibers were successfully produced (Fig. 2). In a closer look, bacterial cells were successfully encapsulated 
within the CA/PEO fiber matrix, forming local widening in the fiber. Interestingly, the Bacillus Paramycoides cells 
changed its typical rode shape to nearly round shape once upon subjected to the electrospinning process. This 
change in shape of bacteria cells could be due to the effect of electrostatic field generated during the electrospin-
ning process by the application of high voltage (30 KV).

Methylene blue (MB) decolorization results. To determine the maximum MB dye removal by 
the bacteria-immobilized CA/PEO membrane, the effects of contact time, initial dye concentrations, and 
bacteria-immobilized CA/PEO membrane area on the decolorization of MB were investigated (Table 1).

Effect of contact time. Contact time is one of the important parameters to achieve the effective dye removal in 
practical applications. The optimum removal time of MB by bacteria-immobilized CA/PEO nanofibrous mem-
brane was determined. The MB decolorization performances of free bacteria, CA/PEO nanofibrous membrane 
and bacteria-immobilized CA/PEO nanofibrous membrane after different time intervals (4, 12, 24, 48 and 72 h) 
were tested. From Fig. 3, the maximum MB removal % achieved by CA/PEO nanofibers was 13.3% after 48 h. 
This can be attributed to the high surface area and the pores in CA/PEO nanofibrous membrane which lead to 
dye adsorption on the surface of CA/PEO nanofibers. On the other hand, MB removal % by free bacteria and 
bacteria-immobilized CA/PEO nanofibrous membrane were increased dramatically to reach the maximum level 
after 48 h, 89.13 and 87.39% respectively. After that, the MB removal % declined after 72 h to be 81.74 and 85.91% 
in free bacteria and bacteria-immobilized CA/PEO nanofibrous membrane, respectively.
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Effect of dye concentration. From literature, the effluent of MB dye ranging from 10–200 mg/L into industrial 
wastewater, gives it a deep blue color25. Therefore, different dye concentrations were studied ranging as 20, 50, 100 
and 200 mg/L. Constant pieces of nanofibers were put onto different flasks containing different dye concentra-
tions. Bacteria-immobilized CA/PEO nanofibrous membrane has shown efficient MB removal % within 48 h. In 
addition, effect of dye concentration on removal % using bacteria-immobilized CA/PEO nanofibrous membrane 
was investigated at different initial dye concentrations ranging 20–200 mg/L at pH 7 (Fig. 4). At the end of the 48 h 
incubation period, the maximum removal % of 20 mg/L MB solution by bacteria-immobilized CA/PEO nanofi-
brous membrane was 87.39%. However, the removal % decreased with an increase in the dye concentration. For 
50 mg/L dye concentration, the MB removal % was 85.62%. When dye concentration is increased to 100 mg/L, the 
decolorization capacity was 84.06%. In the case of 200 mg/L MB concentration, the MB removal % was 81.56%.
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Figure 1. Representative SEM images of cellulose acetate- poly(ethylene oxide) nanofibers at different 
concentrations and fiber diameter distribution (A) 12; (B) 15 and (C) 18 wt%.
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Effect of increasing bacteria/CA/PEO membrane. As illustrated in Fig. 5, effect of increasing the 
bacteria-immobilized CA/PEO nanofibrous membrane was investigated using constant dye concentration of 
20 mg/L and 48 h contact time. In the prepared bacteria-immobilized CA/PEO nanofibrous membrane samples, 
the piece of 1 cm2 of the nanofibrous membrane contains 4.23 × 108 bacterial cells. Therefore, 2 cm2 contains 
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Figure 2. SEM images of Bacteria-immobilized CA/PEO nanofibrous membrane and fiber diameter 
distribution; (A) at low magnification, (B) at high magnification and (C) fiber diameter distribution.

Factors Levels

Contact time, h. 5 (4, 12, 24, 48, 72)

Dye concentration, mg/L 4 (20, 50, 100, 200)

Membrane area, cm2 3 (1, 2, 4)

Table 1. Design of experiment for the investigated parameters.
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Figure 3. Comparison between MB removal % achieved by CA/PEO nanofibers, bacteria-immobilized CA/
PEO nanofibrous membrane and free bacteria at different time intervals.
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8.46 × 108 and 4 cm2 contains 16.92 × 108 bacterial cells. Likewise, the bacterial cells count was increased with 
increasing the pieces area of the nanofibrous membrane as 1, 2 and 4 cm2. As a result, the bacterial cells count and 
the nanofibrous membrane area have shown an obvious effect on MB dye decolorization.

Langmuir adsorption isotherm. Langmuir adsorption isotherm has the special significance of being the 
model that applies to ideal case of physical or chemisorption on a smooth surface with no interactions between 
adsorbed molecules. It is shown in Fig. 6, Langmuir model fits correctly for modeling the adsorption of MB 
on CA/PEO nanofibers. The statistic determination coefficient (R2) is very close to 1 which indicates regular 
Langmuir isotherm model. Furthermore, it implies the behavior of the adsorption is monolayer. The simplest 
theoretical equation representing adsorption isotherms that characterize the dependence of MB removal function 
“θ“ on the time is that due to Langmuir which is given by Eq. 130.

θ
− θ

=
1

KC (1)

In which θ could be obtained from relationship 2:

θ = −1 C
C (2)

i

o

Where (Ci) and (Co) are the residual and initial concentrations of MB respectively. In addition, K is the equi-
librium constant of the adsorption reaction which is related to the sorption energy, it is the affinity of adsor-
bent towards the adsorbate. High values of K imply to a strong binding and low values indicate a weak binding. 
Whereas, C is the adsorption time given in hours.

Free energy could be calculated from Eq. 3:

∆ ° = −G RT lnK (3)

Where:
R: the universal gas constant (8.314 J. mol−1 K−1), T: temperature (K), and K: the equilibrium constant.
From Langmuir linear model, K = 0.0033
Thereby, ∆G° = 14.62 KJ.mol−1 34

Fiber morphology after MB decolorization experiments. To follow up the change in the nanofibers 
morphology after 48 h incubation period, SEM characterization was performed on the fiber membrane after 
48 h incubation period. As seen in Fig. 7, no significant damage in the fiber morphology is observed and fibers 
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Figure 4. The effect of different dye concentrations on the decolorization yield after 48 h incubation period.
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Figure 5. Effect of increasing bacterial cell count and membrane area on MB removal % after the 48 h 
incubation period.
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maintain their smooth appearance, except the swelling of fibers due to water absorption by the fibers. It is further 
shown that, MB dye diffused between the fibrous matrix and adsorped on the fiber surface.

Reusability experiments for bacteria-immobilized CA/PEO nanofibrous membrane. Reusability 
was studied on the resulted bacteria-immobilized CA/PEO nanofibrous membrane for three times after the ini-
tial usage by washing with distilled water before each usage. Reusability tests were studied after 48 h incubation 
period, 20 mg/L MB, and 35 °C incubation temperatures. From Fig. 8, it was observed that the MB removal % 
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Figure 6. SEM images of bacteria-immobilized CA/PEO nanofibers after dye removal and fiber diameter 
distribution; (A) at low magnification, (B) at high magnification and (C) fiber diameter distribution.
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decreased by increasing the reusability usage number. Approximately 44% of the dye removal % was obtained 
after the final usage (4th usage) which suggests that the bacteria-immobilized CA/PEO nanofibrous membrane 
could sustain their biodegradation capacity after several times of usages and may be reused repeatedly for dye 
removal from wastewater in textiles and paints industry which maximize its economic feasibility for industrial 
applications.

Discussion
Cellulose acetate has been chosen for nanofibrous membrane preparation as it is water-insoluble, biodegradable, 
biocompatible and highly porous good support for bacteria immobilization25–28. As illustrated is Fig. 1, different 
CA/PEO concentrations (12, 15 and 18 wt%) were electrospun and resulted in various nanofibers morphology. 
It is seen that 18 wt% CA/PEO concentration produced the highest average nanofibers diameter distribution. 
Furthermore, the nanofibers diameter distribution of 15 wt% CA/PEO was more uniform and narrower than 
12 and 18 wt%. This indicates that 15 wt% CA/PEO produces a less fibers diameter variation, which means that 
15 wt% CA/PEO concentration is the optimum polymer concentration for electrospinning process, especially in 
the presence of DMSO as a new solvent for cellulose acetate- poly(ethylene oxide) electrospinning. In addition, 
it can be clearly noticed that the bacterial cells are well dispersed and quite a lot adhered into the nanofibers 
(Fig. 2). Furthermore, this could give us positive expectations for the efficient performance of bacterial cells 
during methylene blue (MB) decolorization test. Dyes decolorization by bacteria could be attributed to either 
adsorption on microbial cells or by biodegradation. In case of adsorption, the bacterial cells become colored after 
the removal process. While in case of biodegradation, the bacterial cells maintain their original color32. In this 
study, no change in the color of bacterial cells was observed in the bacterial cells color after the decolorization 
process. This observation indicates that the mechanism of decolorization of the isolated bacteria in this study is 
biodegradation (Fig. 9). Bacteria metabolite organic compounds which contain carbon and nitrogen sources that 
act as growth substrates in generating reducing equivalents (e.g., reduced nicotinamide adenine dinucleotide; 
NADH and flavin adenine dinucleotide; FADH2). These reducing equivalents are considered the energy source 
for all biologic oxidative and fermentative systems33. Methylene blue has high molecular weight, therefore it 
cannot penetrate the bacterial cell wall. That is why, the biodegradation reactions occur outside the bacterial 
cells. The master step in the biodegradation pathway is the cleavage of the double bond to give colorless aromatic 
amines34,35. This reduction occurs by reductases enzymes which are synthesized and released by bacteria into the 
surrounding media. The presence of oxygen inhibits this reaction and for this it occurs anaerobically. Reductases 
enzymes utilize NADH and FADH2 which are generated by bacterial metabolism as the source of electrons in the 
reduction step. Dehydrogenases enzymes are further synthesized by bacteria to convert NADH to NAD+, these 
enzymes work antagonistically to reductases in a cycle from successive reactions. Further degradation occurs on 
the produced amines to convert them to less toxic compounds3,36. In Fig. 3, the explanation to the decline in bac-
terial removal efficiency by the time is the shortage of nutrients in the media with the passage of time after 48 h. 
As known, biodegradation of methylene blue occurs by reductases enzymes which are produced and secreted 
by the bacteria into the surrounding media. These enzymes utilize NADH and FADH2 in their reactions, which 
were produced by bacteria metabolism. Therefore, shortage of nutrients could be the cause of NADH and FADH2 
diminishing. This affects badly on the enzymes efficiency in MB biodegradation19,20. The difference in the removal 
capacity between free bacteria and bacteria-immobilized CA/PEO nanofibrous membrane is very impressive and 
quite; nevertheless, using bacteria-immobilized CA/PEO nanofibrous membrane has certain advantages than 
using free bacteria such as good dispersion and easy handling. As the highest MB removal % was obtained after 
48 h, the time of 48 h period was selected as the optimum contact time for all coming decolorization tests as 
the maximum removal occurs. Furthermore, CA/PEO nanofibers exhibited dye adsorption properties and the 
equilibrium adsorption data was best presented by the Langmuir isotherm model. The calculated free energy 
is positive value which indicates that the methylene blue adsorption on CA/PEO nanofibers is an endergonic 
reaction and non-spontaneous in nature (Fig. 7). It can be obviously noticed that the decrease in the decolori-
zation capacity due to increasing in the initial dye concentration, was not significant (Fig. 4). Nevertheless the 
increase in the initial dye concentration was 10 times from 20 to 200 mg/L, it wasfound that the decrease in the 
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decolorization capacity was only 6% roughly. The results demonstrated in Fig. 5, indicated that when increasing 
bacteria-immobilized CA/PEO nanofibrous membrane piece area, the MB removal % consequently increased. 
It is anticipated that the dye removal capacity is relevant to the amount of bacteria and nanofibers mat. Hence, 
removal efficiency could be improved by increasing both the bacteria and the nanofibers quantity. From reusabil-
ity results illustrated in Fig. 8, the decline in the removal efficiency after reusability might be due to detachment 
of some bacterial cells from the nanofibrous membrane at the washing step or death of some cells due to lack of 
nutrients.

Materials and Methods
Materials. The cellulose acetate was purchased from ACROS Organics (USA) (Mw. 100.000 g/mole). 
Polyethylene oxide was purchased from Sigma Aldrich (Germany) (Mw. 900.000 g/mole). Dimethyl Sulfoxide 
(DMSO) was purchased from SDFCL, Mumbai (India) (99% (GC)). Methylene blue (MB) dye (extra pure, SLR, 
C.I.52015, fisher chemical) was purchased from Fisher Scientific (USA). Nutrient agar and nutrient broth were 
purchased from Sigma Aldrich, Germany.

Methods. Isolation and growth of bacterial cells. Random samples of 50 mL/each were taken from the waste-
waters of different factories at Alexandria industrial region, Egypt. Small droplet (50 µL) of each sample was 
spread on a plate of culture media containing methylene blue dye. Eight bacterial strains were isolated as they 
were able to degrade methylene blue dye from the culture media. Furthermore, the best strain was selected by 
testing the MB removal capacity of the isolated strains using known concentration of the methylene blue dye 
(50 mg/L) and calculating the MB removal % of each of them. The highest MB removal % represented the best 
bacterial strain (Bacillus paramycoides) in methylene blue biodegradation. The methylene blue removal ratio (R 
%) was calculated from Eq. 4:

= − ×R% (C C )/(C ) 100 (4)o i o

While Co (mg/L) is the initial concentration before adding bacterial strain and Ci (mg/L) is the residual con-
centration of MB3.

Bacterial strain identification. The isolated strain was identified by DNA extraction and 16-S-rRNA technique 
at Sigma Labs, Egypt.

Figure 9. Mechanism of methylene blue biodegradation by bacteria.
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Preparation of bacteria-immobilized nanofiberous membrane. Preparation of the electrospinning solution. 
Cellulose acetate (CA) powder was dissolved in Dimethyl Sulfoxide (DMSO). Polyethylene oxide (PEO) was 
added with a small ratio (10%) to enhance the spinability of cellulose acetate. The solution was left on the mag-
netic stirrer until it becomes homogenous, completely dissolved and clear viscous solution. Different concentra-
tions were prepared 12, 15 and 18 wt% of CA/PEO solution.

Immobilization of Bacillus paramycoides on CA/PEO nanofibers. The isolated bacterial cells were cultured in a 
flask containing nutrient broth media and put in a shaker at 30 °C for growth. Nutrient broth (peptone from meat 
5.0 g, meat extract 3.0 g and sodium chloride 6.0 g dissolved in 1 L and pH 7). A volume of 80 mL from Bacillus 
paramycoides culture were centrifuged and the cells pellet was taken and put onto the CA/PEO solution before 
electrospinning.

Electrospinning of CA/PEO solution. In this process, high voltage from 25–30 was applied, the distance 
between the needle tip to the collector was 15 cm and the feed rate was 1 mL/h. Rotating drum collector was used 
to collect the nanofibrous mat at a high speed 3000 rpm. After the electrospinning process, the prepared CA/PEO 
nanofibrous membrane were put into a vacuum oven at 30 °C for 24 h to expel any remained solvent.

Characterization methods and techniques.

Scanning electron microscope (SEM).
Morphology and diameters of the prepared nanofibers were investigated by using (JEOL, JSM-6010LV, Japan) 
with an accelerating voltage 20 KV. Samples were placed on copper holder and coated with a layer of platinum 
before scanning.

Bacterial cells count on nanofiberous membrane.
The bacterial culture was performed in a 250 mL flask and put in a shaker at 30 °C for at least 24 h for growth in 
order to obtain high optical density (OD)37. In our study, the optical density of bacterial culture was obtained by 
measuring with UV-spectrophotometer at wavelength of 600 nm.

= .(OD ) 1 27600

80 mL of the bacterial culture with OD600 of 1.27 were taken for centrifugation. The precipitated cells were 
washed and put onto 4 mL of the CA/PEO blend solution for electrospinning. After the electrospinning process, 
the fabricated bio-membrane area was measured to calculate the quantity of bacterial cells on each 1 cm2. The 
resulted bio-membrane sample was 3 cm in width and 40 cm in length. The quantity of bacterial cells on each cm2 
of the immobilized nanofibers was calculated by Eq. 537.

. ≈ ×OD of 1 0 5 10 cells/mL (5)600
8

As optical density (OD600 = 1.27), so the quantity of free bacterial cells in each mL = 1.27 × 5 × 108 cells. Thus 
whole bacterial cells count in the prepared electrospun solution equals:

. × × × = ×1 27 5 10 80 508 10 bacterial cells8 8

By dividing the whole bacterial cells count in the electrospun solution (508 × 108 bacterial cells) on the area 
of the fabricated CA/PEO nanofibrous membrane (120 cm2), It was concluded that each 1 cm2 of bio-membrane 
contains 4.23 × 108 bacterial cells/cm2. The fabricated bio-membrane was cut into pieces with different areas of 1, 
2 and 4 cm2 to be ready for application.

Methylene blue decolorization.
Methylene blue solution was prepared by adding methylene blue dye after dissolving in distilled water onto nutri-
ent broth liquid media. A piece of nanofibers 1 cm2 was placed into 5 mL MB/liquid media (20 mg/L) and placed 
into constant temperature shaking incubator at 35 °C for different time intervals as mentioned before. Methylene 
Blue removal % was measured after each time interval. UV-visible spectrophotometer was used to determine the 
color absorbance of methylene blue in the supernatant solution before and after application of immobilized nano-
fibers using a double beam UV-Spectrophotometer (T80 + UV/Vis spectrometer, PG Instruments Ltd, UK) at a 
668 nm wavelength38. Absorbance of the initial dye concentrations were taken before performing the tests. After 
the decolorization tests, absorbance of the residual dye concentrations were taken to calculate the MB removal % 
by the previous equation.

Determination of adsorption isotherm.
Langmuir isotherm model was used to determine the behavior of methylene blue adsorption on cellulose 
acetate-poly(ethylene oxide) nanofibers and free energy was calculated to determine the type of reaction.

Reusability tests.
MB decolorization studies were performed four times to assess the reusability of the bio-membrane for an ini-
tial concentration of 20 mg/L. Before each cycle, bio-membrane was washed three times with distilled water. 
Reusability tests were performed at 35 °C for 48 h.
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conclusion
This novel bio-membrane has been successfully explored for the biodegradation and adsorption of MB from 
wastewater. The simultaneous biodegradation and adsorption processes proved to be highly effective for 
the decolorization of methylene blue dye39–43. Approximately 88% of MB removal could be achieved by the 
bacteria-immobilized CA/PEO nanofibrous membrane after 24 h. Furthermore, after 48 h, around 93% of MB 
could be removed. Thus, this membrane is quite efficient in MB biodegradation and adsorption which could be 
considered a very promising membrane. Moreover, it could be used in industry because of its easy handling and 
effective reusability.
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