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Projection-to-Projection 
Translation for Hybrid X-ray and 
Magnetic Resonance Imaging
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Hybrid X-ray and magnetic resonance (MR) imaging promises large potential in interventional medical 
imaging applications due to the broad variety of contrast of MRI combined with fast imaging of X-ray-
based modalities. To fully utilize the potential of the vast amount of existing image enhancement 
techniques, the corresponding information from both modalities must be present in the same domain. 
For image-guided interventional procedures, X-ray fluoroscopy has proven to be the modality of 
choice. Synthesizing one modality from another in this case is an ill-posed problem due to ambiguous 
signal and overlapping structures in projective geometry. To take on these challenges, we present a 
learning-based solution to MR to X-ray projection-to-projection translation. We propose an image 
generator network that focuses on high representation capacity in higher resolution layers to allow for 
accurate synthesis of fine details in the projection images. Additionally, a weighting scheme in the loss 
computation that favors high-frequency structures is proposed to focus on the important details and 
contours in projection imaging. The proposed extensions prove valuable in generating X-ray projection 
images with natural appearance. Our approach achieves a deviation from the ground truth of only 6% 
and structural similarity measure of 0.913 ± 0.005. In particular the high frequency weighting assists in 
generating projection images with sharp appearance and reduces erroneously synthesized fine details.

Medical imaging offers various possibilities to visualize soft and hard tissue, physiological processes, and many 
more. The range of information that can be acquired is, however, divided between many different modalities. 
Hybrid imaging has the potential to provide simultaneous access to distributed information for diagnostic and 
interventional applications1–4. For example, future research advances can use the combination of computed 
tomography (CT) and magnetic resonance imaging (MRI) for clinical applications. This is of particular interest 
for interventional applications, as a large number of tasks are associated with the manipulation of soft tissue. 
Despite this fact, X-ray imaging, which is insensitive to soft tissue contrast, is still the workhorse of interventional 
radiology. The reasons for this are the high spatial and temporal resolution, which make the handling of interven-
tional devices much easier. By complementing these advantages with better soft tissue contrast provided by MRI, 
the gain from the simultaneous acquisition of soft and dense tissue information through hybrid imaging would 
offer great opportunities.

Assuming that the information from both modalities is available simultaneously, numerous existing 
post-processing methods become applicable. Image fusion techniques, such as image overlays, have proven suc-
cessful in the past. Additionally, techniques for image enhancement, such as noise reduction or super-resolution, 
can be considered. For many of the previously presented methods it is advantageous to have the data available 
in the same domain. The generation of CT images from corresponding MRI data was previously presented5–8, 
mainly to create attenuation maps for radiation therapy. However, all are applied to volumetric data, i.e., to tomo-
graphic images.

Contrarily, interventional radiology is strongly dependent on line-integral data originating from projection 
imaging. Images with similar perspective distortion can be acquired directly with an MR device9,10. This avoids 
time-consuming volumetric MRI acquisition and subsequent forward projection. The synthesis of X-ray-like 
projection images for further processing based on the acquired MRI signal is, however, an inherently ill-posed 
problem. The X-ray imaging signal is dominated by dense tissue structures, e.g., bone, which provide almost no 
signal in MRI. As air also does not induce signal in MRI, the materials cannot be discriminated based on intensity 
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values alone. Resolving this ambiguity is, therefore, only possible based on the available structural information. 
In volumetric images, the materials may be unknown but are resolved in distinct regions of the image. While MR 
projection imaging allows for continuous intraoperative use due to much faster acquisition times compared to 
volumetric MRI scans, the structural information diminishes in the projection image by integrating the intensity 
or attenuation values on the detector. This corresponds to a linear combination of multiple slice images with 
unknown path length which further increases the difficulty of the synthesis task. Enabled by the progress in fast 
MR projection acquisition, we investigate a solution for generating X-ray projections from corresponding MRI 
views by projection-to-projection translation.

Related Work
MR projection imaging.  Common clinical X-ray systems used for image-guided interventions exhibit a 
cone-beam geometry with the according perspective distortion in the acquired images. These systems can acquire 
fluoroscopic sequences with a rate of up to 30 frames per second. In contrast, MR imaging is usually performed 
in a tomographic fashion. The acquisition of whole volumes and subsequent forward projection is, however, too 
slow to be applicable in interventional procedures. Fortunately, the direct acquisition of projection images is 
possible9,10. Yet, the resulting images are subject to a parallel-beam geometry and, therefore, incompatible with 
their cone-beam projected X-ray counterpart. To remedy this contradiction, recent research has addressed the 
problem of acquiring MR projections with the same perspective distortion as an X-ray system, without the detour 
of volumetric acquisition11. Most approaches rely on rebinning to convert the acquired projection rays from 
parallel to fan- or cone-beam geometry9,12. Unfortunately, this requires interpolation which reduces the resulting 
image’s quality. To avoid loss of resolution, Syben et al.10 proposed a neural network based algorithm to generate 
this perspective projection.

Image-to-image translation.  Projection-to-projection translation suffers from the problems explained in 
Section 1, i.e., ambiguous signal and overlapping structures. However, from a machine learning point of view, it 
is essentially an image-to-image translation task. While we target the application of synthesizing 2D projection 
images instead of tomographic slice images, the preliminary work on pseudo-CT generation, mostly applied for 
radiotherapy treatment planning, is still relevant. Two main approaches to the task of estimating 3D CT images 
from corresponding MR scans have prevailed up to now: atlas-based and learning-based methods. Atlas-based 
methods as proposed in13,14 achieve good results, however, their dependence on accurate image registration and 
often high computational complexity is undesirable in the interventional setting. In contrast, inference is fast in 
learning-based approaches which makes them suitable for real-time applications. Essentially a regression task, 
image-to-image translation can be solved using classical machine learning methods like random forests5. The 
advent of convolutional neural networks (CNN) revolutionized the field of image synthesis and image processing 
in general. Numerous different approaches to image synthesis using deep neural networks have been published 
since then15–17. Lately, generative adversarial networks (GAN)18 proved valuable for this task. Isola et al.19 pre-
sented one of the first approaches to general-purpose image-to-image translation based on GANs and others 
followed6,7,20–24.

Applying this idea to the field of medical image synthesis, Nie et al. enhanced the conditional GAN structure 
with an auto-context model and achieved good results in the task of tomographic CT image synthesis based on its 
MR pendant6. Furthermore, in7,25–27, the successful training of a GAN based on unpaired MR and CT images was 
shown. As a result of the achieved successes, GANs are now a frequently used tool in medical imaging research 
that extends beyond the realm of image-to-image translation28–32. Inspired by these advances in the field of image 
synthesis, we seek to find a deep learning-based solution to generate X-ray projections from corresponding MR 
projections. In previous research33, we were able to show a proof of concept, which however was only able to 
produce mediocre images. We want to remedy this shortcoming in the underlying work and additionally show a 
profound analysis of the results on a more representative data set.

Methods
In contrast to most natural image synthesis problems we do not desire to learn a one-to-many mapping. While 
there are different “correct” solutions for synthesized images from, e.g., a semantic layout, only one solution 
is correct for projection-to-projection translation tasks. The underlying network can, therefore, be trained in 
a supervised manner based on corresponding pairs of MR and X-ray projection images. Please note that the 
mapping itself remains an ill-posed problem due to the previously discussed signal ambiguities and structural 
overlaps. Formally, we seek to learn a mapping that generates an image G based on an input image I. The mapping 
is trained based on corresponding input and label image pairs, I and L, such that the generated image G is as close 
as possible to L. In the underlying task, I and L are the MR and X-ray projection images, respectively, and G is the 
generated X-ray projection.

Network architecture.  We employ a fully convolutional neural network as our image generator. The gen-
eral considerations regarding the network’s architecture are based on the popular approaches proposed by7,21,22,34 
which have shown promising results also in medical imaging applications7. The network’s architecture is designed 
in an encoder-decoder fashion. In the originally proposed approaches, the lowest resolution level consists of 
a series of subsequent residual blocks35. These blocks allocate the majority of network capacity that is utilized 
for the projection-to-projection translation. At the lowest, most coarse resolution layer the general outline of 
structures and their alignment in the image are determined. Considering the overwhelming variety of possible 
solutions that exist in the synthesis of natural images, the use of a large part of the available resources for the 
basic determination of the images seems reasonable. In contrast, the underlying variance observed in medical 
projection imaging is limited. In addition, the most insightful information during interventional procedures is 
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often related to outlines of bones and organs, medical devices, and similiar structures. These are represented by 
high-frequency details in the image in the form of edges and contrasts. However, sharp borders and edges are 
synthesized at the high-resolution layers of the network. To increase the network capacity at the higher resolution 
stages, we redistribute the residual blocks to these layers. Since the memory requirements increase with increasing 
resolution, the placement on higher layers must be weighted against a decreased amount of feature channels. In 
Fig. 1 a schematic visualization of the architecture is given.

Objective function.  The appearance of the generated images is highly dependent on the generator’s objec-
tive function. In contrast to natural image synthesis tasks, only one unique solution is valid for the underlying 
projection-to-projection translation problem. Therefore, computing intensity-based loss-functions is suitable. 
Yet, the results favored by a pixel-wise loss do not necessarily correspond to perceived visual quality36. Image gen-
erators trained based on these metrics tend to produce images that are far too smooth. To avoid this, we employ 
a perceptual objective function for this approach. The main component of the proposed objective function is an 
adversarial loss scheme as proposed by18. A discriminator network is trained to tell apart fake generated images 
from real label images and provide the generating network with a gradient. We adopt the architecture proposed 
in21 for our discriminator. Although the adversarial loss offers powerful guidance, it is also less constrained to the 
real target image than common objective functions. Therefore, it is often combined with one or more additional 
metrics. To provide additional high-level guidance while simultaneously limiting the deviations from the target 
image, we add a feature matching loss to the objective function37. To this end, the generated and label image 
are fed through a fixed, pre-trained network. The loss is computed by comparing the feature activations of both 
images which are subject to a surjective, i.e., non-unique mapping of the images to the feature space. If both 
feature activations are equal, the respective images are equal w.r.t. the mapping, too. Increasing deviation in the 
feature activations is a strong indicator for deviating images and, consequently, the error increases.

As initially motivated, pixel-wise metrics are usually suitable for one-to-one mappings as it is the case here. 
The projection images are, however, dominated by homogeneous regions. This is problematic, as the loss induced 
by low-frequency structures may overwhelm the error in the high-frequency parts. For X-ray fluoroscopy, these 
form most of the valuable information in the image that is perceived by the physicians. To alleviate this problem 
and put further emphasis on the correct creation of high-frequency detail, we propose to include a high-frequency 
weighting to the loss computation. Accordingly, a weighting map has to be generated that describes how impor-
tant each pixel is for the overall impression. First, the Sobel filter38 is used to compute the gradient map of the label 
image. The resulting gradient maps correspond to the likelihood of a pixel belonging to an edge. High likelihood 
is represented by high intensity values and vice versa. Representative examples are presented in Fig. 2. Second, 
this gradient map is used to weight the loss such that the loss generated from edges is emphasized and that from 
homogeneous regions is attenuated. The effectiveness of including this edge information in image synthesis tasks 
has previously been shown for projection images in33 and recently also for other medical imaging domains31. 
Starting with the GAN loss, this can be formulated as

   = + − L G L G G( , , ) [log ( , )] [1 log ( )] (1)L G L GGAN , ,

where  is the discriminator network and L and G are the label and generated image, respectively. The second 
part of the loss function is the feature matching loss described by

∑= − L G V L V G( , ) ( ( ) ( )),
(2)s

S

s sFM

Figure 1.  A schematic visualization of the proposed network architecture. The numbers on the layers denote 
the feature dimensions and the convolution kernel size.
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where VS(L) and VS(G) are the feature activation maps of the VGG-19 network39 at the layer s ∈ S. This leads to 
the final objective functions

= + ⋅  L G L G L G E( , , ) ( ( , , ) ( , )) , (3)LGAN FM 

which is the combination of the GAN and feature matching loss weighted by the gradient map EL of the label 
image. For a simplified representation, we assumed here that all elements have the same dimensions. In practice, 
the outputs of the feature matching and GAN loss are multi- and low-dimensional, respectively, which is why the 
precalculated edge map has to be adjusted. We use bilinear downsampling for this.

Experiments
Data generation.  Evaluating the performance based on real-world data is crucial. However, since the acqui-
sition of corresponding projection images is not a part of the clinical routine up to now, these have to be artifi-
cially created. To this end, MRI and CT head datasets of 13 individuals with different pathologies are provided by 
the Department of Neuroradiology, University Hospital Erlangen, Germany. (MR: 1.5 T MAGNETOM Aera/CT: 
SOMATON Definition, Siemens Healthineers, Erlangen / Forchheim, Germany). Table 1 shows important details 
about the type and properties of the datasets. However, please note that no special imaging or selection of data is 
performed for this work. All datasets were acquired as a part of routine clinical imaging procedures.

Figure 2.  Representative examples of the projection-to-projection translation for different projection angles 
and patients. The top and middle row are projections originating from the first test patient and the bottom row 
from the second test patient.

CT data MR data

Type unenhanced spiral h70 (“sharp”) 
reconstruction kernel time-of-flight angiography

Dimensions 512 × 512 × (120–368) (256–412) × (256–512) × (176–188)

Spacing (0.39–0.45) × (0.39–0.45) × (0.6–1.2) mm3 0.39 × 0.39 × 0.5 mm3

Table 1.  A selection of the important properties of the data used for the underlying work.
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Rigid registration of the tomographic 3D data is performed using 3D Slicer40. Subsequently, the registered 
datasets are forward projected using the CONRAD framework41 to create matching cone-beam MR and X-ray 
projection images. The projection geometry and according parameters are set to closely match clinical C-arm CT 
systems42. To ensure substantial variation while training, 450 projections per patient are created that are distrib-
uted equiangularly along the azimuthal and inclination angle. During testing, projections from a 360° rotation in 
the transversal plane are used which corresponds to common clinical acquisition procedures. In Fig. 3, a visual 
representation of the data generation process is given.

All projections are normalized prior to training by zero-centering and division by standard deviation. For the 
input data, i.e., the MRI projections, this preprocessing is applied to each subject’s data individually and not on 
the whole dataset to account for differences in the MR protocols. Training is performed for a fixed number of 300 
epochs using the ADAM optimizer43 with a learning rate of 1e−4 and a batch size of one. The edge map generated 
by the Sobel filter is thresholded with a value of 0.4 (data range 0 to 1) in order to abandon pixels with low likeli-
hood of belonging to an edge.

Evaluation.  Evaluation of the proposed approach is performed quantitatively as well as qualitatively based 
on two patient datasets that were reserved for testing. Quantitative evaluation is done based on the mean absolute 
error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). In addition, the perfor-
mance of these metrics with respect to the projection angle is investigated. All projections are normalized before-
hand. For MAE and PSNR, only pixels are considered that are nonzero in the label images to limit the optimistic 
bias caused by the large homogeneous air regions. For treatment planning in radiotherapy, a precise estimation of 
pixel-wise attenuation values is crucial. In interventional projection imaging, however, also the visual appearance 
of the generated images is of interest for the surgeon. Pixel-wise error metrics prefer smooth images, as explained 
previously in Section 3.2. Therefore, qualitative evaluation of the generated X-ray projection images is performed 
to make sure that the generated and reference images also correspond visually for the human observer.

Figure 3.  A schematic overview of the data generation process. Note that ultimately the goal is to acquire 
simultaneous projection images in hybrid X-ray and MR imaging (cf. Section 2.1). To generate training data for 
the underlying work, simulation was necessary.

MAE in [%] SSIM PSNR

Reference w/o edge-weighting 7.7 ± 1.7 0.884 ± 0.011 20.132 ± 1.644

Reference w/ edge-weighting 6.6 ± 1.5 0.902 ± 0.013 21.558 ± 1.802

Ours w/o edge-weighting 7.4 ± 3.4 0.909 ± 0.011 21.480 ± 3.187

Ours w/ edge-weighting 5.7 ± 0.9 0.913 ± 0.005 21.859 ± 0.676

Table 2.  MAE, SSIM, and PSNR of the different network architectures.

Figure 4.  Evaluation metrics with respect to the projection angle.
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The proposed modifications of our approach are, first, a relocation of the residual blocks to higher resolution 
layers to increase the network capacity at the relevant stages and, second, a high-frequency weighting of the 
computed loss term.

We compare our approach to the conditional GAN architecture as used in7,21,22,34, which we will refer to as 
reference architecture. The reference is similar to our proposed architecture (see Fig. 1) with the main difference 
that all residual blocks are placed at the lowest resolution layers. To ensure comparability, the network parameters 
of both approaches are chosen such that all available graphics card memory is utilized.

Results
All quantitative metrics and observations reported in the following are computed or made based on the two 
representative test datasets. In Table 2, the quantitative results of the projection-to-projection translation are 
presented. We evaluated the proposed changes in architecture and the edge-weighting against the reference archi-
tecture. Shifting the residual blocks shows a small improvement in MAE as well as SSIM. The combination of the 
proposed architecture and the edge-weighted loss function yields an improvement of 25% compared to the refer-
ence architecture without the weighted loss term. The gain in SSIM is not as large but still clear. In Fig. 4, the error 
metrics are plotted w.r.t. the projection angle. In this figure, 0° denotes an RAO angle of 90° and, consequently, 
180° represents 90° LAO. Note that opposing projections are not equal due to tilt and the projective geometry. The 
qualitative examples give a good intuition of the effects of the proposed changes. Representative examples of the 
generated images are given in Fig. 2 for qualitative examination. The influence of the proposed changes regard-
ing the network architecture and the edge-weighting can be observed in Fig. 5. Fig. 6 shows an example lineplot 
through the generated and label image and their absolute difference.

Computation time is a limiting factor in image-guided interventions. Our unoptimized project-to-projection 
translation is capable of processing of ∼24 frames per second on a Nvidia Tesla V100 gpu. Naturally, this pro-
cessing rate would be subject to additional delay or latency caused by the acquisition and preprocessing steps 
on the scanner. Nevertheless, the achievable processing time is fast enough to cope with common clinical X-ray 
fluoroscopy frame rates and will likely exceed the expected acquisition time for cone-beam MR projection images 
on a real scanner by far.

Discussion
Quantitative comparison with other methods is difficult to conduct at this point. Numerous methods for image 
synthesis in medical imaging were proposed up to now, however, these exclusively target tomographic images. In 
contrast, projection images are significantly different in their general look regarding contrast, edges and superim-
positions. A direct comparison between corresponding evaluation metrics would, therefore, be not meaningful 
for either side.

Data generation.  While the amount of patient scans that were available for this tasks is limited, our method 
of augmenting the data set by using multiple angles for forward projection is powerful. Data augmentation itself 
was proven remarkably beneficial in prior work44. Thereby, translation, rotation or simple warping are only the 
baseline and represent modified versions of the original image. In contrast, a forward projection is an X-ray 

Figure 5.  Influence of reference (ref.) and proposed architecture and loss functions on the generated results.

Figure 6.  Exemplary lineplots of a pair of generated and label projection images.
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transform, i.e., an integral transformation. For a function f(L) and the line L, the X-ray transform Xf(L) is the 
mapping

∫ θ= +L xXf f t dt( ) ( ) , (4)0

where the unit vector θ denotes the direction of the line L and x0 is the starting point on the line. If f(L) is a con-
stant function, i.e., one image, the resulting X-ray-transformed function is different for every single θ. Thereby, 
the previously mentioned popular augmentation methods are intrinsically part of the X-ray transform due to 
effects like perspective distortion, the projection trajectory, and more. What is, unfortunately, not solved by this 
data augmentation process are different medical indications of the patients. These come in various different 
appearances and shapes, e.g., only considering the cranial region, aneurysms, lesions, fractures, and many more. 
As the underlying dataset is composed of scans from different points in time, structural differences occur (see 
Fig. 7). Like with other learning-based algorithms, handling of these examples can only be covered by including 
them in the training database. It is, therefore, important to keep this fact in mind when dealing with data-based 
systems. Furthermore, multiple patient datasets are truncated in axial direction (see Fig. 2(c)) due to incomplete 
acquisition of the head. Nevertheless, our approach was able to deal with this challenge and produce the accord-
ing truncated or untruncated synthesized projections.

Architecture and objective function.  As seen in Fig. 5(a,c), the redistribution of the residual blocks 
improves the visual impression of the generated images. The projections generated with the residual blocks at 
the high resolution levels resemble real head projections more closely. According to the motivation of this change 
described in Section 3.1, we conclude that this improvement is caused by the increased network capacity at the 
high-resolution layers. The consequent reduction in capacity in the coarser layers does not lead to a deterioration 
of the results. This may be due to the fact that the rough outline of the structures to be generated, i.e., the head, 
is the same in the MR and X-ray projections. Observation of the training process also showed that the general 
arrangement was already fixed after the first few epochs.

High-frequency details are most of the time the most important part in X-ray projection imaging. Yet, 
most networks used for image synthesis are built in an encoder-decoder fashion which accumulates large por-
tions of the available network capacity at the lower resolution layers to allow for an increase in filter dimen-
sion. Considering recent trends in super-resolution45, the usage of sub-pixel convolutions46 might be of interest 
for future work. This technique performs the image generation almost completely on lower resolution levels 
without sacrificing on high-frequency details by reordering multiple low-dimensional feature maps into one 
high-dimensional image. Given the high memory requirements of image synthesis, this could be a valuable tool.

Yet, only redistributing the network’s capacity to higher resolution levels is not enough to guide the gener-
ation process in the desired direction. A more pronounced improvement can be observed by addition of the 
edge-weighting to the objective function. In Fig. 5(d), the fine details, i.e., edges, are much sharper compared to 
its counterpart (Fig. 5(c)) which was not trained using this edge-weighting. Additionally, the amount of errone-
ously synthesized edges and borders is decreased when applying this weighting scheme. This improvement is not 
surprising when considering that only ∼9.8% of the total image points belong to an edge according to our com-
puted edge map. If the loss was not weighted, the error resulting from this small portion of image points would 
simply be overshadowed by the vast majority of low-frequency image points in the images.

Another potentially interesting complement to our approach could be the inclusion of the temporal dimen-
sion. Fluoroscopic images consist usually of a sequence of images obtained from the same view. Similarly, while 
acquiring 3D tomographic scans, successive projections from slightly changed positions are recorded. In both 
cases, there is a certain degree of consistency between the successive projections. This can potentially be exploited 
by simultaneous processing of several projections in order to transfer this consistency to the results47–49.

Despite the proposed additions and the resulting improvements, the projection-to-projection translation is 
not yet perfect. The high number of fine structures that are integrated on to the detector during the projection 
and thus overlap represent a great challenge for the synthesis. Combined with the initially discussed fact that the 

Figure 7.  An example of missing information in the generated X-ray projection images. Details that are 
unobservable in the input MRI projections can, naturally, not be translated in the resulting generated projection 
images. The small rectangle in the label image (c) outlines the entry point of a ventricular shunt while the larger 
rectangle frames contrasted cerebral arteries. While the devices were not present at the time of the acquisition of 
the underlying images, it is likely that none of these details will be captured by the MR imaging protocol.
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acquired signal is partly ambiguous, e.g., air and bone map to similar regions in most MR imaging sequences, 
providing a conclusive solution is a hard task. However, many interventional tasks do not require a perfect 
one-to-one correspondence. For example, smooth changes in the intensities may not be of great interest, assum-
ing they are even perceivable for the human observer in the first place. In fact, an exact match of the images is not 
always the desired result. To apply many post-processing methods, subtle differences are needed to make these 
techniques possible. Tasks like one-shot digital subtraction angiography become feasible with the underlying 
synthesized and real contrasted X-ray projection images if slight differences between the projections are present.

For future work, we hope to gain access to further corresponding data sets, especially those of body parts 
with more diverse information contained in the respective modalities. For example the chest features a greater 
diversity between the modalities with the X-ray based modality containing the ribs and spine, while all soft-tissue 
structures like the heart are better observable in the MR images. Additionally, we would like to evaluate the 
high-frequency component weighting also for other tasks that rely on accurate synthesis of structural details 
besides projection-to-projection translation.

Conclusion
The underlying work presents an approach to synthesize X-ray projection images based on corresponding MR 
projections, which is potentially advantageous for hybrid MR and CT imaging applications. In doing so, we have 
identified distinct differences between the synthesis of projection images and volumetric images. In projection 
images, usually only edges and similar high-frequency structures contain important information. In order to 
emphasize this in the translation, we proposed an increase of the network capacity at higher resolution layers. 
In addition, a weighting of the high-frequency components in the image was introduced when calculating the 
error in the training process. The proposed modifications and extensions proved to be valuable and showed 
clear improvements in the quantitative metrics with a decrease in the deviation from the ground truth by ∼25%. 
In addition, particularly using the proposed weighting of high-frequency components in the training process 
resulted in a superior qualitative image impression. These results proved to yield sharper edges and fewer errone-
ously generated fine details. The advancing development in the fields of interventional MR and hybrid imaging 
motivates increased effort to solve the remaining problems of ambiguous signal and overlapping structures which 
still represent a challenging problem.

Data availability
For legal reasons, the authors are not able to share the underlying clinical data sets.
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