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Assessing average somatic cAG 
repeat instability at the protein 
level
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Sandwich eLiSA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to 
quantify mutant huntingtin (mHtt). Using Meso Scale Discovery (MSD) assay, the mHtt signal 
detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine 
residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-
dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of 
Huntington’s disease (HD) knock-in (Ki) mice. We used this avidity bias to devise a method to assess 
average cAG repeat instability at the protein level in a mixed population of Htt proteins present in 
tissues. Signal detected for average polyQ length quantification at the protein level by our method 
exhibited a strong correlation with average cAG repeat length at the genomic DnA level determined by 
pcR method in striatal tissue homogenates from HdhQ140 Ki mice and in human HD postmortem cortex. 
This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.

Huntington’s disease (HD) is a neurodegenerative disease due to a CAG trinucleotide repeat expansion1, ranging 
from 36 to 250 repeats2 and resulting in an extended polyglutamine (polyQ) tract within huntingtin (HTT) pro-
tein. Age at disease onset, usually between 30 and 55 years, is strongly and inversely correlated with the size of the 
expanded CAG repeat3 but only explains ~60–70% of the variance in age at onset3–5. An early onset of symptoms, 
before age 20 years, is considered to be the juvenile form of the disease (JHD). JHD patients account for 5–10% of 
individuals with HD and usually have more than 60 CAG repeats6. The inherited expanded CAG repeat is unsta-
ble and undergoes a progressive increase in length over time in somatic cells7–9. Quantification of somatic CAG 
repeat instability by PCR in several HD knock-in (KI) mouse models has revealed an initial CAG repeat size, 
age and tissue dependency of this phenomenon9–11. Strikingly, genomic DNA (gDNA) from postmortem brain 
samples from two HD individuals, who died of other causes and with no microscopic evidence of pathological cell 
loss in the striatum (inherited CAG repeat length of 41 and 51 and an age at death of 40 and 27 years respectively), 
showed dramatic mutation length increases in striatum (up to >1,000 CAG repeats) and in the cortex, though 
to a lesser extent11. These observations suggest that somatic instability could precede and influence the onset of 
symptoms. Small-pool PCR (SP-PCR) analysis of gDNA from postmortem cortical brain tissue in patients with 
HD also suggested that somatic CAG repeat instability influences age of disease onset, with larger gains in repeat 
length associated with earlier disease onset12. Several candidate genes involved in DNA mismatch repair were 
identified to drive somatic instability in a mouse model of HD13,14. Most notably, GWAS found that the length of 
the uninterrupted CAG tract drives HD onset in humans, and that polymorphic variation in a region containing 
DNA repair genes was associated with disease onset or progression of HD, together consistent with somatic CAG 
expansion as a driver of HD pathogenesis15–18.

Technologies allowing quantification of mutant HTT (mHTT) protein are of prime interest, not only for phar-
macodynamics, but also for biomarkers of disease evolution. Indeed, using a micro bead-based IP-flow cytom-
etry and Single Molecule Counting (SMC) assay, mHTT in cerebrospinal fluid (CSF) was shown to correlate 
with HD progression19,20. Furthermore, using the SMC assay, dose-dependent reductions of mHTT protein in 
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CSF taken from patients receiving an anti-sense oligonucleotide to lower HTT were reported21. Other sandwich 
ELISA-based assays, such as those based on Meso Scale Discovery (MSD) technology, were also developed for 
mHTT detection22. All these assays are similar and only diverge by the signal read-out that allows for improved 
assay sensitivity, significantly extending the linear dynamic range beyond that achievable with traditional sand-
wich ELISA assays read-outs.

Sandwich ELISA-based methods for mHTT quantification use polyQ targeting detection Ab MW119,20,22. 
While MW1 and other polyQ targeting Abs (1C2 and 3B5H10) were initially proposed to recognize a specific 
mutant conformation23,24 or a specific toxic monomeric conformation25, recent studies have contradicted these 
hypotheses, suggesting a linear lattice model26–30. These Abs bind a small polyQ epitope in similar linear and 
extended conformations, with a higher avidity for expanded polyQ tracts due to the Ab’s bivalence. Thus, these 
polyQ-binding Abs do not specifically, but preferentially recognize mHTT.

Although the intensity of the signal of sandwich ELISA-based assays for mHTT was reported to be dependent 
on the polyQ length19,20,22,31, no study has accurately quantified this phenomenon. Even when the effects of polyQ 
length on mHTT quantification were considered, protein concentration was proposed to be the overwhelm-
ing contributor in the polyQ range seen in 93% of patients20,32. However, this hypothesis was based on results 
obtained at a single concentration with a different assay, the time-resolved Förster resonance energy transfer 
(TR-FRET) immunoassay33. Moreover, assessment of confounding variables for mHTT quantification in HD 
patients has revealed an association with inherited CAG repeat length19,33–35.

In this study, we assessed the effect of polyQ length on mHTT detection using MSD assay and polyQ targeting 
Abs. We observed that the signal detected can be as much as double for a variation of only 7 glutamines in the 
polyQ length range seen in the adult HD patient population32. We have taken advantage of this bias to design and 
validate a novel method to assess mean CAG repeat length at the protein level. This method could become a new 
benchmark to complement the PCR method, for detection of somatic expansion of unstable CAG repeats at the 
protein level.

Results
PolyQ length in mHTT affects its quantification by MSD assay using polyQ targeting Abs. The 
effect of polyQ length on the detection of mHTT by MSD assay was evaluated with a series of purified GST-
FLAG-HTTexon1 fusion proteins containing polyQ lengths from Q19 to Q72 (Supplementary Fig. S1a). MSD is a 
method similar to ELISA except that electrochemiluminescence is used as detection readout: electricity is applied 
to the plate electrodes leading to light emission by electrochemiluminescent labels that are conjugated to detec-
tion antibodies. The monoclonal rabbit capture Ab EPR5526 was paired with different mouse monoclonal polyQ 
targeting detection Abs MW1, 1C2 and 3B5H10 for mHTT assays (Fig. 1a). A rigorous protocol was developed 
to achieve the most accurate protein concentrations of the GST-FLAG-HTTexon1 proteins used in the assay (see 
Methods, Supplementary Figs. S1, S2 and Supplementary Table S1). Results showed that the intensity of MSD 
signal obtained with MW1 detection Ab increased with increasing polyQ length (Fig. 1b), confirming previous 
published results. In contrast, the MSD signal intensity seen with the mouse monoclonal MAB5492 detection Ab, 
a non-polyQ targeting Ab36 (Fig. 1a) was solely dependent on protein concentration (Fig. 1c). If used with biolog-
ical sample, the Abs pair EPR5526-MAB5492 will allow total HTT (WT and mutant) detection. When the slopes 
of the standard curves in the linear dynamic range obtained by MW1 were normalized by the slopes of the stand-
ard curves in the linear dynamic range obtained by MAB5492 (see Supplementary Data Set 1 for Method details), 
corresponding to mHTT/Total HTT assay, a strong polyQ length correlation was observed (R2 = 0.9971; Fig. 1d). 
Similar correlations were obtained with 1C2 and 3B5H10 detection Abs (R2 > 0.98; Supplementary Fig. S3).

To quantify Q-dependent signal rate change observed with MW1 for polyQ lengths in the range of adult 
HD patients, we extrapolated, from the correlation in Fig. 1d, the mHTT signal fold increase for each addi-
tional glutamine residue in GST-FLAG-HTTexon1 protein at constant protein concentration. In this aim, mHTT 
signal predicted for GST-FLAG-HTTexon1 proteins from Q38 to Q62 was normalized by the MSD signal for 
GST-FLAG-HTTexon1-Q38. Results showed that predicted mHTT signal with MW1 doubled with the addition 
of only 7 glutamine residues (Fig. 1e). These results suggest that polyQ length dependent bias has a significant 
effect on mHTT detection, even for CAG repeats in the HTT gene in the pathological range of most HD patients. 
Other polyQ targeting Abs 1C2 and 3B5H10 also exhibited a polyQ length-dependent bias but to a much lower 
extent than MW1 (Supplementary Fig. S3).

We next tested if the polyQ length-dependent bias with MW1 detection Ab could be observed with the 
full length endogenous HTT protein using homogenates from striatum of 6 months old heterozygous HD-KI 
mice bearing different CAG repeat lengths in the HTT gene. Initially, MSD signal for mHTT was not observed 
to be polyQ length-dependent (Supplementary Fig. S4a). However, analysis of samples by western blot (WB) 
revealed a decreased amount of mHTT with increased polyQ length and for constant amount of total protein 
(Supplementary Fig. S4b). Normalization of MSD signal by the amount of mHTT quantified by WB confirmed 
the polyQ length-dependent correlation with MW1 detection Ab and full length endogenous HTT (R2 > 0.99; 
Fig. 2). It is remarkable to observe such similar correlation to what was seen with purified GST-FLAG-HTTexon1 
using another method of normalization, demonstrating the robustness of our finding. A similar polyQ length cor-
relation was observed independently of the capture Ab used (monoclonal rabbit EPR5526, targeting N-terminus 
of endogenous HTT protein or monoclonal rabbit D7F7, targeting middle region; Fig. 1a), confirming that only 
the avidity of MW1 detection Ab is involved (Fig. 2). Most striking, polyQ length-dependent bias for full length 
endogenous HTT was observed for a very large polyQ length range (from Q44 to Q188). All together, these 
observations show an inherent bias in mHTT detection by sandwich ELISA-based assays, which can be quantified 
and thus corrected.
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A novel method to evaluate polyQ length expansion in mHtt containing tissues using MSD 
assay. We hypothesized that we could take advantage of polyQ length-dependent bias observed in mHTT 
detection by MSD assay to design a novel method for quantification of average polyQ length in a biological sam-
ple, such as tissue lysates or human biofluids (Fig. 3). In essence, we addressed if CAG repeat instability could 
be assessed at the protein level. The premises were 1) that HTT protein exhibits a mosaicism of polyQ lengths 
in biological tissue prone to CAG repeat instability37–39 and 2) that a population of HTT proteins with different 
polyQ lengths result in a similar detected signal to a single HTT protein with a polyQ length corresponding to the 
average polyQ length of the population. Briefly, the sample is analyzed twice by MSD assay: first, with non-polyQ 
targeting detection Ab such as MAB5492 that allows quantification of total HTT (WT and mutant form; Fig. 3a,b) 
then with polyQ targeting detection Ab that allows quantification of mHTT (Fig. 3c). Signal obtained in the linear 
dynamic range with polyQ targeting detection Ab for a determined HTT concentration can be used to estimate 
the average polyQ length by a mathematical model (Fig. 3d and Methods). Even if polyQ-targeting Abs preferen-
tially bind expanded polyQ tract, they also interact, to a lower extent, with WT HTT. Similarly, Abs that do not 

Figure 1. PolyQ length affects GST-FLAG-HTTexon1 quantification by MSD assay using polyQ targeting 
detection Ab. (a) Diagram shows antibody epitopes in human HTT protein (NCBI reference sequence: 
NP_002102.4). Calibration curve performance for GST-FLAG-HTTexon1 protein using MW1 (b) and 
MAB5492 (c) detection Abs. Curves were fitted with a four-parameter logistic regression model with 1/
Y2 weighting. Mean values ± SD (1 σ) of duplicates of a single experiment are shown. (d) Plot of ratio of the 
slopes determined from standard curves in the linear dynamic range for mHTT assay by total HTT assay as 
a function of polyQ length exhibits a strong correlation. Mean values ± propagated SD (1σ) of duplicates of a 
single experiment are shown. (e) Using the polyQ length-dependent correlations shown in (d), MSD signal 
fold increase as a function of polyQ length at constant amount of mHTT protein was extrapolated for mHTT 
assay. mHTT signal predicted for GST-FLAG-HTTexon1 proteins from Q38 to Q62 was normalized by the 
MSD signal for GST-FLAG-HTTexon1-Q38. PolyQ lengths ranging from Q38 to Q62 correspond to the polyQ 
length range seen in adult HD patients. GST: glutathione S-transferase; N17: HTT first 17 aa; PRD: proline-rich 
domain.
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target the polyQ tract interact with both WT and mHTT. Thus, our method which relies on quantification of both 
WT and mHTT, provides information on the average polyQ length in total HTT proteins.

To mimic in vitro polyQ length mosaicism in HTT protein from biological tissue prone to CAG instabil-
ity, different amounts of GST-FLAG-HTTexon1 proteins with variable polyQ lengths were mixed (Tables 1–3).  
Using polyQ targeting detection Ab MW1 and a mix of GST-FLAG-HTTexon1 proteins with an average polyQ 
length of 48 residues (avgQ48a), there was a similar MSD dose response to the standard curve obtained with 
pure GST-FLAG-HTTexon1-Q48 (Fig. 4a), indicating that the same average polyQ length could be determined 

Figure 2. PolyQ length-dependent effect on mHTT detection is also observed with full length mHTT from 
HD-KI mice. Homogenates from striatum of 6 months old HD-KI mice with 50, 80, 111, 140 and 175 CAG 
repeats were analyzed for detection of mHTT with two different capture Abs (EPR5526 and D7F7) and 
MW1 detection Ab. MSD signals were normalized by the amount of mHTT quantified by WB as shown in 
Supplementary Fig. S4. Mean values ± SD (1 σ) of n = 3 mice per group are shown.

Figure 3. Method for HTT polyQ length quantification. HTT proteins exhibit a mosaicism of polyQ lengths 
in biological tissue prone to CAG repeat instability. To quantify average polyQ length in HTT proteins, the 
biological sample is quantified twice by sandwich ELISA-based assay with two pairs of Abs: one that includes a 
detection Ab that does not target the polyQ tract (a) to quantify total HTT (b) and another one that has a polyQ 
targeting detection Ab (c). This information is used in a mathematical model to determine the average polyQ 
length in HTT proteins (d) when samples are tested in the linear dynamic range.
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at different concentrations of total GST-FLAG-HTTexon1 protein. The graph in Fig. 4a also displays results 
obtained with pure GST-FLAG-HTTexon1-Q38 and -Q72 for comparison. The average polyQ lengths exper-
imentally determined did not exceed 13% of relative error, the highest relative error at the lowest concen-
tration tested (Table 1). We then generated the same average polyQ length by different protein mixings of 
GST-FLAG-HTTexon1 (avgQ48a, avgQ48b and avgQ48c; Table 2). The average polyQ length experimentally deter-
mined at a single concentration was constant for a similar average polyQ length obtained by using different pro-
tein mixings (Fig. 4b and Table 2), highlighting the robustness of our method. Finally, we generated 9 different 
average polyQ lengths from avgQ38 to avgQ58 with 2.5Q increments (Table 3). The different average polyQ lengths 
determined experimentally at a single concentration exhibit a strong linear correlation with theoretical average 
polyQ lengths (R2 = 0.9829; Fig. 4c and Table 3). Intra-batch accuracy and precision for average polyQ length 
quantification were less than 13% of relative error and less than 4% of coefficient of variation for all conditions 
tested (Tables 1–3). Results obtained with other polyQ targeting Abs 1C2 and 3B5H10 were similar but with a 
lower accuracy (Supplementary Fig. S5 and Supplementary Tables S2–7). All together, these data validate the abil-
ity of our method to estimate the average polyQ length in a mix of HTT proteins with variable polyQ lengths, with 
the Ab pairs EPR5526-MW1 (for mHTT) and EPR5526-MAB5492 (for total HTT) being superior in accuracy.

Average polyQ length at the protein level correlates with average cAG repeat length at the 
DnA level in postmortem brain of HD mouse and HD patients. To establish whether our assay 
is suitable to measure the average polyQ length in endogenous HTT proteins from brain tissue, we examined 

Total protein 
concentration (pM)

Fraction of GST-FLAG-HTTexon1 mixed together
Average Q length 
experimentally determined

Q25 Q38 Q48 Q55 Q72 Mean ± SD (Cv %) %RE

1,600 18% 21% 21% 20% 20% 48.44 ± 0.36 (0.75) 1.01

1,280 18% 21% 21% 20% 20% 48.29 ± 1.27 (2.63) 0.69

960 18% 21% 21% 20% 20% 51.01 ± 1.67 (3.28) 6.36

640 18% 21% 21% 20% 20% 51.14 ± 1.41 (2.76) 6.64

320 18% 21% 21% 20% 20% 53.90 ± 0.99 (1.83) 12.39

Table 1. Quantification of the same average polyQ length (avgQ48a) at different protein concentrations with 
MW1 detection Ab. Average polyQ lengths experimentally determined by our method are expressed as mean 
values ± propagated SD (1 σ) of duplicates of a single experiment with their corresponding coefficient of 
variation (Cv %) and relative error (%RE) expressed as a percentage.

Theoretical 
Average Q length

Fraction of GST-FLAG-HTTexon1 mixed together Average Q length experimentally determined

Q25 Q38 Q48 Q55 Q72 Mean ± SD (Cv %) %RE

48a 18% 21% 21% 20% 20% 51.75 ± 1.75 (3.37) 7.90

48b 9% 20% 33% 30% 8% 50.71 ± 0.22 (0.44) 5.75

48c 12% 34% 18% 15% 21% 50.28 ± 1.68 (3.34) 4.90

Table 2. Quantification of the same average polyQ length obtained by different protein mixings with MW1 
detection Ab. Average polyQ lengths experimentally determined by our method are expressed as mean 
values ± propagated SD (1 σ) of duplicates of a single experiment with their corresponding coefficient of 
variation (Cv %) and relative error (%RE) expressed as a percentage.

Theoretical 
Average Q 
length

Fraction of GST-FLAG-HTTexon1 mixed 
together

Average Q length experimentally 
determined

Q25 Q38 Q48 Q55 Q72 Mean ± SD (Cv %) %RE

38 45% 21% 16% 11% 7% 42.26 ± 1.50 (3.55) 11.20

40.5 37% 21% 22% 10% 10% 44.69 ± 1.29 (2.89) 10.38

43 38% 14% 11% 22% 15% 48.48 ± 0.51 (1.05) 12.74

45.5 23% 25% 18% 17% 17% 49.54 ± 1.08 (2.19) 8.93

50.5 15% 15% 22% 24% 24% 54.08 ± 1.71 (3.17) 7.12

53 10% 22% 10% 26% 32% 56.09 ± 1.36 (2.43) 5.84

55.5 5% 13% 27% 19% 36% 59.52 ± 0.14 (0.23) 7.21

58 10% 5% 9% 32% 44% 60.94 ± 1.51 (2.53) 5.06

Table 3. Quantification of different average polyQ lengths with MW1 detection Ab. Average polyQ lengths 
experimentally determined by our method are expressed as mean values ± propagated SD (1 σ) of duplicates of 
a single experiment with their corresponding coefficient of variation (Cv %) and relative error (%RE) expressed 
as a percentage.
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striatum from homozygous HdhQ140 KI mice from different litters and of different ages (from 3.3 to 13 mo). Since 
this mouse model was previously shown to exhibit intergenerational CAG repeat changes40, we expected to detect 
a variation in average polyQ length in HTT between animals. To test this idea, data obtained by MSD assay were 
compared with the extent of CAG repeat instability measured in gDNA from the contralateral striatum using 
PCR method adapted from Lee et al.41 (see Method section for details). The MSD signal is normalized using the 
MSD signal ratio (MSD of mHTT/MSD of Total HTT; plotted on y-axis in the figure). The MSD signal for total 
HTT is solely dependent on protein concentration and does not depend on polyQ length. Results showed that 
MSD signal ratios (EPR5526-MW1/EPR5526-MAB5492) obtained from striatum of HD mice exhibited a strong 
correlation with average CAG repeat length determined by PCR (R2 = 0.7929; Fig. 5a). Remarkably, the average 
CAG repeat length was determined from contralateral striatum which may have introduced some variation and 
could explain, at least in part, some outliers. Unfortunately, we could not interpolate the average polyQ length 
from these data because 1) the recombinant GST-FLAG-HTTexon1 proteins used as standards do not bear suf-
ficient polyQ repeats tracts and 2) it was reported that the same concentration of the full length and truncated 
HTT proteins with similar polyQ lengths are detected with wide difference in intensity31. Even though we showed 
polyQ length correlation with full length endogenous mHTT (Fig. 2), anchor points of this correlation are prob-
ably different than those obtained with GST-FLAG-HTTexon1.

Having established that MSD signal ratios (EPR5526-MW1/EPR5526-MAB5492) for endogenous HTT could 
be correlated with CAG repeat length in HD mice, we next focused on analysis of human postmortem HD brain. 
We analyzed lysates from postmortem cortex of 2 adult and 5 juvenile HD (JHD) patients. Protein and DNA analy-
sis were done in the same sample lysate for all samples. As it was shown that exon 1 of HTT is produced via incom-
plete splicing of the HTT pre-mRNA in HD patient tissue42, we used an additional Abs’ pair (D7F7-MAB2166) 
for total HTT quantification (WT + mutant form) that does not recognize the truncated form of HTT. The MSD 
signal ratios (mHTT/Total HTT) displayed a high correlation with average CAG repeat length determined by 
PCR for both Ab pairs used for normalization (R2 > 0.9; Fig. 5b) and a strong parallelism between them. Among 
the samples tested for total HTT quantification with EPR5526-MAB5492, two non-affected individuals were not 
used for correlation because their signals were below background signal for the level of detection (data not shown).

Figure 4. Pre-validation of method for average polyQ length quantification using MW1 and MAB5492 
detection Abs: parallelism, dilution linearity, accuracy and robustness evaluation. (a) Serial dilution of a mix of 
GST-FLAG-HTTexon1 proteins with an average polyQ length of 48 residues (avgQ48a) gives similar results to a 
pure GST-FLAG-HTTexon1-Q48 using MW1 detection Ab. Serial dilution of pure GST-FLAG-HTTexon1-Q38 
and -Q72 are also displayed for comparison. Mean values ± SD (1 σ) of duplicates of a single experiment are 
shown. (b) Average polyQ length experimentally determined for a similar average polyQ length of 48 residues 
done by different protein mixings. Dashed gray line corresponds to the theoretical average polyQ length. (c) 
Different average polyQ lengths experimentally determined are plotted as a function of theoretical average 
polyQ length. Dashed gray line corresponds to the perfect correlation between experimental and theoretical 
average polyQ lengths. Mean values ± propagated SD (1 σ) of duplicates of a single experiment are shown.
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Discussion
Currently, lowering mHTT is a major therapeutic strategy under investigation in many laboratories and in clin-
ical trials for HD patients43,44, therefore accurate quantification using ultra-sensitive immunodetection methods 
is vital. mHTT can be preferentially distinguished from WT by polyQ targeting Abs23–25 sensitive to expanded 
polyQ repeats containing more epitopes than normal polyQ tracts. The increased avidity of such Abs for longer 
polyQ tracts was recognized as a potential bias in mHTT quantification19,20,22,31. However, even if the levels of 
mHTT were associated with inherited CAG repeat length19,33–35, polyQ length was considered as a minor contrib-
utor compared to mHTT protein concentration20. Previously, a series of purified truncated HTT proteins with 
different polyQ lengths was detected by TR-FRET assay and MW1 Ab33. The authors reported a 10- to 20-fold 
higher sensitivity for mHTT than WT HTT. They did not mention that with an increase of 7 glutamines, corre-
sponding to the range of polyQs of HD patients tested in their study, they had a signal increase of ~40% for the 
same HTT protein concentration (see their Supplementary Fig. S1b). The analysis of large polyQ length series 
was not evaluated with sandwich-ELISA based methods currently used in clinical trial20,31. Here, we show that 
MSD signal detected with polyQ targeting Ab MW1 increases and, most of all, strongly correlates with polyQ 
length in purified N-terminal HTT fragments (Fig. 1d) and in endogenous full length HTT obtained from HD KI 
mice and human cortex (Figs. 2 and 5). Remarkably, this polyQ length dependent bias is evident for polyQ tracts 
that are in the range of adult onset HD patients as well as very large polyQ tracts (up to Q188). Our data suggest 
that even small polyQ length variations could lead to a large inaccuracy in mHTT quantification (Fig. 1e). When 
considering that somatic CAG repeat expansion occurs in HD brain11,12, the inaccuracy of mHTT quantification 
may be even greater.

Our findings raise questions about the reported increase in mHTT in CSF with disease progression using 
micro bead-based IP-flow cytometry and SMC assays19,20,35: is it solely due to mHTT concentration or might 
there be a contribution of CAG repeat instability? This is especially important if we consider that mHTT detected 
in CSF could preferentially come from dying cells exhibiting a very high level of instability. This issue is further 
complicated by findings that mHTT increases with disease progression in peripheral blood mononuclear cells 
(PBMC) but without significant difference in total HTT33,34. Initially, CAG repeat instability was proposed as a 
possible explanation for progressive increase in mHTT levels with no concomitant differences in total HTT level, 
but another likely explanation was a progressive accumulation of N-terminal fragments33. The latter explana-
tion is challenged by a recent study showing no variation in N-terminal HTT level at different disease stages in 
PBMC34. The presence of CAG repeat instability is unlikely to influence the relative quantification of mHTT in 
current therapeutic silencing studies where a reduction in mHTT is measured as a change from baseline before 
treatment21, normalizing potential bias due to polyQ length difference between patients. Only CAG instability 
over the course of the longitudinal study could affect results.

Figure 5. MSD signal ratio for mHTT by total HTT, corresponding to the average polyQ length, correlates 
with average CAG repeat length. (a) Striatal homogenates from 14 homozygous HdhQ140 KI mice of different 
ages were analyzed by MSD assay for average polyQ length quantification (MSD signal ratio MW1/MAB5492 
corresponding to mHTT/Total HTT). Results were plotted as a function of average CAG repeat length 
determined by PCR method in DNA extracted from the contralateral striatum of each animal (see Methods, 
Quantification of average CAG repeat length). It is unclear why there is more variability (larger SDs) in 
raw MSD signals for samples between ~108 and 124 CAG repeats than for other samples. All samples were 
processed at the same time and in the same manner, so it is likely that variation may be from pipetting. (b) 
Homogenates prepared from postmortem cortex of HD patients were analyzed by MSD assay for average polyQ 
length quantification (MSD signal ratio for mHTT by total HTT). Results were plotted as a function of average 
CAG repeat length determined by PCR method from the same sample lysates (see Methods, Quantification 
of average CAG repeat length). Light blue sample was below the level of detection (background + 3 SD) for 
total HTT assay and was not used for correlation. Mean values ± propagated SD (1 σ) of duplicates of a single 
experiment are shown. Please note that the MSD signal is normalized using the following MSD signal ratio 
(MSD of mHTT/MSD of Total HTT; plotted on y-axis in the figure). The MSD signal for total HTT is solely 
dependent on protein concentration and does not depend on polyQ length.
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In this study, we exploited the biasing effect of polyQ sensitive Abs in mHTT detection to design a novel 
method to assess the average polyQ length in HTT in samples where there is a population of HTT proteins with 
different polyQ lengths as might be expected under conditions of CAG repeat instability (Fig. 3). Our method 
relies on the normalization of MSD signal detected with polyQ targeting Ab MW1 by the amount of total HTT, 
corresponding to the MSD signal detected with non-polyQ targeting Ab MAB5492. The method proved to be 
sensitive, accurate and robust when tested using purified GST-FLAG-HTTexon1 (Fig. 4). Moreover, polyQ length 
assessment at the protein level strongly correlated with CAG repeat length at the DNA level in postmortem 
brain lysates from HD mice and patients (Fig. 5). It should be noted that for comparison of MSD signal ratio 
(mHTT/Total HTT), all samples were tested under the same conditions (same amount of total protein) and the 
detected signals were in the linear dynamic range of detection. Signal detected in 2 non-affected individuals was 
in the background signal and could not be used for MSD signal ratio and comparison with samples from HD 
individuals.

Studies have shown that the level of CAG repeat instability is higher in cortex than in cerebellum10,11. We con-
firmed this observation at the DNA level with our human sample set (data not shown). However, we were unable 
to obtain detectable signals for total HTT from cerebellar lysates, preventing the calculation of the MSD signal 
ratios. HTT protein was previously detected at lower levels in human cerebellum than in cortex of the same HD 
postmortem brains37,45. In our study, samples of human cerebellum and cortex were taken from the same brains 
and were processed in the same way and at the same time. Thus, we think the amount of total HTT present in 
cerebellar tissue is below the level of detection in our assay rather than an issue of the quality of the postmortem 
tissues or protein lysates.

Our method of determining average polyQ length relies on the correlation between MSD signal ratio 
(EPR5526-MW1/EPR5526-MAB5492) and polyQ length in HTT proteins. Using a different immuno-assay 
(AlphaLISA), different polyQ Ab (3B5H10) and non-polyQ (MAB2166 and D7F7) Abs and different materials 
(cell culture lysate and purified full length HTT), Baldo et al.46 reported that the ratio of mHTT/Total HTT 
signals increased with polyQ length. However, they did not perform further analysis. Our review of their data 
showed that similar to our findings, the ratio of their mHTT/Total HTT values shows a strong correlation with 
polyQ length (from their Fig. 4 and Fig. 5c; data not shown; R2 > 0.99).

Gold standard methods for determining CAG repeat instability involve PCR amplification from “bulk” or 
multiple small pools of genomic DNA. The negative correlation between CAG repeat length and PCR amplifica-
tion efficiency represents a significant pitfall for accurate quantification47,48. However, despite a likely underesti-
mation of CAG instability, especially for the bulk method that cannot detect the rare large expansions, the results 
obtained with these two methods exhibit a strong correlation41. Data obtained by bulk PCR in our studies exhib-
ited a strong correlation with detected average polyQ length in HTT. Thus, we present a new complementary 
method to PCR for evaluating average instability at the protein level. Though less informative than PCR because 
it provides only average polyQ lengths without size distribution, it may allow an evaluation of expansion in tissues 
where HTT proteins, but not HTT gene, can be detected (e.g. CSF).

Our method of predicting HTT protein average instability relies on quantification of both WT and mHTT; 
both alleles must be expressed equally to correlate with CAG repeat length. We have observed that the level of 
mHTT decreases with polyQ length in HD-KI mouse models (Supplementary Fig. S4b). However in human, 
some western blot studies have observed an increased level of mHTT compared to WT in both adult and JHD 
brains37 or a lower amount of mHTT than WT solely in JHD brains38 and fibroblasts38,49. These inconsistent 
results could be due to a variety of factors including small sample size, the type of sample (brain or cell lines), 
the extent of separation of WT and mHTT or broader migration of mHTT in SDS-PAGE, probably due to CAG 
repeat instability and polyQ length mosaicism. Recently, a novel mass spectrometry-based method was developed 
to quantify allele specific HTT protein levels using polymorphic variants50. From the 28 adult HD subject-derived 
lymphoblast cell lines tested, levels of mHTT protein were highly associated with levels of WT HTT and were not 
correlated with the expanded CAG repeat size. These results argue against the idea that there is a potential effect 
of CAG repeat length on HTT protein level at least in the adult onset range. Although the impact of CAG repeat 
size on HTT expression levels in human brains remains largely unsolved, especially for JHD, our data, showing 
that polyQ length quantification significantly correlates with CAG repeat size, argues that both WT and mHTT 
levels are equal.

Our method relies on immunodetection of HTT proteins and therefore is subject to technical issues common 
to this approach, such as matrix influences or interfering substances. A fragment of HTT protein, correspond-
ing to the 1–573 N-terminal aa, was reported to produce a higher signal than the full length HTT protein at 
comparable concentrations31. Fodale et al. consider results as a best estimate rather than absolute for mHTT 
quantification31. We were unable to obtain a series of stable purified full length HTT proteins with increasing 
polyQ lengths to compare to the results obtained with GST-FLAG-HTTexon1. The presence of HTT fragments 
has been reported in HD brain51–53. Additionally, flanking regions of the polyQ tract, which were sites used for 
total HTT detection in our assay, may be affected by polyQ length as described by others54,55 and may introduce 
a bias when determining Total HTT. It is noteworthy that the MSD signal ratios (mHTT/Total HTT) obtained 
from human cortical lysates with 2 different Abs’ pairs—targeting flanking polyQ regions and more C-terminal 
domains in HTT—displayed a high correlation with average CAG repeat length and a strong parallelism between 
them (Fig. 5b), suggesting that the contribution of truncated forms of HTT and the impact of polyQ length on 
flanking regions, if any, is negligible.

We have shown that MSD signal ratio (EPR5526-MW1/EPR5526-MAB5492) followed a simple polyQ length 
correlation in the linear dynamic range of our assay (Fig. 1d). We analyzed HD brain samples in this range of 
detection. The constraint of linear dynamic range could be a problem for polyQ assessment in samples with very 
low concentrations of HTT. However, results obtained with GST-FLAG-HTTexon1 showed that parameters from 
4-parameters logistic regression are constant (Bottom and HillSlope) or strongly polyQ length dependent (Top 
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and EC50) (Supplementary Fig. S6), allowing us to predict a regression curve for any polyQ length as illustrated 
in Fig. 3. Such an improved model for polyQ length assessment should overcome the limitation of our current 
study.

Genome-wide association studies identified potential genetic modifiers involved in CAG repeat instability15,17, 
opening an area for future therapeutic intervention. Our study represents a proof of principle for CAG repeat 
quantification at the protein level and paves the way for further studies. Our method relies on the detection of 
mHTT and Total HTT, which have both been detected and quantified in patient CSF using the SMC assay19,20, 
thus our assay potentially represents a way to study indirectly the extent of CAG repeat instability in vivo in the 
patient’s central nervous system. The lower limit of quantification of our MSD sandwich ELISA-based assay for 
mHTT (picomolar range) is not sensitive enough for quantification of mHTT in clinical CSF samples from HD 
patients. The SMC assay is required to reach femtomolar sensitivity20,31,35. Quantification of average CAG insta-
bility by our method adapted to SMC assay, could more accurately predict age of disease onset12 and be used in 
future clinical approaches that aim to reduce CAG repeat instability14,56,57.

Methods
cloning. Plasmid vectors pGEX-6P-1 coding for GST-FLAG-HTTexon1 proteins with Q32, Q44 and Q55 
were kindly provided by Erich Wanker58. DNA fragment coding for HTTexon 1 proteins with Q19 was avail-
able in-house59. DNA fragment coding for HTTexon 1 proteins with Q38 was a gift from Pamela Bjorkman26 
(Addgene plasmid #11514). DNA fragments coding for HTTexon 1 proteins with Q25 and Q72 were kindly 
provided by Boxun Lu60. DNA fragment coding for HTTexon 1 proteins with Q48 was obtained by PCR from HD 
cell line (National Institute of Neurological Disorders and Stroke Repository at the Coriell Institute for Medical 
Research; catalog no. ND38551). DNA fragments coding for HTTexon1 were subcloned into the EcoRI and EagI 
sites of pGEX-6P-1 vector (GE Healthcare Life Sciences), in frame with the GST-FLAG sequence. The coding 
regions of all vectors were verified by DNA sequencing.

protein production. GST-FLAG-HTTexon1 proteins were produced in E. coli BL21(DE3)pLysS competent 
cells (Thermo Fisher Scientific) grown at 16 °C in Lenox L broth base (ThermoFisherScientific) supplemented 
with ampicillin (100 μg/mL). For all proteins, the production was performed in 2 L flasks containing 400 mL of 
culture medium under constant agitation (220 rpm). Protein production was induced by adding IPTG (200 μM) 
when the optical density at 600 nm reached ~0.7. Bacteria were cultured overnight post-induction (~20 h), har-
vested by centrifugation and kept frozen (−20 °C).

Protein purification. All purification steps were done on ice or at 4 °C. Lysis Buffer = Tris (10 mM; pH 8), 
NaCl (50 mM), KCl (50 mM), glycerol (10%). Elution Buffer = Tris (10 mM; pH 8), NaCl (150 mM), reduced 
glutathione (50 mM). Dialysis Buffer = phosphate (50 mM; pH 7.4). Bacterial pellets were thawed and suspended 
in 15 mL of lysis buffer containing lysozyme (10 mg/L), DTT (1 mM) and complete EDTA-free protease inhib-
itor cocktail (Roche). Bacteria were lysed by sonication during 2.5 min as follow: 3 s “on”, 10 s “off ” using Sonic 
dismembrator model 500 set at 40% and 1/8” probe (Thermo Fisher Scientific). After centrifugation at 14,000 g 
for 1 h, the soluble bacterial extract was loaded at gravity flow on 400 μL of Glutathione Sepharose 4B affinity 
chromatography resin (GE Healthcare Life Sciences) in a Poly-Prep chromatography column (Bio-Rad). Resin 
was then washed with 10 volumes of lysis buffer, the first 5 volumes containing Triton detergent (0.5%) to improve 
the release of nonspecifically bound bacterial material. Finally, GST-FLAG-HTTexon1 proteins were sequentially 
eluted once with 100 μL then 5 times with 200 μL of elution buffer. Protein containing eluates (usually eluate 2 to 
4) were diafiltrated by 5 washing out steps with dialysis buffer and Amicon Ultra-0.5 Centrifugal Filter Unit with 
Ultracel-3 membrane (MilliporeSigma). To avoid unnecessary losses upon freezing/thawing, protein stock con-
centrations were adjusted by diluting them in dialysis buffer and were stored at concentrations ranging from ~65 
to ~100 μM. Comparison of concentrations before and after freeze/thawing showed negligible losses (<6%). To 
remove potential aggregates generated by the freezing/thawing process, thawed protein samples were centrifuged 
at 16,000 g and 4 °C for 5 min and the supernatant was collected. This centrifugation and supernatant collection 
step was performed twice. If used below 10 μM, bovine serum albumin (MilliporeSigma; #A2153) was added to 
proteins at 2 mg/mL to limit protein adsorption on pipette tips.

Determination of purified protein concentration. Protein concentration was measured using its specific 
molar attenuation coefficient, after absorption spectrum scanning between 220 and 350 nm with DS-11 spectro-
photometer (Denovix). Molar attenuation coefficient was computed with ProtParam tool on ExPASy bioinfor-
matics resource portal61. Purity of full-length GST-FLAG-HTTexon1 proteins ranged from 67 to 90% depending 
on protein batch: a protein of the same size (~28 kDa) copurified with all proteins produced (Supplementary 
Fig. S1a), in proportion that is pure CAG repeat length dependent (Supplementary Fig. S1b). This product cor-
responded to the molecular mass of GST-FLAG and was detected with EPR5526 (anti-hHTT aa 1–100) but not 
with MW1 Ab by western blotting (Supplementary Fig. S1c). All together, these data suggest that 1) EPR5526 
Ab targets HTT first 17 aa (N17), located N-terminally to the polyQ tract; 2) the 28 kDa species is composed 
of GST-FLAG-N17 and 3) only GST-FLAG-HTTexon1 protein can be detected by Ab pairs used for MSD 
assay. Quantification of protein concentration by absorbance at 280 nm, which measures absorbance of both 
GST-FLAG-HTTexon1 and GST-FLAG-N17 in solution, showed different results than Coomassie blue staining, 
which allowed a relative quantification of GST-FLAG-HTTexon1 (Supplementary Fig. S1d). To adjust protein 
concentration of GST-FLAG-HTTexon1 estimated by absorbance at 280 nm, correction factors for each batch of 
GST-FLAG-HTTexon1 protein were estimated based on relative quantification after SDS-PAGE (Supplementary 
Table S1). The same amount of GST-FLAG-HTTexon1 protein (according to absorbance at 280 nm) was fluores-
cently labeled with Amersham QuickStain Protein Labeling Kit (GE Healthcare) prior to SDS-PAGE. For each 
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protein sample, fluorescent signal corresponding to GST-FLAG-HTTexon1 was quantified and normalized by aver-
age fluorescent signal of all GST-FLAG-HTTexon1 with different polyQ lengths. To validate experimentally these 
correction factors, we utilized the MSD platform for detection of GST-FLAG-HTTexon1 using EPR5526 capture 
Ab and MAB5492 detection Ab (Supplementary Fig. S2). Without correction of protein concentrations estimated 
by absorbance at 280 nm, the slope of standard curves obtained exhibited variations (Supplementary Fig. S2a) while 
after correction of protein concentrations, all standard curves overlap as expected (Supplementary Fig. S2b).

Mouse and HD patient-derived material. Mice with human exon1 KI within the endogenous mouse 
HTT gene—HdhQ5062, HdhQ8063, HdhQ11164, HdhQ14065 and zQ17566—with the same strain background of C57BL/6 
were obtained from The Jackson Laboratory and HdhQ140 were bred and maintained at the MGH animal facility. 
Although named “Qn”, the average CAG repeat length of these mice is slightly different due to instability at the 
locus. Mice were anaesthetized with CO2 followed by cervical dislocation. The brain was rapidly removed, snap 
frozen using dry ice and stored at −80 °C for further use. After brain thawing to 4 °C, striatal tissues were dis-
sected on ice, rapidly frozen using dry ice then stored at −80 °C for further use.

Human brain tissue was obtained from the Brain Tissue Resource Center (Belmont, MA), the University of 
Massachusetts, Department of Neuropathology and the Massachusetts General Hospital Neuropharmacology 
Laboratory Brain Bank. All tissue was quickly frozen and stored at −80 °C until further analysis. The time 
between death and brain dissection was variable but was always between 4 and 48 h. The dissections of neocortex 
and cerebellar cortex were performed to exclude the underlying white matter as much as possible.

Striatal and cerebellar samples were homogenized in buffer composed of HEPES (10 mM pH 7.4), sucrose 
(250 mM), EDTA (1 mM), complete EDTA-free protease inhibitor cocktail (Roche) and for some samples NaF 
(1 mM), Na3VO4 (1 mM) and were sonicated 10 s using Sonic dismembrator model 500 set at 20% and 1/8” probe 
(Thermo Fisher Scientific). Samples were then centrifuged at 16,000 g at 4 °C for 15 min. Supernatant was col-
lected, aliquoted and stored at −80 °C for further use.

Bradford assay. Protein Assay dye reagent (Bio-Rad) was diluted with 4 volumes of distilled, deionized 
water. One volume of biological sample (diluted 10- and 20-fold) or bovine serum albumin protein standard was 
mixed with 50 volumes of diluted dye reagent and 200 µL was loaded into 96-well plate (Thermo Fisher Scientific, 
#269620). Optical density at 600 nm was recorded with a Victor2 Multilabel plate reader (PerkinElmer). Total 
protein concentration was interpolated from bovine serum albumin standard curve made with 11 dilution points 
from 100 mg/mL and 2-fold dilution path. Protein concentration was expressed as mg/mL.

SDS-pAGe electrophoresis. Three volumes of protein samples were mixed with one volume of NuPAGE™ 
LDS Sample Buffer 4 x (Thermo Fisher Scientific) and denatured by heating at 70 °C for 10 min. After a brief 
centrifugation step (1 min at 17,000 g), the same amount of denatured proteins was loaded on NuPAGE gel 
(Thermo Fisher Scientific) and separated by electrophoresis. Protein amounts were adjusted to optimize 
the different readouts: 90 pmol of GST-FLAG-HTTexon1 proteins for Coomassie blue staining; 3.75 pmol of 
GST-FLAG-HTTexon1 proteins for fluorescent detection; 15.6 pmol of GST-FLAG-HTTexon1 proteins for WB; 
10 μg of total protein of mouse derived material. Purified proteins were migrated through 4–12% Bis-Tris gels 
with MES running buffer (Thermo Fisher Scientific) at 200 V constant and mouse brain lysates through 3–8% 
Tris-Acetate gels with Tris-Acetate running buffer (Thermo Fisher Scientific) at 120 V constant until suitable 
separation. Coomassie blue staining was done with PhastGel Blue R-350 (GE Healthcare Life Sciences) as recom-
mended by the manufacturer and detected using white transillumination light of a FluorChem SP Imager (Alpha 
Innotech). Fluorescent labeling was done with Amersham QuickStain Protein Labeling kit (GE Healthcare Life 
Sciences) as follows: 1 μM of purified proteins were labeled with 0.25 μL of Cy5 dye reagent in a final volume of 
12 μL of phosphate buffer 50 mM pH7.4 and incubated 30 min at RT. In-gel fluorescent detection was done using 
Odyssey Imaging System (LI-COR). Quantification was done using ImageJ software67.

Antibodies. All antibodies used in this study are commercially available: EPR5526, rabbit monoclonal 
anti-HTT (Abcam Cat# ab109115, RRID:AB_10863082); MW1, mouse monoclonal anti-polyQ (DSHB Cat# 
mw1, RRID:AB_528290); 1C2, mouse monoclonal anti-polyQ (Millipore Cat# MAB1574, RRID:AB_94263); 
3B5H10, mouse monoclonal anti-polyQ (Sigma-Aldrich Cat# P1874, RRID:AB_532270); MAB5492, mouse 
monoclonal anti-HTT (Millipore Cat# MAB5492, RRID:AB_347723); D7F7, rabbit monoclonal anti-HTT (Cell 
Signaling Technology Cat# 5656, RRID:AB_10827977); MAB2166, mouse monoclonal anti-HTT (Millipore Cat# 
MAB2166, RRID:AB_ 2123255); peroxidase-conjugated AffiniPure, donkey polyclonal anti-rabbit IgG (Jackson 
ImmunoResearch Labs Cat# 711–035–152, RRID:AB_10015282); peroxidase-conjugated AffiniPure, donkey pol-
yclonal anti-mouse IgG (Jackson ImmunoResearch Labs Cat# 715–035–150, RRID:AB_2340770) and Sulfo-Tag 
labeled, goat polyclonal anti-mouse IgG (Meso Scale Discovery, Cat# R32AC, RRID:AB_2783819).

Western blotting. Transfer to a nitrocellulose membrane was done using Trans-Blot® Turbo™ Transfer 
System according to manufacturer’s instructions. Membrane was then blocked with PBS-Tween 0.1% + 5% of 
Blotting-Grade Blocker (Bio-Rad) for 1 h on a rocking shaker. Membrane was then incubated overnight at 4 °C 
on a rocking shaker with 10 mL of EPR5526 (133.7 ng/mL; 1/10,000); MW1 (27.5 ng/mL; 1/10,000) or D7F7 
Ab (1/2,000) in PBS-Tween 0.1% + 5% of Blotting-Grade Blocker. Membrane was then washed 3 × 10 min with 
10 mL of PBS-Tween 0.1%. Membrane was then incubated for 1 h at RT on an orbital shaker with 10 mL of 
Peroxidase-conjugated AffiniPure Donkey anti-Mouse (1/5,000) or Peroxidase-conjugated AffiniPure Donkey 
anti-Rabbit IgG (1/2,500 or 1/5,000) in PBS-Tween 0.1% + 5% of Blotting-Grade Blocker. Membrane was 
then washed 3 × 10 min with 10 mL of PBS-Tween 0.1%. Acquisition was done using SuperSignal West Pico 
Chemiluminescent Substrate (Thermo Fisher Scientific) according to manufacturer’s instructions and FluorChem 
SP Imager (Alpha Innotech).
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MSD assay. Multi-Array 96-well standard plates (MSD) were coated overnight at 4 °C on a flat surface with 
30 µL of D7F7 or EPR5526 capture Ab (2 µg/mL) in PBS pH 7.4 (Thermo Fisher Scientific). Plates were emptied 
and blocked with 150 µL of 3% bovine serum albumin (BSA) in PBS-Tween 0.05% pH 7.4 for 2 h at room temper-
ature and 1,000 rpm on orbital microplate shaker (Scientific Industries). After 3 washes with 150 µL of washing 
buffer (PBS-Tween 0.05% pH 7.4), 30 µL of diluted samples were distributed into plates and incubated 1 h (for puri-
fied proteins) or 2 h (for biological samples) at room temperature and 1,000 rpm. The amount of biological material 
tested was adjusted for each pair of Abs to obtain signal in the linear dynamic range of detection: ~10 μg of total 
protein of mouse derived material (for D7F7-MW1 and EPR5526-MW1 mHTT assays); ~140 μg of total protein of 
mouse derived material (for EPR5526-MAB5492 Total HTT assay); 6 μg of total protein of human derived material 
for EPR5526-MW1 mHTT assays and 50 or 80 μg of total protein of human derived material for D7F7-MAB2166 
or EPR5526-MAB5492 Total HTT assays respectively. Plates were then washed 3 times with washing buffer and 
incubated with 30 µL of detection antibody and incubated for 1 h at room temperature and 1,000 rpm. Depending 
on the type of sample, different concentrations of detection Abs were used for optimal signal-to-noise ratio: MW1 
(2 µg/mL); 3B5H10 (2 µg/mL); 1C2 (1:1,000 or 1:2,500); MAB5492 (1:5,000 or 1:20,000) and MAB2166 (1:10,000). 
After 3 washes with 150 µL of washing buffer, 30 µL of goat anti-mouse SulfoTag secondary Ab (2 µg/mL) were dis-
tributed into plates and incubated 1 h at room temperature and 1,000 rpm. After 3 washes with 150 µL of washing 
buffer, 150 µL of 2X Read Buffer T with surfactant (MSD) were distributed into plates before reading on QuickPlex 
SQ120 instrument (MSD) according to manufacturer’s instructions.

Regression analysis of MSD data. Calibration curves of purified proteins were fitted with a 
four-parameter logistic regression model, 1/Y2 weighting and least squares’ method using Solver, a Microsoft 
Excel Office 365 software add-in program. Four-parameter logistic regression model is:

= +
× −

+
MSD Signal Bottom x Top Bottom

x EC
( )

50 (1)

HillSlope

HillSlope HillSlope

where Bottom and Top are plateaus of MSD signal; x is protein concentration; EC50 is the protein concentra-
tion that gives MSD signal half way between Bottom and Top; HillSlope is a factor representing the steepness 
of the standard curve. Slope of standard curves in the linear dynamic range were determined as shown in 
Supplementary Data Set 1.

For other regression analysis, different models (linear, exponential, power, logarithmic and power) were 
tested with the least squares’ method using Microsoft Excel Office 365 software. Regression models with highest 
R-squared value were selected.

Quantification of average polyQ length. When the amount of HTT is assessed in the linear dynamic 
range of our MSD assays, then:

= ×MSD Signal Concentration Slope (2)

and we showed in Fig. 1d that:
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Combination of Eqs. (2) and (3) leads to:
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Both ratio of MSD signal obtained with MW1 by MSD signal obtained with MAB5492 or ratio of slope of 
MSD signal obtained with MW1 by ratio of slope of MSD signal obtained with MAB5492 could be used to quan-
tify average polyQ length in biological samples. For MSD signal ratios or ratios of slope of MSD signals, propaga-
tion of error was calculated by the equation:
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PolyQ length was extrapolated from standard curve obtained by testing different concentrations of 
GST-FLAG-HTTexon1 with different polyQ lengths.

pcR assay. Genomic DNA was isolated from tissues for somatic instability analysis using the DNeasy Blood 
& Tissue Kit (Qiagen). The size of the HTT CAG repeat was determined using a PCR assay that amplifies the 
HTT CAG repeat. The forward primer was fluorescently labeled with 6-FAM (Applied Biosystems) and products 
were resolved using the ABI 3730xl DNA analyzer (Applied Biosystems) with GeneScan 500 LIZ as internal size 
standard (Applied Biosystems).

Quantification of average CAG repeat length. PCR amplification of trinucleotide repeats from tissue 
prone to CAG instability generates multiple PCR products, viewed using GeneMapper software as a cluster of 
peaks differing by a single CAG repeat unit41. The following steps were used to determine the average CAG repeat 
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quantification: 1) WT and mutant huntingtin alleles were analyzed individually; 2) 5% (threshold factor) of the 
height of the highest peak was set as a relative peak height threshold (peaks with heights lower than this threshold 
level were excluded from quantification); 3) peak heights were normalized by dividing the peak height of each 
peak by the sum of the heights of all signal peaks; 4) the normalized peak heights were multiplied by their related 
CAG repeat lengths; 5) values from step 4 were summed to get the average CAG repeat length for each allele; 6) 
average CAG repeat length for each allele were averaged.

Study approval. The animal protocol was approved by the MGH Subcommittee on Research Animal Care -  
Office of Laboratory Animal Welfare #2004N000248. All procedures conform to the USD Animal Welfare Act, 
“the Institute for Laboratory Animal Research Guide for the Care and Use of Laboratory Animals”, Physician 
Health Services Policy on Humane Care and Use of Laboratory Animals.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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