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pharmacological myeloperoxidase 
(Mpo) inhibition in an obese/
hypertensive mouse model 
attenuates obesity and liver 
damage, but not cardiac 
remodeling
Arnold piek1, Debby p. Y. Koonen2, elisabeth-Maria Schouten1, eva L. Lindtstedt3, 
erik Michaëlsson3, Rudolf A. de Boer  1 & Herman H. W. Silljé  1*

Lifestyle factors are important drivers of chronic diseases, including cardiovascular syndromes, with low 
grade inflammation as a central player. Attenuating myeloperoxidase (MPO) activity, an inflammatory 
enzyme associated with obesity, hypertension and heart failure, could have protective effects on 
multiple organs. Herein, the effects of the novel oral available MPO inhibitor AZM198 were studied in 
an obese/hypertensive mouse model which displays a cardiac phenotype. Eight week old male C57BL6/J 
mice received 16 weeks of high fat diet (HFD) combined with angiotensin II (AngII) infusion during 
the last 4 weeks, with low fat diet and saline infusion as control. Treated animals showed therapeutic 
AZM198 levels (2.1 µM), corresponding to 95% MPO inhibition. AZM198 reduced elevated circulating 
Mpo levels in HfD/Angii mice to normal values. independent of food intake, bodyweight increase and 
fat accumulation were attenuated by AZM198, alongside with reduced visceral adipose tissue (VAT) 
inflammation and attenuated severity of nonalcoholic steatohepatitis. The HFD/AngII perturbation 
caused impaired cardiac relaxation and contraction, and increased cardiac hypertrophy and fibrosis. 
AZM198 treatment did, however, not improve these cardiac parameters. Thus, AZM198 had positive 
effects on the main lipid controlling tissues in the body, namely adipose tissue and liver. This did, 
however, not directly result in improved cardiac function.

Unhealthy lifestyle is a strong driver of obesity, diabetes mellitus (DM) and hypertension. Currently, in Western 
countries more than 30% of the adult population is obese, 28% has hypertension and more than 8% has DM1–3. It 
is expected that these prevalences will even further increase in the coming years. Moreover, obesity, diabetes and 
hypertension are important risk factors for cardiovascular diseases4 and, therefore, modifying these risk factors 
or their systemic effects could be an interesting preventive or therapeutic approach.

Obesity and diabetes affect tissue metabolism, but are also associated with numerous systemic changes that 
may impact on other organs including the heart. Amongst others, obesity results in a hyperdynamic circula-
tion with increased blood volume, while inducing (neuro)hormonal changes and promoting atherosclerosis and 
myocardial ischemia5. Both obesity and diabetes also adversely affect vascular function and are closely linked to 
hypertension6–9. Hypertension on its turn has direct hemodynamic effects, requiring increased cardiac work-
load, thereby promoting heart failure development10. Importantly, these risk factors also induce vascular- and 
systemic-inflammatory states and elevated plasma levels of inflammatory factors are observed in subjects with 
these risk factors9,11–14. Systemic and endothelial inflammation has been postulated to play an important role in 
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the development of heart failure with preserved ejection fraction (HFpEF) (ejection fraction, EF, >50%)9,11–16. 
In contrast to heart failure with reduced ejection fraction (HFrEF) (EF, <40%), this syndrome is poorly under-
stood and no-proven therapy exists. The exact characteristics are still under debate, but increased cardiac wall 
thickness and reduced diastolic function (relaxation) with preserved EF (>50%) are some of the main features4. 
Inflammation appears to be an overarching phenomenon with all these conditions and targeting inflammatory 
factors may therefore be beneficial at multiple organ and tissue levels in obese, diabetic, hypertensive and HFpEF 
patients.

The inflammatory enzyme myeloperoxidase (MPO), which is mainly produced by neutrophils and can be 
detected in the circulation, is a possible therapeutic target. The major role of MPO is in host defense, but it is also 
associated with obesity, insulin resistance, hypertension and heart failure17–22. In heart failure patients, plasma 
MPO levels are elevated and associated with worse cardiac function, and have been reported to be a predictor of 
heart failure outcome23–25. Moreover, network analysis suggested a prominent role for MPO in the HFpEF net-
work20. MPO is also associated with the development of non-alcoholic steatohepatitis (NASH) and MPO plasma 
levels and hepatic MPO activity have been reported to increase in patients with NASH26–28. A causal relationship 
has been inferred from mouse studies showing that mice that have no MPO (MPO−/− mice) on a high fat diet 
(HFD) showed less adipose inflammation and fat accumulation29. Furthermore, mouse studies have provided evi-
dence that MPO can contribute to cardiac remodelling and also myocardial fibrosis, and MPO deficiency could 
preserve cardiac function, and reduce atrial fibrillation and ventricular tachycardia under pro-fibrotic conditions, 
present in severe heart failure models, like in post-myocardial infarction30–33.

Altogether, MPO presents an attractive target for pharmacological interference in obesity and hypertension, 
with possible (in)direct cardiac protective effects. In this study, we investigated the effects of a novel orally avail-
able MPO inhibitor, AZM198, which belongs to the class of 2-thioxanthines34. In vitro and in vivo studies have 
shown high specificity towards MPO at low micromolar plasma levels34,35. AZM198 effects on adipose tissue, 
liver and the heart were investigated in a combined obesity and hypertension mouse model with cardiac HFpEF 
characteristics.

Results
The obesity associated increase in MPO plasma levels was attenuated by AZM198 treat-
ment. Mice were provided a control (LFD) diet or a high fat diet (HFD) with or without AZM198 for 16 
weeks. During the last 4 weeks, hypertension was induced in the obese animal groups by infusion of AngII (HFD/
AngII groups) (Fig. 1A). Food intake measurements showed no differences in food intake between diet supple-
mented with AZM198 and the respective placebo HFD diet (Supplemental Table 2). At the end of the experiment, 
plasma AZM198 levels were determined and this revealed that AZM198 could be detected in all treated mice 
with a mean level of 2.1 ± 0.3 µM (Fig. 1B). This experimental setting did not allow for measuring specific mye-
loperoxidase (MPO) activity in blood plasma. Therefore, sufficient exposure to the drug in the HFD/AngII group 
was concluded by comparing the data with systemic AZM198 exposures in parallel zymosan-induced peritonitis 
experiments. As shown in Supplemental Fig. 1, a 2.1 µM plasma AZM198 concentration diminished peritoneal 
MPO activity by more than 95%, arguing for adequate exposure to AZM198 in the HFD/AngII animals.

Plasma myeloperoxidase (MPO) protein concentrations were determined to investigate the effects of the life-
style regiment and AZM198 treatment. As shown in Fig. 1C, plasma MPO levels were significantly elevated in 
the HFD/AngII group as compared to the control (LFD) group. This confirms the systemic inflammatory state 
under this condition. We like to note that this elevation was primarily driven by HFD and not by the low dose 
AngII treatment (Supplemental Fig. 2). Interestingly, MPO levels were normalized by AZM198 treatment to levels 
comparable to the control (LFD) group (Fig. 1C).

To confirm drug safety, a mouse group on control (LFD) diet received AZM198. Also in these animals, 
blood plasma MPO levels were significantly lower, but no side-effects were observed, confirming drug safety 
(Supplemental Table 3). Importantly, also no hematological differences, including neutrophil counts, were 
observed with the use of AZM198 (Supplemental Table 3).

Thus, not only MPO activity is affected by AZM198, but also MPO plasma protein levels. Whether this is 
a direct effect of AZM198 on MPO or an indirect effect, due to an altered inflammatory state, is currently not 
known. Together, these data show that HFD/AngII treatment resulted in elevated MPO levels and that AZM198 
reduces MPO activity and plasma levels.

AZM198 attenuated fat tissue accumulation. To investigate the effect of MPO inhibition on obesity, 
bodyweight changes of the mouse groups were determined weekly, starting at baseline. Already after 1 week of 
HFD, bodyweight of these mice was higher as compared to mice receiving LFD (Fig. 2A) and this was maintained 
throughout the experiment. Treatment with AZM198 did, however, attenuate bodyweight increase within 1 week 
of AZM198 treatment and this difference was sustained throughout the experiment. Analysis of body mass com-
position by using a minispec revealed that changes could be fully devoted to changes in fat mass accumulation 
without affecting lean mass, and fat mass accumulation was attenuated in the AZM198 treated group (Fig. 2B,C). 
An intra-peritoneal glucose tolerance test (IPGTT) at 16 weeks confirmed the pre-diabetic state of the HFD 
groups, but did not reveal any difference between the AZM198 treated and untreated groups (Fig. 2D). Thus, 
AZM198 attenuated bodyweight increase upon HFD by reducing fat tissue accumulation.

Fat tissue inflammation and macrophage presence is reduced by AZM198. To further investigate 
the effects of MPO inhibition on adipose tissue, we performed gene expression analysis and histological stain-
ings in VAT. HE staining in VAT sections showed that adipose cell size was similarly elevated in both AZM198 
untreated and treated HFD groups (Fig. 3A,B). However, in the latter inflammatory crown–like structures were 
clearly less abundant, suggesting that AZM198 attenuates adipose tissue inflammation (Fig. 3A,C). The adipose 
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stress factor growth differentiation factor-15 (GDF-15) was equally up-regulated in the AZM198 treated and 
untreated groups (Fig. 3D), but elevation of macrophage markers (F4/80, CD86, Gal-3) in adipose tissue of the 
AZM198 treated HFD/AngII group was significantly attenuated (Fig. 3D). To confirm diminished macrophage 
presence in adipose tissue in the AZM198 group, histological sections of VAT were stained with anti-Gal-3, a 
macrophage marker. Quantification showed that macrophage presence was clearly diminished in the AZM198 
treated HFD/AngII group (Fig. 3E,F). Together this indicates that AZM198 can reduce HFD/AngII induced adi-
pose tissue inflammation and adipose tissue macrophages counts.

AZM198 attenuated liver degeneration. Besides adipose tissue, the liver is an important organ in fat 
metabolism and liver degeneration is a common symptom in obesity. Histological analysis of mouse liver tissue 
revealed strongly elevated liver steatosis and ballooning of hepatocytes in the HFD/AngII group (Fig. 4A–C). No 
liver fibrosis was observed in the HFD/AngII group (Supplemental Fig. 3A,B), indicative for early stage liver dis-
ease36,37. Interestingly, AZM198 treatment attenuated both liver steatosis and ballooning. To investigate whether 
macrophage presence was again a determining factor, macrophage gene expression was investigated. Only Gal-3 
expression was significantly reduced in the AMZ198 group (Fig. 4D). This may suggest that whilst overall mac-
rophage numbers did not change, the number of activated macrophages (marked by CD68) and M2 macrophages 
(marked by Gal-3) in liver were reduced in AZM198 treated mice. Histological analysis did not reveal clear dif-
ferences in liver macrophages (Fig. 4E,F). Together, these data show that AZM198 was able to attenuate liver 
degeneration.

Treatment with AZM198 had no effects on cardiac parameters. As described before, the used 
obese/hypertensive mouse model generates a cardiac phenotype with HFpEF characteristics38. We therefore 
investigated multiple cardiac parameters to determine the effect of AZM198 on cardiac function in this mouse 
model. Hemodynamic measurements confirmed that LV end-systolic pressure (Pes) was increased in the HFD/

Figure 1. Experimental design and blood plasma levels of AZM198 and MPO. (A) Schematic experimental 
overview of the obesity/hypertension mouse model. Three experimental groups were included. Mice received 
either high fat diet (HFD) or low fat diet (LFD) for 16 weeks. HFD was supplemented with MPO-inhibitor 
(AZM198) or no inhibitor. During the last 4 weeks, infusion of angiotensin II (AngII) or saline was performed 
using osmotic minipumps. Prior to sacrifice, cardiac magnetic resonance imaging (CMR), body composition 
analysis and intraperitoneal glucose tolerance tests (IPGTT) were performed. Mice were sacrificed at 16 weeks. 
(B) Blood plasma levels of AZM198 at sacrifice. (C) Blood plasma levels of myeloperoxidase (MPO) at sacrifice. 
N = 11–12. Bars represent means. Error bars represent standard error of the mean. *P < 0.05 as compared to 
LFD. #P < 0.05 as compared to HFD + AngII.
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AngII groups, confirming adequate AngII infusion (Table 1). Cardiac magnetic resonance imaging (CMR) meas-
urements showed that LV ejection fraction (LVEF) was preserved (Fig. 5A and Table 1). Cardiac contraction 
(dP/dTmax) and relaxation (dP/dTmin) were impaired in the HFD/AngII groups, and AZM198 did not alter this 
(Table 1). Cardiac hypertrophy was present in the HFD/AngII mouse groups as determined by LV weight and 
cardiomyocyte size measurements (Fig. 5B,C). No significant changes in lung weight were observed, though the 
HFD/AngII group appeared to have slightly increased lung weight as compared to the LFD and AZM198 treated 
HFD/AngII groups (Fig. 5D). AZM198 had no effects on these parameters. Moreover, increased pathological car-
diac gene expression (NPPA, encoding natriuretic peptide precursor type A) and increased expression of fibrotic 
genes (collagen genes: Alpha-1 type 1 collagen and alpha-3 type 1 collagen, Col1a1 and Col3a1), inflammatory 
genes (Gal-3 and GDF-15) and metabolic genes (Pyruvate dehydrogenase kinase 4, PDK4) were observed in the 
HFD/AngII mouse groups, but again AZM198 did not affect any of these parameters (Fig. 5E). LV fibrosis was 
also confirmed by Masson’s trichrome staining and showed a similar result for the HFD/AngII groups with and 
without AZM198 (Fig. 5F,G). Together, this indicates that in the obese/hypertensive mouse model AZM198 had 
no important cardioprotective effects.

Discussion
In this study we investigated the effects of the novel myeloperoxidase (MPO) inhibitor AZM198 on obesity, liver 
damage and cardiac function in an obese and hypertensive mouse model, provoked by a high fat diet (HFD) com-
bined with angiotensin II (AngII) infusion (HFD/AngII model). Our data show that MPO blood plasma levels 
indeed are increased in this model, indicative for a systemic inflammatory state. AZM198 could be detected in 
blood plasma at levels that provide approximately 95% MPO activity inhibition. AZM198 also normalized the 
MPO blood plasma protein levels in the HFD/AngII model to control levels. No adverse events were observed 
with AZM198 treatment. Interestingly, AZM198 reduced bodyweight increase by attenuating fat tissue inflamma-
tion. In particular, a reduction in inflammatory crown-like structures and macrophages in visceral adipose tissue 
(VAT) was observed. Moreover, steatosis and ballooning degeneration in the liver were reduced in the AZM198 
treated HFD/AngII group. Potential AZM198 cardioprotective effects could, however, not be observed in this 
study.

Figure 2. Bodyweight and glucose tolerance. The effects of myeloperoxidase (MPO) inhibition by AZM198 
on bodyweight development, and glucose tolerance in the obesity/hypertension model induced by high fat 
diet (HFD) and angiotensin II (AngII) infusion. Control animals received low fat diet (LFD). (A) Bodyweight 
development pre- and post-pump implantation. Bodyweight is corrected for pump weight from week 13 and 
onwards. N = 11–12. (B) Quantification of total body fat mass from body composition analysis, corrected for 
pumps. (C) Quantification of total body lean mass from body composition analysis, corrected for pumps. (D) 
Serial blood glucose measurements in mice during intraperitoneal glucose tolerance testing (IPGGT). N = 6–7 
for IPGTT. N = 11–12 for all other graphs. Bars and points on graph represent means. Error bars represent 
standard error of the mean. *P < 0.05 as compared to LFD. #P < 0.05 as compared to HFD + AngII.

https://doi.org/10.1038/s41598-019-55263-y


5Scientific RepoRtS |         (2019) 9:18765  | https://doi.org/10.1038/s41598-019-55263-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Targeting cardiovascular risk factors, including obesity, is known to improve cardiovascular prognosis39. The 
association between obesity, inflammation and cardiovascular diseases suggests anti-inflammatory therapies 
could be an interesting therapeutic approach in cardiovascular risk management9,11–16,39. MPO−/− knockout mice 
show normal development and have no apparent phenotype under standard conditions40, but show reduced bod-
yweight gain and a reduction in crown-like structures and inflammatory markers in VAT after HFD feeding29. In 
concordance, we observed that MPO inhibition through AZM198 treatment was associated with positive effects 
on obesity and adipose tissue inflammation. Moreover, obesity and non-alcoholic steatohepatitis (NASH) are 
closely linked. With increased availability of fatty acids, which are derived from adipose tissue, development of 
liver steatosis is promoted41. In a previous study, NASH induced liver damage was reduced in MPO−/− knockout 
mice27. Also in our study mice showed a NASH-like phenotype, and with AZM198 treatment liver damage was 
prevented as shown by a normalization of steatosis and ballooning scores. Thus, our results are therefore in line 
with these previous studies with genetically engineered MPO knockout mice.

Inflammatory cells present in adipose tissue, including macrophages, are important producers of inflamma-
tory cytokines and are therewith an important driver of the pro-inflammatory state associated with obesity42. 
This pro-inflammatory state is also suggested to play an important role in the development of cardiovascular 
diseases, including HFpEF9,11–16. In this study, VAT macrophage expansion was markedly reduced by AZM198 

Figure 3. Inflammatory profile of visceral adipose tissue. The effects of myeloperoxidase (MPO) inhibition by 
AZM198 on visceral adipose tissue (VAT) inflammation in the obesity/hypertension model induced by high fat 
diet (HFD) and angiotensin II (AngII) infusion. Control animals received low fat diet (LFD). (A) Representative 
images of HE stained VAT sections, showing adipocyte size and crown-like structures (CLS). Red bar = 200 µm. 
(B) Quantification of adipocyte size from hematoxilin/eosin (HE) stained VAT sections. (C) Quantification 
of the number of inflammatory crown-like structures (CLS) from HE stained VAT sections as a measure for 
inflammatory cells. (D) Relative mRNA expression of growth differentiation factor 15 (GDF-15) and genes 
associated with macrophages, including F4/80, cluster of differentiation 68 (CD68) and galectin-3 (Gal-3). (E) 
Representative images of Gal-3 stained VAT sections, showing macrophages in VAT tissue. Red bar = 200 µm. 
(F) Quantification of macrophage presence from Gal-3 stained VAT. Gene expression values are corrected 
for 36B4 gene expression and presented as fold change. N = 8–11. Bars represent means. Error bars represent 
standard error of the mean. *P < 0.05 as compared to LFD. #P < 0.05 as compared to HFD + AngII.
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treatment, and this was true for F4/80 (mature macrophage marker), CD68 (activated macrophage marker) and 
Gal-3 (M2-macrophage marker) sub-types. In liver on the other hand, the total number of F4/80 macrophages 
seemed unaffected by AZM198, but there was a reduction in the number of activated CD68 macrophages and 
M2 macrophages. These effects of AZM198 on macrophages in VAT and liver could possibly explain the attenu-
ating effects of AZM198 on obesity and liver damage. The positive effects of AZM198 on the liver could also be 
indirectly mediated via the positive effects on adipose tissue, and this requires further investigations. All together 
these results show that MPO inhibition by AZM198 could be an interesting new pharmacological approach to 
diminish adipose tissue inflammation and liver degeneration.

Obesity and hypertension are important risk factors for cardiovascular diseases, including HFpEF9,11–16. 
Studies in MPO knockout mice have shown that MPO is involved in cardiac remodeling. In post myocardial 
infarcted MPO−/− knockout mice, thinning of the ventricular walls was reduced and ventricular dilatation was 
attenuated32,43. Though an inflammatory state was induced in the model used in our study, the cardiac phenotype 
was not attenuated by AZM198 treatment. Since the degree of cardiac inflammation and remodeling in the used 
obese/hypertensive mouse model is small as compared to previous reported cardiac remodeling in the infarction 
and other severe HF models, it is possible that the effects of AZM198 on cardiac remodeling were too subtle to 
be observed. Moreover, MPO protein levels were about 3.8 ± 0.6 and 4.3 ± 1.1 times higher in liver and VAT as 
compared to the heart, which could explain why the main effects of AZM198 were observed in liver and VAT.

Figure 4. Liver degeneration and macrophages. The effects of myeloperoxidase (MPO) inhibition by AZM198 on 
liver degeneration and macrophage presence in the obesity/hypertension model induced by high fat diet (HFD) 
and angiotensin II (AngII) infusion. Control animals received low fat diet (LFD). (A) Representative images of 
the hematoxilin/eosin (HE) staining in liver sections, showing liver steatosis and ballooning. Black bar = 200 µm. 
(B) Quantification of the degree of steatosis from HE stained liver sections. (C) Quantification of the degree of 
ballooning from HE stained liver sections. (D) Relative mRNA expression in liver tissue of genes associated with 
macrophages, including F4/80, cluster of differentiation 68 (CD68) and galectin-3 (Gal-3). (E) Representative 
images of Gal-3 stained liver sections, showing macrophages in liver tissue. Black bar = 60 µm. (F) Quantification 
of macrophage presence from Gal-3 stained liver sections, represented as fold change. Gene expression values 
are corrected for 36B4 gene expression and presented as fold change. N = 8–12. Bars represent means. Error bars 
represent standard error of the mean. *P < 0.05 as compared to LFD. #P < 0.05 as compared to HFD + AngII.
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AZM198 is a relatively novel MPO inhibitory drug belonging to the class of 2-thioxanthines, and this class of 
drugs has shown good specificity towards MPO34,35,44. This drug shows high specificity towards MPO, as com-
pared to other peroxidases, like the structurally related thyroid peroxidase (TPO)34. A previous study, using a 
highly specialized MRI/microPET method and a specific MPO-activated tracer, described up to 80% reduction 
of MPO activity by AZM198 in aortic plaques34. Moreover, other studies showed that a 2 uM plasma level of 
AZM198 resulted in in almost complete MPO inhibition, which was confirmed by our study34,35. We like to note 
that predominantly extracellular MPO is targeted at these AZM198 plasma levels and neutrophil intragranular 
MPO inhibition has been shown to require higher AZM198 levels35. Our study is one of the first describing 
AZM198 treatment in disease models. Thus far, no side effects at these therapeutic levels of the drug have been 
reported, and also in our study no harmful side effects, including hematological side effects, were observed.

In studies performed in HF populations, MPO blood plasma levels were associated with HF severity and prog-
nosis23–25. Recently, cardiac specificity of several novel HF biomarkers has been questioned, whilst cardiac spec-
ificity is important to directly correlate the level of a circulating marker to the degree of cardiac remodeling38,45. 
In our mouse study the elevated plasma MPO levels were primarily observed in association to HFD, whereas 
the cardiac phenotype was predominantly dependent on the low dose AngII infusion. This is different from 
previously reported high dose AngII infusion studies in which MPO plasma levels were elevated30. Therefore, 
the AngII induced cardiac remodeling in our mouse model is less MPO driven and this may also explain the 
lack of improvement of cardiac function by AZM198 treatment. These data also indicate that MPO levels are not 
indicative for cardiac function and remodeling and may limit its role as a heart failure biomarker. On longer term, 
sustained obesity might very well translate into long term stress to the heart and incident heart failure, so that our 
results clearly do not preclude a beneficial effect on the long term. The lag time between the onset of obesity and 
incident HFpEF in obese individuals is typically 1–2 decades. In this relatively short term mouse model we could 
not study these important long term effects.

Several limitations of this study should be mentioned. First, whilst in humans, development of obesity and 
hypertension is a slow process that takes decades, the induction of the model in this study was relatively fast. 
When studied in a more prolonged time window or in a more severe model, cardiac protective effects of AZM198 
might be observed and also effects on liver fibrosis could be studied. Second, only two cardiovascular risk fac-
tors were included in this study, namely obesity and hypertension. AZM198 may show protective effects on the 
pro-inflammatory states induced by other cardiovascular risk factors, including age, kidney disease and chronic 
obstructive pulmonary disease (COPD) amongst others4,16. Whereas in this study positive AZM198 effects on 
liver and VAT were observed, cardiac remodeling and function were not altered. This does not exclude the pos-
sibility that cardiac protective effects of AZM198 may be present in other heart failure animal models, such as 
described for PF-1355 in post myocardial infarct remodeling33, or at different dosage regimes and this will require 
further investigations. Finally, because direct MPO measurements for plasma or tissue are not available, we used 
indirect methods to determine MPO inhibition levels. Although this is a limitation, our observations were in line 
with other studies34,35. This study was designed to investigate the effects of AZM198 on multiple tissues with a car-
diovascular scope. The observed protective effects on adipose and liver tissues now set the stage for more focused 
studies to delineate the molecular mechanisms in these tissues in association to MPO-inhibition by AZM198.

Altogether, we have shown that plasma MPO levels are elevated in obese/hypertensive mouse model and that 
AZM198 was able to reduce blood plasma MPO levels. Fat tissue accumulation, adipose inflammation and liver 
degeneration were effectively reduced by AZM198. We postulate that by attenuating the severity of these impor-
tant cardiovascular precipitating factors, prolonged pharmacological inhibition of MPO by AZM198 may have 
value in cardiovascular risk reduction and cardiovascular prevention.

LFD HFD + AngII
HFD + AngII 
AZM198

P-cathether

   Heart rate (bpm) 485 ± 21 460 ± 30 475 ± 29

   LV Ped (mmHg) 10.5 ± 2.0 17.7 ± 1.8 18.7 ± 4.8

   LV Pes (mmHg) 97.3 ± 2.3 114.1 ± 9.2* 118.7 ± 3.2*

   LV dP/dtmax (1/s) 74.8 ± 4.7 59.0 ± 4.8* 64.1 ± 4.4

   LV dP/dtmin (1/s) −66.4 ± 6.4 −47.4 ± 4.1* −47.2 ± 4.1

CMR

   LVEDV (µL) 49.9 ± 2.1 51.5 ± 2.5 55.9 ± 3.9

   LVESV (µL) 22.7 ± 1.8 24.7 ± 3.1 27.6 ± 3.5

   LVEF (%) 55.1 ± 1.8 53.7 ± 3.7 52.1 ± 2.9

Table 1. Hemodynamic measurements and cardiac dimensions in obese/hypertensive mice treated with 
AZM198. Data are presented as means ± standard error of the mean. LFD = Low fat diet. HFD = High fat diet. 
AngII = Angiotensin II. AZM198 = Myeloperoxidase inhibitor. P-catheter = Pressure cathether. LV = Left 
ventricle. Ped = End-diastolic pressure. Pes = End-systolic pressure. dP/dtmax = Maximal LV contraction 
corrected by maximal LV pressure. dP/dtmin = Maximal LV relaxation corrected by maximal LV pressure. 
CMR = Cardiac magnetic resonance imaging. LVEDV = Left ventricular end-diastolic volume. LVESV = Left 
ventricular end-systolic volume. LVEF = Left ventricular ejection fraction. *P < 0.05 as compared to LFD.
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Methods
Animals. The animal experimental protocol was approved by the Animal Ethical Committee of the University 
of Groningen (permit numbers: AVD105002016487 and IVD16487-03-01). All procedures were performed 
conform the existing guidelines for the care and use of laboratory animals. Male C57BL/6 J mice (Envigo, the 
Netherlands) were housed on a 12/12 hours day/night cycle in a controlled environment and ad libitum access 
to water and chow. Mice were randomized based on bodyweight at an age of 8 weeks to create the experimental 
groups. Mice with abnormal bodyweight (>2 SD) or showing abnormal behavior were excluded. Prior to surgery, 
mice received a subcutaneous dose of carprofen (5.0 mg/kg) to reduce post-operative wound pain. Functional 
measurements, including cardiac magnetic resonance imaging (CMR) and hemodynamic measurements, and all 
molecular and histological analysis were performed in a blinded fashion.

Figure 5. The effects of AZM198 on cardiac remodeling and function. The effects of myeloperoxidase (MPO) 
inhibition by AZM198 on measures of cardiac function and remodeling in the obesity/hypertension model 
induced by high fat diet (HFD) and angiotensin II (AngII) infusion. Control animals received low fat diet 
(LFD). (A) Quantification of left ventricular ejection fraction (LVEF) as determined by cardiac magnetic 
resonance imaging (CMR). (B) Left ventricular (LV) weight corrected by tibia length to the power of 3. (C) 
Quantification of LV cardiomyocyte cross sectional area (CSA) from WGA-FITC stained mid-ventricular 
sections. (D) Lung weight corrected by tibia length to the power of 3. (E) Relative mRNA expression of LV 
genes, including natriuretic peptide precursor type A (NPPA), alpha-1 type 1 collagen (Col1a1), alpha-3 type 1 
collagen (Col3a1), galectin-3 (Gal-3), growth differentiation factor 15 (GDF-15) and pyruvate dehydrogenase 
kinase 4 (PDK4). (F) Representative images of Masson’s trichrome-stained mid-ventricular sections. Red 
bar = 2 mm. (G) Quantification of LV fibrosis from Masson’s trichrome-stained mid-ventricular sections. 
Gene expression values are corrected for 36B4 gene expression and presented as fold change. N = 10–12. Bars 
represent means. Error bars represent standard error of the mean. *P < 0.05 as compared to LFD.
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Mouse experimental protocol. Mice received a high fat diet (HFD) (60 kcal% fat, D12492, Research diets, 
USA), or a control low fat diet (LFD) (10 kcal% fat, D12450J, Research Diets, USA). The AZM198 treatment 
group received 0.16% AZM198 in the diet. As a control, no AZM198 was added. To exclude differences in food 
intake between experimental groups, food intake was measured for a selection of animals of each group for a 
period of 12 consecutive days.

After 12 weeks of diet intervention, HFD mice were randomized to receive 4 weeks of either human angio-
tensin II (AngII) (1 mg/kg/day dissolved in saline, Bachem, Switzerland) or saline infusion using osmotic min-
ipumps (Alzet 1004, Durect corporation, USA). Pumps were combined with polyetheretherketone tubing (Alzet 
PEEK tubing 0002612, Durect corporation, USA) to allow CMR measurements. Pump placement was performed 
as described before46. In brief, mice were anesthetized with 2% isoflurane/oxygen via inhalation and were placed 
in the prone position on a heating pad to maintain body temperature. A subcutaneous pocket was created in the 
right flank for pump insertion. After placing the pump, the skin was closed using a 5-0 silk suture.

Prior to sacrifice, bodyweight was determined and body mass composition analysis was performed to 
determine body fat content. Both bodyweight and body mass composition were corrected for the implanted 
mini-pumps. An intraperitoneal glucose tolerance test was performed to investigate diabetic status. Also, cardiac 
function was determined using CMR measurements. Mice were sacrificed at 16 weeks. A timeline of the experi-
ment is depicted in Fig. 1A.

In vivo AZM198 potency analysis. The potency of AZM198 on tissue MPO activity was determined in 
separate peritonitis experiments at AstraZeneca, Sweden (ethical permit number 74-2011). Female BALB/c mice 
(Charles River Labs, Germany) were primed with an intraperitoneal injection of thioglycollate broth, followed by 
an intraperitoneal challenge with zymosan (Sigma-Aldrich, USA) 24 hours later. After an additional 2 hours, the 
mice were perorally gavaged with a single dose of 0.5, 1.5, 5, 10, 50 or 250 µmol/kg AZM198, or the vehicle 1% 
hydroxypropylmethylcellulose. Two hours after gavage, the peritoneal cavity was rinsed with phosphate-buffered 
saline. The cells were spun down and the MPO activity in the supernatant was determined by chemiluminescence 
after reactivation with H2O2 in the presence of luminol. Data are expressed as percent of the mean response of the 
vehicle-treated controls and represent two independent experiments.

Body mass composition measurements. Body mass composition, including total body fat content and 
total body lean content, was determined using a minispec LF90II body composition analyzer (Bruker Optics, 
USA).

Glucose tolerance test. Mice were fasted for 6 hours and, subsequently, injected intraperitoneally with a 
sterile 2 g/kg glucose solution (50% glucose in 0,9% NaCl, Merck, Germany) using sterile insulin syringes (U-100 
Insulin, Terumo, Japan). Blood was drawn from the tail vein immediately before and 15, 30, 60, 120, 150 and 
180 minutes after glucose injection. Blood glucose levels were determined using an Accu-Check Aviva glucose 
analyzer (Roche Diagnostics, Germany).

cMR measurements. CMR measurements were performed just before sacrifice using a vertical 9.4-T, 
89 mm bore size magnet equipped with 1500 mT/m gradients combined with a 400 MR system (Bruker 
Biospin, Germany). CMR measurements were performed as described before47. Mice were anesthetized with 
2% isoflurane/oxygen. Respiration and cardiac electrophysiology, including heart rate, were monitored using 
an electrocardiography (ECG) trigger unit (RAPID biomedical, GmBH, Germany). By slightly adjusting the 
dosage of isoflurane, heart rate and respiration rate were maintained between 400–600 and 20–60, respectively. 
Depending on the size of the heart, 7–9 two dimensional images were recorded to cover the whole left ventricle 
(LV). CMR acquisition and reconstruction were performed using ParaVision and IntraGate software (Bruker 
Biospin, GmBH, Germany). Using semi-automatic contour detection software (QMass, version MR 6.1.5, Medis 
Medical Imaging systems, the Netherlands), left ventricular end-diastolic volume (LVEDV) and left ventricular 
end-systolic volume (LVESV) were determined, and left ventricular ejection fraction (LVEF) was calculated.

Hemodynamic measurements and sacrifice. Euthanasia of animals was performed under anesthesia, 
but prior to sacrifice hemodynamic measurements were performed. Mice were anesthetized with 2% isoflurane/
oxygen. A catheter (Scisence catheter 1.2 F, Transonics, USA) was inserted via the right carotid artery. Parameters 
of cardiac function were recorded, including LV pressures, LV dP/dtmax (a measure for maximal LV contraction 
capacity), LV dP/dtmin (a measure for maximal LV relaxation capacity) and heart rate. After catheter removal, 
blood was collected and transferred into ethylenediaminetetraacetic acid (EDTA) tubes. One portion of blood 
designated for complete blood count was stored in EDTA tubes at 4 °C until analysis. A second portion of blood 
was centrifuged immediately after blood collection at 1500 g for 10 min and blood plasma was collected. To 
remove remaining red blood cells, organs and tissues were flushed with saline. Next, organs and tissues of interest 
were collected. LV weight and lung weight were determined. An LV mid-slice of each heart, a sample of visceral 
adipose tissue (VAT) and a piece of liver were fixed in formalin and processed for histology. Blood plasma, organs 
and tissues were frozen in liquid nitrogen and stored at −80 °C. Tibias were collected and measured. Organ 
weights were corrected for tibia length to the power of 348.

complete blood counts. Complete blood count was determined on the day of sacrifice using a sysmex 
hematology analyzer (Symex XN-10, Sysmex Corporation, Japan). Before performing complete blood counts, 
blood was diluted 5 times with 0,9% NaCl.

plasma levels of Mpo. Blood plasma MPO levels were determined in 20 times diluted plasma samples 
using MPO enzyme-linked immunosorbent assay (ELISA) kits (Hycult biotech, the Netherlands).
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Plasma levels of AZM198. Plasma levels of AZM198 were determined in 10 µL EDTA plasma using pro-
tein precipitation with acetonitrile followed by ultra-performance liquid chromatography (UPLC) and tandem 
mass spectrometry (UPLC-MS/MS). By addition of 180 µL of acetonitrile containing internal standard, followed 
by mixing and centrifugation, precipitation was obtained. Supernatant was diluted 1:1 with 0.2% formic acid. 
Subsequently, this mixture was injected on an ACQUITY UPLC HSS T3 1,8 µm 2.1 × 50 mm column, followed by 
eluting using a gradient mobile-phase profile (mobile phase A: 0.2% formic acid in water, mobile phase B: 0.2% 
formic acid in acetonitrile). Analytes were detected by multiple reaction monitoring (MRM). The lower limit of 
quantification (LLOQ) was 8 nmol/L.

Histological assessment of VAT, liver and LV. Slices of 4 µm thickness were cut from formalin-fixed and 
paraffin-embedded VAT, liver tissue samples, and LV mid-transverse sections.

To visualize crown-like structures and adipocyte cell size in VAT, and steatosis and ballooning in liver tissue, depa-
raffinized sections were stained with hematoxilin (Mayers Hematoxilin, MHS32-1L, Sigma-Aldrich, USA) and eosin 
(Epsom U solution, HT110232-1L, Sigma-Aldrich, USA) and mounted by DPX mounting medium (Sigma-Aldrich, 
USA) followed by automatically imaging of whole stained sections using a Nanozoomer 2.0 HT. (Hamamatsu, 
Japan). Quantifying the amount of crown-like structures in sections was performed by counting the number of 
crown-like structures in 5 randomly picked areas, each with a size of 0.75 mm2. Adipocyte cell size was determined 
by counting the number of adipocytes in 5 randomly picked areas, each with a size of 0.15 mm2. Next, the mean 
adipocyte size was calculated by dividing the combined area size by the total number of adipocytes. Quantifying the 
degree of steatosis and ballooning in liver sections was performed using a histological scoring system for NASH, as 
described elsewhere49. In short, degree of steatosis and ballooning was scored on a scale of 0–3 and 0–2, respectively.

As a measure of macrophage presence, a galectin-3 (Gal-3) staining was performed on deparaffinized VAT 
and liver sections. Antigen retrieval was performed using 10 mM citrate buffer (Citric acid monohydrate, 100241, 
Merck, Germany) with a pH of 6.0. After blocking endogenous peroxidases with H2O2, sections were incubated 
with rat-anti-Mac2 (CL8942AP, Cedarlane, Canada) diluted 1:1500 in phosphate buffered saline (PBS) with 1% 
bovine serum albumin (BSA, 11930.03, Serva, Germany) for 1 hour, rabbit-anti rat IgG/HRP diluted 1:100 in 
PBS with 1% BSA for 45 min and AEC substrate-chromogen (K3464, Agilent, USA) for 8 min, followed by hema-
toxilin counterstaining (Mayers Hematoxilin, MHS32-1L, Sigma-Aldrich, USA). Sections were mounted using 
faramount mounting medium (S3025, Agilent, USA). Whole stained sections were automatically imaged using 
a Nanozoomer 2.0 HT. (Hamamatsu, Japan). In VAT, the number Gal-3 stained adipocyte cells was counted in 5 
randomly picked areas, each with a size of 0.75 mm2. In liver, the fraction of positive stained pixels (AEC, red col-
our) of the entire section was determined using ImageScope software (ScanScope, Aperial Technologies, USA).

For histological assessment of liver fibrosis and cardiac fibrosis, deparaffinized liver and LV sections were 
stained with Picro Sirius Red Staining for collagen detection or Masson’s trichrome for collagen detection, respec-
tively, followed by automatically imaging of whole stained sections using a Nanozoomer 2.0 HT (Hamamatsu, 
Japan). Quantification of fibrosis fraction as a percentage of the entire section was performed from a 20 fold 
magnification (ScanScope, Aperial Technologies, USA).

Cardiomyocyte size was determined on fluorescein-isothiocyanate (FITC) labeled wheat germ agglutinin 
(WGA, Sigma-Aldrich, USA) stained deparaffinized LV sections mounted in DAPI mounting medium (4’,6-dia
midino-2-phenylinodole, Vector laboratories, USA), in order to visualize the nucleus. Five randomly selected 
fields from the WGA-stained LV sections were imaged using a Leica DMI6000B inverted fluorescent microscope 
(Leica Microsystems B.V., The Netherlands) and the cross sectional area (CSA) of approximately 40 cardiomyo-
cytes per mouse heart was measured using Image J software (NIH, USA).

Rt-qpcR
Total RNA was extracted from powdered liver and LV tissue using Trizol reagent (Invitrogen, Thermo Fisher 
Scientific, USA) and from VAT using RNeasy lipid tissue mini kits (Qiagen, the Netherlands). RNA concentration 
of each sample was determined by spectrophotometry (NanoDrop 2000, Thermo Scientific, the Netherlands). 
cDNA was synthesized using QuantiTect Reverse Transcriptional kits (Qiagen, the Netherlands). In total, 7.5 ng 
cDNA was used to determine relative gene expression by real-time quantitative polymerase chain reaction 
(RT-qPCR) using the Bio-Rad CFx384 real time system (Bio-Rad, the Netherlands) and ABsolute SYBR Green 
mix (Thermo Scientific, the Netherlands). Gene expressions were corrected for ribosomal protein, large, P0 
(36B4) reference gene expression and are presented as relative expression to the control group. Oligonucleotide 
pairs used for RT-qPCR are presented in Supplemental Table 1.

Statistical analysis. Data are presented as means ± standard errors of the mean (SEM) for continuous var-
iables and as absolute number with percentages for categorical variables. Normality of data and homogeneity of 
variance was tested using the Shapiro-Wilk test for normality and the Levene’s test for homogeneity of variances, 
respectively. Normally distributed data was analyzed with the independent-samples T-test for 2 group comparisons, 
or with one-way analysis of variance (ANOVA) followed by Tuckey’s post-hoc correction for multi-group compari-
sons. For non-normally distributed data or data that lacked homogeneity of variances, non-parametrical tests were 
used. Differences between two groups were analyzed using Mann-Whitney U tests. Multi-group comparisons were 
analyzed starting with Kruskal-Wallis tests and, subsequently, Mann-Whitney U tests. A P-value < 0.05 was consid-
ered significant. Statistical analysis was performed using SPSS software (IBM SPSS statistics, version 23, IBM, USA).

ethics approval. The animal experimental protocol of the AZM198 experiment in the HFD/ANGII 
model was approved by the Animal Ethical Committee of the University of Groningen (permit numbers: 
AVD105002016487 and IVD16487-03-01). The potency of AZM198 on tissue MPO activity was determined in 
peritonitis experiments at AstraZeneca, Sweden (ethical permit number 74-2011).
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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