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A comparative study on droplet 
characteristics and specific charge 
of ethanol in two small-scale 
electrospray systems
Yunhua Gan  1*, Zhengwei Jiang1, Haige Li1, Yanlai Luo1, Xiaowen chen1, Yanling Shi2, 
Yuying Yan3 & Yunfei Yan4

An investigation on the droplet characteristics of ethanol in small-scale combustors with two different 
systems was conducted experimentally and theoretically. the classical capillary-mesh electrode 
arrangement was applied in Type A electrospray system, and for Type B, an additional ring electrode is 
included. The droplet size and velocity were measured by a Phase Doppler Anemometer. The electric 
filed intensity was theoretically calculated in the two electrospray systems. Compared with Type A, Type 
B system has smaller droplet size and velocity in the same spraying mode. Meanwhile the electrospray 
process in Type B system is more stable than that in Type A with its smaller root mean square velocity. 
By measuring the spraying current, the average specific charge of the droplets for the two systems 
was obtained in different spraying modes. And it was found that the addition of the ring electrode can 
help to increase the droplet charge, which is the fundamental reason for Type B electrospray system to 
perform better. The corona charge of the droplets was theoretically calculated for the two electrospray 
systems. It was found that the calculated specific charge generated by corona charging was in good 
agreement with the experimental results.

The electrospray technique has many irreplaceable advantages. For example, it can yield quasi-monodisperse 
droplets, control the droplet motion easily and avoid coalescence of droplets1. It has been applied in many areas 
such as fuel atomization in combustion systems2,3, controlled droplet generation4,5, electrospinning6,7, thin 
film deposition8,9 and electrospray ionization-mass spectrometry applications10,11. Meanwhile more and more 
attention has been focused on the micro-power systems using micro-scale combustors due to the higher spe-
cific energy of liquid hydrocarbons than that of batteries12,13. But it is difficult to keep stable flame inside the 
micro-combustor, due to limitation by short residence time and high heat loss rate14,15. Some researchers have 
applied the electrospray to atomize the fuel in micro-combustor.

Electrospray technique is proved to be very suitable in micro/meso-combustors and can improve the combus-
tion performance and stability. Based on the electrospray, Kyritsis et al.3 studied the combustion performance of 
the heavy liquid hydrocarbon JP8 in a mesoscale combustor, and the catalyst formulation was coupled to achieve 
higher efficiency and lower CO emission. Deng et al.16 proposed an improved combustor design and extended to the 
multiplexed electrosprays. The microcombustor can achieve a very high release rate (270 MW/m3). Yuliati et al.17  
successively established a stable flame inside a narrow tube with the inner diameter of 3.5 mm, the electrospray 
technique was employed to atomize the liquid fuel. Mikami et al.18 extended the work of Yuliati et al. and studied 
the flame stability. Gan et al.19 studied the combustion characteristics with the two different combustors which 
employed different electrode structures, i.e., capillary-mesh and capillary-ring-mesh respectively, and it is found 
that the capillary-ring-mesh combustor yielded better performance in the combustion efficiency and emissions. 
The electrospray characteristics are changed when the ring electrode is added in system and then the combustion 
characteristics are affected. It is necessary to study the effect of ring electrode on electrospray.
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Meanwhile many researchers focus on the electrospray characteristics in the classical capillary-mesh sys-
tem. Jaworek and Krupa20 classified the electrospray modes by using the multi capillary-mesh systems where 
the capillary was maintained at high electric potential and the plate was connected to the ground. Deng and 
Gomez21 studied the complete transient response of Taylor cones subject to a step change in external electric field 
with capillary-mesh system. Morad et al.22 improved the stability of the Taylor cone-jet and achieve a very high 
throughput by installing a hemispherical cap above the capillary. Recently, the electrospray in capillary-ring-mesh 
system have also been studied. Xie and Wang23 performed electrospray in the dripping mode to realize droplet 
formation and found that the addition of a ring electrode can help to stabilize the process. Zhao et al.24 found that 
for a typical three-electrode arrangement (capillary-ring-mesh system) of electrospray used in practical applica-
tion, a strong charging field can be established with a relatively low voltage. Chen et al.25 developed a new elec-
trospray design by placing a ring electrode behind the capillary tip, and they found that the electric field strength 
could be enhanced. Most of studies are about the characteristics at cone-jet mode because the key of electrospray 
is the Taylor cone26,27. Despite of those researches, a clear and detailed picture of the ring electrode on the elec-
trospray is still lacking. Especially, there remains an unknown area in the addition of the ring electrode on the 
droplet size, velocity and specific charge during the electrospray process.

The present study is aimed to investigate the difference of electrospray characteristics between two small-scale 
electrospray systems. The effects of adding an extra ring electrode on the electrospray are the focuses in the 
present study. With these in mind, a series of comparative experiments were conducted to explore the effects of 
a ring electrode on the electrospray performance, including the droplet size, droplet velocity and specific charge. 
Moreover, the electric field of the two different electrode systems was obtained to reveal the role of the ring elec-
trode. Last, the corona charge of the droplets was calculated and compared with the experimental results with 
the attempt to theoretically estimate the droplet charge. The results may provide some help for the design of a 
micro-scale combustion system based on electrospray technique reasonably.

Experimental Methods
experimental setup. The schematic of the experimental setups for two electrospray systems are presented 
in Fig. 1. The two systems are the same except for the ring electrode. The system contains no ring electrode is 
defined as Type A, and the one contains a ring electrode which is placed above the capillary is defined as Type B. 
Ethanol was supplied into the capillary by a syringe pump (KDS100, KD Scientific, USA) and the volume flow 
rate was kept at 1.0 ml/h. The capillary and the ring electrode were connected to the positive electrode of two DC 
power sources (71020 P, GENVOLT, UK) respectively. The mesh was connected to the ground electrode of a DC 
power source. The electric current in the electrospray process was determined by having a resistor (1 MΩ) in a 
series circuit between the mesh and the ground. The voltage drop across the resistor was measured using a data 
acquisition instrument (34970 A, Agilent, USA), and the electric current was calculated using Ohm’s law. The size, 
velocity, root mean square (RMS) velocity of droplets was measured by a Phase Doppler Anemometer (PDA) 
(classic PDA, Dantec Dynamics, DK). The spraying modes were visualized by a digital camera (EOS 5D Mark III, 
Cannon, Japan). Experiments were carried out in ambient temperature. Physical properties of ethanol at 298 K 
are shown in Table 1.

Figure 1. Schematic of the experimental setup for two electrospray systems. Type A system contains no ring 
electrode, and Type B system contains a ring electrode which is placed above the capillary.
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test section. The test section of the present experiment and distribution of measurement points are shown 
in Fig. 2. The voltage on capillary electrode is V, and voltage on ring electrode is Vr. The inner diameter and 
outer diameter of the capillary electrode are dinner = 0.9 mm and douter = 1.2 mm respectively. The inner diame-
ter and outer diameter of the ring electrode are Dinner = 12 mm and Douter = 16 mm, respectively, and the height 
L2 = 5 mm. The steel mesh has a diameter of 16 mm. L = 26 mm is the distance between capillary outlet and steel 
mesh and L1 = 1 mm is the distance between capillary outlet and the lower surface of the ring electrode.

The measurements section are performed at z = 10 mm above the tip of the capillary. Measurement points 
distribute on the concentric circles with different radiuses (r = 1 mm and r = 2 mm).

Specific charge measurement. The specific charge is calculated as19,
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where β is the specific charge (C/kg), q is the charge of droplet (C), m is the mass of droplet (kg), Qm is the mass 
flow rate (kg/s), Qv is the volume flow rate (m3/s), ρ is the density of ethanol (kg/m3), R0 is the resistance (1 MΩ), 
V0 is the voltage (V) on the resistance. V0 is measured by data acquisition instrument, and Qv is controlled by a 
syringe pump.

error analysis. In the experiments, the direct measurement error comes from the uncertainties of the meas-
uring tools or systems, such as data acquisition instrument and PDA. In another case, some parameters (specific 
charge in this study) cannot be measured directly and are calculated based on other direct measured parameters, 
which brings the indirect measurement error28.
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Properties Values

Surface tension (N/m) 0.022

Dynamic viscosity (mPas) 1.16

Density (kg/m3) 789

Relative permittivity 25.3

Electrical conductivity (S/m) 5.1 × 10−5

Purity (%) ≥99.7

Table 1. Physical properties of ethanol (298 K).

Figure 2. The schematic of measurement points distribution.
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where xj is directly measured parameter, σxj is the error of directly measured parameter, and σy is the error of 
indirectly measured parameter. The important errors are summarized in Table 2.

Results and Discussion
Electric field distribution. Jones and Thong29 investigated the electric field configuration between the cap-
illary and the ground electrode. The calculated electric potential and electric field intensity were:
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where Φ is the electric potential, E is the electric field intensity, q is the droplet charge. The coordinate of electrode 
system is shown in Fig. 1. zo is the distance between the capillary outlet and steel mesh, r (radial direction) is the 
distance from the center of capillary outlet to right and z (axial direction) is the distance from the center of capil-
lary outlet vertical to the steel mesh. When r = rc and z = 0, Φ0 = V. rc is the radius of capillary and it is supposed 
to the mean value of inner and outer radius of capillary and rc=0.525 mm. V is the voltage applied to the capillary. 
Based on those data, the Eqs. (5) and (6) can be derived as,
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The system of Type A is similar to Jones’s assumption, so the axial electric field in Type A, EA, is calculated by 
Eq. (4). When r = 0, the formula is shown in Eq. (7). According the derivation of Shi et al.30 and Ru et al.31, the 
axial electric field of the single ring electrode-grounded steel mesh system, Er, is shown in Eq. (8). The ring elec-
trode charge density, η, is shown in Eq. (9)
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where Douter is the radius of ring electrode and Douter = 8 mm, Vr is the voltage applied to the ring electrode.
According to the superposition principle of electrostatic field, the axial electric field in Type B, EB, is composed 

by the axial electric field of the single capillary electrode-grounded steel mesh system (Type A system) and the 
single ring electrode-grounded steel mesh system. Its formula is shown in Eq. (10).

= +E E E (10)B A r

To perform an objective comparison, the axial potential and electric field in two electrospray systems are 
calculated with their total applied voltage being the same, that is, for Type A, V = 5 kV and for Type B, V = 4 kV, 
Vr = 1 kV, and the results are shown in Fig. 3. It is shown in Fig. 3(b) that electric field intensity in two electrospray 
systems decreases rapidly away from the capillary outlet. And it is noted that for Type B, the electric field between 

Parameters Measurement tool Ranges Error

Flow rate, Qv Syringe pump 1.0 ml/h ±1.0%

Voltage, V DC power supply 0–6.86 kV ±1.0%

Voltage on the resistance, V0 Data acquisition instrument 0–1 mV ±1.0%

Specific charge, β — 0–2 C/kg ±1.7%

Diameter, D32 Particle Dynamics Analysis 0–250 μm ±1.0%

Axial velocity, v Particle Dynamics Analysis 0–340 m/s ±1.0%

Diameter, dinner, douter, Dinner, Douter Vernier caliper 0.9–1.2 mm ±0.02 mm

Length, L, L1, L3 Vernier caliper 16–80 mm ±0.02 mm

Table 2. Error analysis.
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the capillary and ring electrode is stronger. Above the ring electrode, the trend is reversed and the electric field 
for Type B is weaker. It is evidently since there is only a 1 kV voltage drop within a large distance, from the ring 
to the mesh.

Droplet size. The droplet size D32 was measured by PDA at the flow rate Qv = 1.0 ml/h. D32 can be defined as 
follows:

= ∑

∑
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where N is the total number of droplets (N ≤ 2000), Di is the diameter of the individual droplets at the specific 
measuring position. D32 is known as Sauter Mean Diameter (SMD)12. It is well known that droplet size is the most 
relevant parameter to evaluate the performance of the spraying.

Four typical spraying modes were observed in Type A and Type B electrospray system when applied voltage 
changed. The four typical spraying modes are called pulsed-jet mode, cone-jet mode, skewed cone-jet mode and 
multi-jet mode, which have been described in our previous study19. Meanwhile the same spraying mode shows 
similar characteristics in Type A and Type B systems. Since Type B employs a ring electrode applied with 1 kV 
voltage, the required capillary voltage to achieve the same spraying mode (the same level of spraying perfor-
mance) is lower than that of Type A, as can be seen in Fig. 4. Thus, it is inappropriate to compare the differences 
between Type A and B at the same capillary voltage. In this work, we conducted the comparison at the same total 
applied voltage (for Type A, it is the capillary voltage and for Type B, it equals to the sum of the capillary voltage 
and ring voltage). Besides, the regimes of different spraying modes were indicated.

The droplet size distribution at cross-section of z = 10 mm in two electrospray systems is given in Fig. 4. The 
droplet size at pulsed-jet mode is the largest both in two electrospray systems. At the pulsed-jet mode, the elec-
trospray presents the oscillation characteristic19. This will result in a relatively thick jet which then breakups into 
large droplets. Comparing the droplet size distribution in two electrospray systems in Fig. 4, it is found that the 
droplet size in Type B is smaller than that in Type A in the same spraying mode. As shown in Fig. 3(b), the electric 
field near the capillary (z < 2 mm) of Type B is stronger than that of Type A. Since the process of the jet breaking 

Figure 3. The distributions of axial potential (a) and electric field (b) in two electrospray systems (Type A: 
V = 5 kV; Type B: V = 4 kV, Vr=1 kV).
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up into droplet mainly occurs in the vicinity of the capillary (z < 2 mm), under the effect of larger electrostatic 
force, Type B can produce droplets with smaller size.

Droplet velocity. Figure 5 shows the distribution of axial and radial velocity at four spraying modes in Type 
A and Type B systems. Comparing the axial velocity distribution in two electrospray systems in Fig. 5(a), it is 
found that the axial velocity in Type B is lower than that in Type A in the same spraying mode. Especially, the axial 
velocity of Type B is close to 2 m/s and that in Type A is about 3 m/s at the cone-jet mode, skewed cone-jet mode 
and multi-jet mode. The radial velocity of the two systems is given in Fig. 5(b), and it shows that the difference 
between the two systems is small. From Fig. 3(b), it is seen that the electric field in Type A is stronger than that 
in Type B at the cross-section of z = 10 mm, where the PDA measurements is carried out. Since the droplets in 
the space are driven by the electric field, the stronger electric field in Type A leads to the greater droplet veloc-
ity. Furthermore, it also can be seen that the droplet velocity at the pulsed-jet mode is larger than that at others 
modes. This is mainly due to the difference in the spraying mechanism. At the pulsed-jet mode, the electric field 
is weak and the electrostatic force acting on the liquid can hardly overcome the surface tension, so the emission 
of the droplets resulting from the jet breakup takes place discontinuously. In this situation, the velocity of the 
droplets is relatively large due to the pulse effect.

At other spraying modes (cone-jet, skewed-jet and multi-jet), for Type A, the droplet velocity increases with 
the voltage and the corresponding modes due to the increasing electric field. However, for Type B, the droplet 
velocity at these modes is almost the same, which can be contributed to the shielding effect of the ring electrode 
since the voltage on the ring is kept unchanged. With the presence of the ring electrode, the electric field between 
the ring and mesh is almost independent with the voltage on the capillary.

The RMS velocity was derived from the PDA measured velocity profiles using the following equation12:

∑ ν= −
=

v v N( ) /
(12)

N

RMS
i 1

mean i
2

where vRMS represents standard deviation of the axial velocity of the droplets, vmean is mean velocity at the specific 
measurement point, vi is the velocity of individual droplet, N is the total number of droplets at the specific meas-
urement point (N ≤ 2000). It is well known that the lower RMS velocity indicates the more stable spraying 
process.

Figure 6 shows the axial RMS velocity of four spraying modes in the Type A and Type B systems. It is obviously 
found that RMS velocity of Type A and Type B at pulsed-jet is larger than that at other spraying modes. It means 
that the velocity fluctuates visibly at pulsed-jet but fluctuates slightly at other spraying modes.

By comparing the axial RMS velocity distributions of two electrospray systems in Fig. 6, it is found that axial 
RMS velocity of Type A is close to 0.3 m/s at cone-jet mode, but that of Type B is close to 0.1 m/s. In other words, 
axial RMS velocity of Type B is smaller than that of Type A. It means that ring electrode plays an important role 
in the stability of spraying process.

Specific charge. Three methods usually are used for charging droplets which include corona charging, con-
duction charging and induction charging. Corona charging means that the droplets are charged by ionic bom-
bardment and it can be used for both conductive liquid and non-conductive liquid. The difference of conduction 
and induction charging is that in conduction charging the power supply directly contacts the liquid and in induc-
tion charging the power supply is connected to an induction electrode32. The total droplet charge of electrospray 
is composed of corona charging, conduction charging and induction charging33,34. The relation among the total 
droplets specific charge βtotal and other specific charge is:

Figure 4. The average droplet size in two electro-electrospray systems.
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β β β β= + + (13)total 1 2 3

where β1, β2, β3 respectively mean specific charge generated by corona charging, specific charge generated by 
conduction charging, and specific charge generated by induction charging.

Figure 5. The average axial (a) and radial (b) velocity in two electrospray systems.

Figure 6. The average axial RMS velocity in two electrospray systems.
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The relationships among capillary applied voltage, specific charge and spraying modes in two electrospray 
systems are shown in Fig. 7. It shows that the specific charge increases with increasing of the applied voltage on 
capillary with two electrospray systems. It is found that specific charge of Type A is different from that of Type 
B in the same spraying mode. The reason of this phenomenon is that ring electrode will influence the value of 
specific charge at Type B. But the difference of specific charge between Type A and Type B are small on the whole. 
It means that ring electrode has little effect on specific charge of droplet, which is consistent with the theory that 
the electrode geometry has little effect on the spray current35,36. In other words, the induction charge generated by 
ring electrode is small. Because when ethanol is used as spraying liquid droplet and its conductivity is small that 
it can be regarded as semi-conductive liquid. Simultaneously, the capillary voltage in Type B is lower than that in 
Type A in the same spraying mode. The reason for this phenomenon is that the induction force is produced by 
ring electrode around the capillary and it makes ethanol droplet to break up at lower capillary voltage. Though 
ring electrode has little effect on droplet charge, but electric force on droplet generated by ring electrode still exist.

In addition, the specific charge at the pulsed-jet mode is much smaller than that at other modes. As mentioned 
above, at the pulsed-jet mode, the electrospray oscillates and the droplets are produced intermittently. Besides, 
the voltage at this mode is relatively low compared with other modes. The generation rate of charge on liquid is 
low and consequently, the droplet charge is much smaller. At other spraying modes, a stable meniscus and spray-
ing are established with small disturbances. Therefore, the charged droplets collected by the steel mesh at these 
cone-jet modes are much more than that at the pulsed-jet mode, which results in the significant increase of spe-
cific charge. From Fig. 7(a), it also can be seen at multi-jet mode, the specific charge increases significantly with 
voltage in Type A. This can be contributed to the dominate effect of the corona charge at this mode. However, for 
Type B, the influence of the corona charge is partially weakened by the ring electrode so that the increasing trend 
of the specific charge is not that significant as that in Type A.

The value of the corona charge, conduction charge and induction charge are difficult to be calculated37. But 
the maximum theoretical value of corona charging can be calculated. When an isolated droplet is assumed in the 
uniform electric field, the corona charge can be deduced from the following steps.

Figure 7. The relationship among total applied voltage on capillary and specific charge and spraying modes 
in two electrospray systems. (a) Type A: capillary-mesh system; (b) Type B: capillary-ring-mesh system 
(Vr = 1 kV).
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First, the droplet being uncharged is considered, and the potential at P point is Φ. The result is shown as follow,

Φ μ θ
πε

θ= −
cos

r
E rcos

4 (14)0
2 0

where E0 is external electric field, μ is the dipole moment, r and θ represent the distance and angle respectively 
between the point P and centre of droplet.

When point P locates on the surface of droplet, it can be obtained as follow,
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where Et is the inside electric field of droplet, a is the radius of droplet. According to the continuity condition of 
electric displacement,
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where Φt is the potential of droplet, ε is the permittivity of droplet. The following equation is derived.
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According to the Eqs. (16) and (17), the result is shown as follow.
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The electric field E1 which is produced by droplet on point P is:
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Lastly, if the droplet carried with charge q, the electric field E2 on point P is:
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When P locates on surface of droplet and its coordinate is (a, π), E2 = 0, and it means the q reaches a maximum 
value. The maximum qmax is:
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The theoretical specific charge is:
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where ρ is the droplet density, a is the droplet radius.
According to the Eq. (23), the theoretical specific charge is related to the droplet radius a and external electric 

field E0. The droplet radius a is the half of D32 which measured by the PDA. Meanwhile external electric field E0 in 
two electrospray systems can be calculated by the Eqs. (8) and (10). To compared with the experimental results, 
a and E0 are represented with the mean values of the droplets at the cross-section of z = 10 mm The relation 
between theoretical specific charge generated by corona charging and experimental specific charge is shown in 
Fig. 8. It is found that the calculated specific charge generated by corona charging is close to experimental specific 
charge in two electrospray systems. It can be inferred that the main source of droplet surface charge come from 
the corona charging process. The result is consistent with that the discharge current is the main part of the total 
current38. The calculated result by the equation of corona charge is in good agreement with the experimental 
results with the relative error of 11% for Type A and 7% for Type B. And to some extent, the theoretical corona 
charge can be used to estimate the specific charge in some circumstances.

conclusions
A series of comparative experiments were conducted to explore the effects of a ring electrode on the electrospray 
performance, including the droplet size, droplet velocity and specific charge. To reveal the role of the ring elec-
trode, the electric field of the two different electrospray systems was obtained. With the attempt to theoretically 
estimate the droplet charge, the corona charge of the droplets was calculated and compared with the experimental 
results.
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Axial electric field intensity in both two electrospray systems reaches the maximum value around the capil-
lary. Meanwhile the axial electric field intensity around the capillary in Type A system is stronger than that in 
Type B due to the effect of ring electrode. The droplet size in Type B system is smaller than that in Type A system 
because the ring electrode produces a larger electric force on droplet comparing with Type A and further reduces 
the droplet size. In the meantime, the axial velocity in Type B system is smaller than that in Type A system in the 
same spraying mode. The ring electrode plays an important role in uniformity and stability of spraying process.

By measuring the spraying current, the average specific charge of the droplets for the two systems was obtained 
in different spraying modes. And it was found that the addition of the ring electrode can help to increase the drop-
let charge, which is the fundamental reason for Type B electrospray system to perform better. The main source of 
surface charge comes from the corona charging process. The calculated result by the equation of corona charge is 
in good agreement with the experimental results with the relative error of 11% for Type A and 7% for Type B. It is 
inferred that the theoretical corona charge can be used to estimate the specific charge of the droplets.
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