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Elevated expression of miR-146a 
correlates with high levels of 
immune cell exhaustion markers 
and suppresses cellular immune 
function in chronic HIV-1-infected 
patients
ting Yu1,3, Zhao Ju1, Mingqi Luo2, Ronghua Hu2, Yan teng1, Linlin Xie1, Chaojie Zhong1, 
Lang chen  1, Wei Hou1*, Yong Xiong2* & Yong feng  1*

Functional exhaustion of immune cells is a defining characteristic of HIV-1 chronic infections, exhibiting 
dysregulation of cellular immune responses and expression of co-inhibitory receptors. Although 
the molecular mechanisms controlling immune-cell exhaustion retains largely unknown, immune 
checkpoint blockade strategy has shown inspiring potential to reinvigorate T cell functions in chronic 
infections. In this study, we investigated peripheral blood mononuclear cells (PBMCs) exhaustion 
markers from 109 chronic HIV-1-infected patients and found they correlated positively with microRNA-
146a, which was inversely correlated with CD4+ T cell count. Intriguingly, ex vivo neutralization of 
miR-146a in PBMCs from chronic HIV-1 infection exhibited an elevated antiviral cytokines production as 
well as the expression of GZMB and perforin, while simultaneously, decreased the inhibitory receptors 
expression such as PD-1, CTLA-4, TIM-3 and LAG-3. These results highlight the importance of miR-146a 
to HIV-1 induced immune cell exhaustion, and uncover a novel layer of HIV/AIDS pathogenesis and 
provide potential targets for improved immune intervention.

In acute infections, immune negative regulation mechanisms, such as co-inhibitory receptors cascade, function 
to dampen the magnitude of immune responses, which eventually decrease after pathogen clearance to achieve 
homeostasis. However, this pattern diverges during chronic infections, where higher and sustained expression 
of co-inhibitory receptors lead to dysregulation of cellular immune responses, which overtaxes the exhausted 
immune system. But these chronic infection-hijacked-immune negative regulation patterns provide therapeu-
tic targets to restore optimum immune responses by check-point molecules based therapy1. Great success of 
these immune therapy in anti-tumor application raised the attempt in the control of chronic infection. In human 
immunodeficiency virus type 1 (HIV-1)-infected patients, PD-1 expression on virus-specific T cells is associ-
ated with clinical and virological outcomes while anti-PD-1/PD-L1 enhances HIV-1 specific T-cell function in 
vitro2,3 and in vivo4, as well as in SIV-infected macaques5. These trials suggest attractive potential to use immune 
checkpoint-based strategy in treating chronic infections.

Other strategies such as chimeric antigen receptor (CAR) T cells were applied to overcome T cell exhaustion 
in cancer6 and chronic infections7. Combinations of antiretroviral therapy (ART) with type-1 interferon (IFN-I) 
has also yielded positive results by reducing the viral loads and restoring CD8+ T-cell functions8. Recently, a 
combined inhibition of PD-1 and miR-146a showed attractive potential to enhance antitumor immune response 

1State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy & 
Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, People’s Republic of 
China. 2Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People’s 
Republic of China. 3Precision Medicine Laboratory, Wuhan Children’s Hospital, Wuhan, 430015, Hubei, People’s 
Republic of China. *email: houwei@whu.edu.cn; yongxiong64@163.com; yongfeng@whu.edu.cn

open

https://doi.org/10.1038/s41598-019-55100-2
http://orcid.org/0000-0003-3062-0457
http://orcid.org/0000-0003-1590-0186
mailto:houwei@whu.edu.cn
mailto:yongxiong64@163.com
mailto:yongfeng@whu.edu.cn


2Scientific RepoRtS |         (2019) 9:18829  | https://doi.org/10.1038/s41598-019-55100-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

elicited by checkpoint therapy9. Therefore, identifying new regulators of immune exhaustion upon HIV-1 infec-
tion is crucial for a comprehensive understanding of HIV/AIDS pathogenesis and development of new therapeu-
tic strategies to improve the efficacy of immune therapy.

Micro-RNAs (miRNAs) are small non-coding RNAs that regulating gene expression at the post-transcriptional 
level via partial complementation to target gene’s 3’ UTR (untranslated regions)10. This partial complementa-
tion to target seed sequences provides a micro-RNA potential to regulate a set of target genes. Previous reports 
showed increasing miR-146a expression during HIV-1 infection11,12. By targeting TNF receptor associated factor 
6 (TRAF6) and Interleukin-1 receptor-associated kinase 1 (IRAK1), miR-146a was well-documented in diverse 
regulatory aspects of immune responses, including its critical role in the suppressor function of Treg cells13 and 
the regulation of T cell activation14,15 as well as inflammatory process16. Moreover, miR-146a overexpression 
impairs the positive selection during T cell development17, silencing miR-146a results in functional defects of B 
cells18, and miR-146a negatively regulates NK cell functions19. Several studies have found miR-146a also involved 
in macrophage, DC function, as well as monocytes migration20–23. While the crucial role of miR-146a-mediated 
signaling pathways in host cellular immunity is widely defined, the mechanisms for the regulation of miR-
146a-triggered immune exhaustion in chronic HIV-1 infection are largely unknown.

In this study, we investigated the expression levels of miR-146a in PBMCs from chronic HIV-1-infected 
patients and evaluated the correlation between miR-146a and immune exhaustion markers. We also tried to 
restore cellular immune function and reverse the exhaustion state by neutralization of miR-146a in chronic 
infected PBMCs ex vivo.

Materials and Methods
Study subjects. HIV-1-infected patients were recruited from Zhongnan Hospital of Wuhan University. 
HIV-1 infection was diagnosed on the basis of positive results in the serological and HIV RNA detection assays. 
The demographic and clinical characteristics of the enrolled subjects are listed in Table 1. Blood samples from 
35 apparently healthy uninfected control subjects (gender- and age-matched individuals) were also participated 
in this study to compare the expression of miR-146a in naive HIV-1 positive patients and healthy subjects. This 
study received approval from the Ethical Committee, Zhongnan Hospital of Wuhan University (Ethical approval 
#2018006), and all research was performed in accordance with relevant guidelines. Written informed consent was 
obtained from each subject.

PBMC isolation. HIV-1-infected patients and healthy donors were recruited from Zhongnan Hospital of 
Wuhan University. Peripheral blood was centrifuged with Lymphoprep (Axis-Shield, USA) to separate the human 
peripheral blood mononuclear cells (PBMCs).

CD8+ T lymphocytes isolation. CD8+ T lymphocytes were isolated from PBMC collected from healthy 
individuals by negative selection using the MACS® Technology, according to the manufacturer’s protocol.

MicroRNA-146a overexpression or inhibition. PBMCs or CD8+ T lymphocytes were transfected using 
INTERFERin (Polyplus-Transfection, NY) following the manufacturer’s protocol with 50 nmol/ml of miR-146a 
mimic or miR-146a inhibitor in OptiMEM medium. The miR-146a mimic (dsRNA oligos), miRNA mimic con-
trol (mNC), inhibitor of miR-146a, and iNC were ordered from Ribobio (Guangzhou, China). Briefly, 5 × 106 
cells were transfected with oligonucleotides (50 nM/106 cells) and then cultured for two days prior to detection.

RNA isolation, reverse transcription, and realtime quantitative PCR. Total RNA from cul-
tured cells was extracted with TRIzol (Invitrogen, USA) and reverse-transcribed into cDNA using the M-MLV 
(Promega, USA) in a total volume of 20 µl. Realtime PCR was performed using a master mix for SYBR Green 
qPCR (Bio-Rad Laboratories, USA) in a CFX96 Real-Time System. The reaction mix included 10 µl SYBR Green 
Master Mix, 0.3 µl each of forward and reverse primers, 2 µl cDNA, and was taken to a final volume of 20 µl with 
water. The primers for detecting the mRNA of HIV-1 Gag, PD-1, CTLA-4, TIM-3, LAG-3, GZMB, Perforin, 
CD107a, IL-2, TNF-α, IFN-γ, c-Fos and GAPDH were purchased from TsingKe Biological Technology (Wuhan, 
China). We calculated the relative expression level of each gene as the 2−ΔΔt method.

Detection of miR-146a in peripheral blood. Each participant was collected about 5 ml of whole blood 
containing EDTA. Total RNA was extracted from PBMCs using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), 
according to the manufacturer’s protocol. The quantitative analysis of miR-146a was performed using real-time 

Group HCs Early stage

Chronic HIV-1

CD4 < 350 CD4 ≥ 350

Cases 35 96 77 32

Age (range) 40(23–58) 45(19–80) 45 (22–78) 45 (24–70)

Gender (male/female) 21/14 85/11 54/23 17/15

CD4+ T lymphocyte count, 
cells/μl ND 104.36 184.84 595

Untreated for HIV-1, n (%) ND 73(76.0%) 18(23.4%) 3(9.38%)

Duration of HIV-1 infection 
(years) ND <0.5 0.5–13 0.5–16

Table 1. The clinical characteristics of studied subjects. HC, Healthy control; ND, no data.
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quantitative reverse transcription polymerase chain reaction (qRT-PCR) with a Bulge-LoopTM miRNA qRT-PCR 
Starter Kit and an hsa-miR-146a qRT-PCR primer set (Ribobio, Guangzhou, China). A U6 small nuclear RNA 
(snRNA) primer set (Ribobio) was used as an internal control. The experiments were performed according to the 
protocol provided in the kit using a 20 µl reaction system.

Detection of cytokines by ELISA. ELISA tests for detection of IFN-γ, IL-2, and TNF-α (4A Biotech, 
Beijing, China) in serum or supernatants of cell culture were performed using ELISA kits. The supernatant sam-
ples were diluted two-fold and the kits were applied according to

the instructions. The cytokine levels were determined from the standard curve, which was generated by the 
results of the standard samples provided by the manufacturers.

Western blot. 40 µg of protein from each lysate was separated by SDS-PAGE and transferred into a PVDF 
membrane (Millipore, USA). After blocking with 5% nonfat dry milk in 50 mM Tris-HCl (pH 7.6), 150 mM 
NaCl and 0.1% Tween 20, 1–2 mg/ml of anti-c-Fos primary antibody (cat# 66590-1-lg, Proteintech Group, Inc) 
was added and incubated overnight at 4 °C. PVDF membrane was then washed and incubated with horseradish 
peroxidase-labeled secondary antibodies for 2 h, followed by treatment of the membrane with the ECL reagent 
(Millipore, USA) and imaging on Fujifilm LAS 4000 membrane. GAPDH monoclonal antibody (Tianjin Sungene 
Biotech, Beijing, China) was used as an internal reference.

Statistical analysis. Every experiment was repeated three times with duplicates, and data are reported as 
the mean ± SD. Statistical analyses were performed using SPSS 16.0 (SPSS Inc., Chicago, USA). A Student’s t-test 
was used to compare two groups, and a one-way analysis of variance (ANOVA) was used when comparing three 
or more groups. Correlations were analyzed using Spearman’s correlation test. Statistical significance was set at a 
level of p less than 0.05.

Results
PBMCs from Chronic HIV-1-infected patients exhibited an exhausting state. Besides most widely 
studied exhausting of CD8+ T cell, other types of immune cells, such as B cells and NK cells as well exist exhaus-
tion during chronic HIV-1 infection. To this context, we first compared the mRNA levels of CTLA-4, TIM-3 and 
LAG-3, termed exhaustion markers, in PBMCs from 35 chronic HIV-1-infected patients (infected more than 6 
months) with 27 patients in early stage group (infected within 6 months). In order to compare genes expression 
of exhaustion markers versus miR-146a, we detected mRNA levels of these genes by RT-qPCR instead of by Flow 
Cytometry in this study. Consistent with previous reports, exhaustion markers TIM-3 and LAG-3 were higher in 
chronic group (Fig. 1a–c). Levels of CTLA-4, TIM-3 and LAG-3 were also higher in PBMCs from chronic HIV-1-
infected patients as compared with noninfected individuals (Healthy Control, HC) (p < 0.01) (Fig. 1d–f). There 
was no statistically significant difference between CD4+ T cell count under or above 350 cells/µl groups. We 
failed to detect PD-1 mRNAs in these samples due to abnormal higher CT value during RT-qPCR.

Next, we detected the mRNA levels of GZMB, perforin and CD107a in PBMCs, which are closely associated 
with T cell function. GZMB levels were lower in chronic HIV-1 group than HC group, though there was no differ-
ence between Chronic and Early groups (Fig. 1g,j). Perforin levels were lower in Chronic stage as compared with 
Early stage group, and were also lower than HC (Fig. 1h,k). However CD107a showed a higher level in chronic 
infection group as compared with HC (p < 0.01) (Fig. 1l). Notably, levels of GZMB, perforin and CD107a did not 
differ when grouped upon CD4+ T cell counts (Fig. 1j–l).

Taken together, these results revealed that PBMCs from chronic HIV-1-infected patients exhibited an exhaust-
ing state.

Peripheral blood of chronic HIV-1-infected patients had higher miR-146a levels which were 
positively associated with immune exhaustion markers. We next evaluated miR-146a levels in 
PBMCs from all HIV-1-infected individuals (Table 1, n = 205). Results showed that the levels of miR-146a in total 
PBMCs were higher in chronic HIV-1-infected patients than in early stage group and healthy controls (p < 0.05) 
(Fig. 2a,b). We also found that the miR-146a levels were higher in CD4+ cell counts <350 cells/µl group than 
CD4+ cell counts ≥350 cells/µl group (p < 0.05) (Fig. 2b).

We analyzed the correlations between miR-146a levels and CD4+ cell counts and found that miR-146a level 
was negatively correlated with the CD4+ cell count (r = −0.2902, P = 0.0022) (Fig. 2c). Positive correlations were 
also observed between miR-146a and CTLA-4/TIM-3 in chronic groups (Table 2).

Given that these chronic HIV-1-infected patients included some co-infected patients (Table 3), we therefore 
determined the expression of miR-146a in HBV/HIV, HCV/HIV, TB/HIV and CMV/HIV co-infected patients. 
We found levels of miR-146a did not differ upon co-infected or HIV-1-mono-infected patients. This suggested 
that co-infection might not increase miR-146a expression (Fig. 2d).

Taken together, chronic HIV-1 infection exhibited higher exhaustion markers as well as higher levels of miR-
146a, which were positively correlated.

Both HIV-1 infection and TCR stimulation induce miR-146a and exhaustion markers expres-
sion. We observed continually increased miR-146a expression post HIV-1 infection in cell lines and primary 
monocyte-derived macrophages (MDMs) previously20,24. Herein, in HIV-1NL4.3 infected Jurkat cells, miR-146a 
levels were gradually increased during HIV-1 infection (Fig. 3a,b), and the mRNA level of PD-1 and CTLA-4 were 
increased to a peak in day 3, and then decreased (Fig. 3c,d).

However, we wondered how miR-146a was induced in chronic patients under suppressive antiretroviral ther-
apy (ART) that successfully restricts the viral replication. Indeed, persistent immune activation is a central feature 
of HIV pathogenesis despite early/late initiation of ART25. The role of immune activation in the pathogenesis of 
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non-AIDS clinical events (major causes of morbidity and mortality in people on antiretroviral therapy) received 
increasing concern26. miR-146a was reported to express during T cell differentiation responding to the activation 
of CD4+ T cells and CD8+ T cells15,27. Thus we used Jurkat T cells, a well-established model for in vitro study of 

Figure 1. Exhaustion markers and effector function related genes expression of PBMCs from HIV-1 infected 
and uninfected individuals. RNA were isolated from patients’ PBMCs and analyzed for CTLA-4, TIM-3, LAG-
3, GZMB, Perforin and CD107a mRNA levels by quantitative RT-PCR. Total of 205 patients’ samples were 
analyzed in this study, convincing data of 25 early stage and 37 chronic stage individuals were shown (a–c,g–i). 
mRNA levels in CD4+ T cell counts < 350 cells/µl group (n = 21) or CD4+ T cell counts ≥350 cells/µl group 
(n = 16) from chronic stage individuals were compared with healthy controls (HCs) (n = 35) (d–f,j–l). GAPDH 
was used as an endogenous control. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant.
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TCR signaling, to investigate expressions of miR-146a and T cell genes. We first treated Jurkat cells with PMA 
and ionomycin, and then measured gene expression by RT-qPCR. As shown in Fig. 3e, miR-146a levels were 
significantly increased upon PMA and ionomycin stimulation, reaching a plateau after 48 hours. And the mRNA 
levels of exhaustion markers, such as PD-1 and CTLA-4, cytokines as IL-2, TNF-α and IFN-γ, were progressively 
increased upon PMA and ionomycin treatment (Fig. 3f–j).

These data demonstrate that not only HIV-1 infection but also T cell activation contributes to induction of 
both miR-146a and exhaustion molecules.

miR-146a decreased antiviral cytokines production and the cytotoxicity of activated CD8+ t 
cells. To investigate the potential role of miR-146a on T cell function, we next examined anti-HIV cytokines 
production and the function state of human PBMC derived primary CD8+ T cells upon miR-146a overexpres-
sion. When CD3 antibody activated CD8+ T cells was transfected with a miR-146a mimic, significant decrease 
of IFN-γ, IL-2, and TNF-α were observed at both mRNA and protein levels, whereas miR-146a inhibitor greatly 
promoted the expressions of these cytokines (Fig. 4a). We also observed that mRNA level of GZMB and peforin 

Figure 2. Changes in the expression of miR-146a in PBMCs from chronic HIV-1 infected patients. Quantitative 
PCR detection of miR-146a relative levels in PBMCs from early stage (n = 96) and chronic stage (n = 109) 
individuals of HIV-1 infected patients. (a) miR-146a relative levels in CD4+ T cell counts <350 cells/µl group 
(n = 77) were compared with CD4+ T cell counts ≥350 cells/µl group (n = 32) from chronic stage individuals 
or healthy controls (n = 35) (b), U6 was used as an endogenous control. (c) Correlation between miR-146a 
and CD4+ T cell counts was analyzed using Spearman’s correlation test (n = 109). Values of the correlative 
coefficient (r) and p are shown. (d) Quantitative PCR for miR-146a relative levels in the groups of HBV–
HIV+ (n = 33), HBV + HIV+ (n = 21); HCV–HIV+ (n = 33), HCV + HIV+ (n = 22); TB–HIV+ (n = 33), 
TB + HIV+ (n = 20); CMV–HIV+ (n = 33), CMV + HIV+ (n = 24) and uninfected individuals (n = 35). 
*p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant.

HIV-1-positive subjects

Early stage 
(n = 27)

Chronic stage 
(n = 35)

All subjects 
(n = 62)

miR-146a in PBMCs vs

CTLA-4 r = 0.038; 
p = 0.856

r = 0.408; 
p = 0.012*

r = 0.339; 
p = 0.007**

TIM-3 r = 0.306; 
p = 0.137

r = 0.423; 
p = 0.020*

r = 0.378; 
p = 0.003**

LAG-3 r = 0.186; 
p = 0.374

r = 0.076; 
p = 0.657

r = 0.091; 
p = 0.482

Table 2. Correlation between miR-146a levels and immune exhaustion markers of PBMCs. All correlations are 
reported as Spearman r and P values (two-tailed). Significant values are shown in bold. *p < 0.05, **p < 0.01.
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were decreased when miR-146a was overexpressed and slightly increased when endogenous miR-146a was inhib-
ited (Fig. 4b).

These data reveal that miR-146a may negatively regulate function of CD8+ T cells via decreasing antiviral 
cytokines production and alleviating the cellular cytotoxicity.

Ex vivo neutralization of miR-146a improved the antiviral capacity of PBMCs from chronic 
HIV-1 infected patients. Given that the miR-146a correlated positively with inhibitory receptors and neg-
atively regulated T cell function, we next wondered whether elimination of miR-146a could restore the impaired 
T cell function from chronic HIV-1 infected patients. We transfected miR-146a inhibitor into PBMCs from 24 
chronic HIV-1 infected patients and found that mRNA levels of antiviral cytokines, such as IFN-γ, IL-2 and 
TNF-α, had a significant increase (Fig. 5a–c). The protein levels of IFN-γ and IL-2 were consistently elevated 
(P < 0.05) (Fig. 5d,e), while the protein levels of TNF-α showed no significant difference (Fig. 5f). Simultaneously, 
levels of the inhibitory receptors showed a significant decrease (Fig. 5g–j). Moreover, levels of CD107a, GZMB 
and perforin were increased (Fig. 5k–m).

These data suggest that ex vivo blockage of miR-146a might reinvigorate the function of impaired immune 
cells from chronic HIV-1 patients.

Variable (n = 205) Total

Age, years 45.3 (11.93)

Gender, male (%) 156 (76.1)

CD4 T lymphocyte count, cells/ml 196 (234.3)

Untreated for HIV-1, n (%) 94 (45.9)

HCV infection, n (%) 22 (10.7)

HBV infection, n (%) 31 (15.1)

Tuberculosis, n (%) 40 (19.5)

Cytomegalovirus, n (%) 40 (19.5)

Herpes Simplex Virus infection, n (%) 8 (3.9)

Oral Candidiasis, n (%) 39 (19)

Chronic Diarrhoea, n (%) 5 (2.4)

Table 3. General Characteristics of the Study Population. Categorical variables are expressed as frequencies 
(%). Continuous variables are expressed as mean (standard deviation). HC, Healthy control; ND, no data.

Figure 3. miR-146a is induced upon HIV-1 infection and TCR stimulation. Jurkat cells were infected with 
HIV-1NL4-3 (p24 750 ng/ml) for 3 h and washed three times in PBS, then cultured with fresh RPMI 1640 
supplemented with 10% FBS for 1, 3, 5, and 7 days. The cells in each treatment group were then collected at the 
indicated time points. (a–d) Total RNA was isolated for quantitative PCR analysis of Gag, miR-146a, PD-1 and 
CTLA-4. Jurkat cells were stimulated with PMA and ionomycin, (e) miR-146a levels, exhaustion markers (f) 
PD-1 and (g) CTLA-4, and cytokines (h) IL-2, (i) TNF-α, (j) IFN-γ were detected at different time points by 
quantitative PCR. Each experiment was performed three times, and the results were shown as the mean fold 
change relative to control samples. *p < 0.05, **p < 0.01.
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c-Fos levels in the peripheral blood of chronic HIV-1-infected patients were decreased and asso-
ciated with miR-146a. Previous study demonstrated that an engineered NFAT that could not cooperate 
with AP-1 strongly induced exhaustion28, which emphasized the role of AP-1 in CD8+ T cell exhaustion. And the 
AP-1 transcription factor subunit of c-Fos declined during chronic infection28,29. Hence, we evaluated c-Fos levels 
in PBMCs from chronic HIV-1-infected patients and healthy controls. The mRNA levels of c-Fos in total PBMCs 
were lower in chronic HIV-1-infected patients than in early stage group (p < 0.05) (Fig. 6a), and significantly 
lower than in healthy control group (p < 0.05) (Fig. 6b). We randomly selected PBMC samples from 5 healthy 
donors, 5 patients in early stage group and 5 patients in chronic stage group respectively to detect the protein 
levels of c-Fos, and found that c-Fos expression was down-regulated in chronic group (Fig. 6c). We further found 
that c-Fos mRNA level was negatively correlated with miR-146a in PBMCs from chronic HIV-1-infected patients 
(r = −0.2555; P = 0.0416) (Fig. 6d).

This inverse correlation suggested c-Fos as a potential target of miR-146a. We observed a slight decrease of 
c-Fos protein levels in primary CD8+ T cells after transfected with miR-146a mimic and a slight increase of c-Fos 
after miR-146a inhibitor transfection (Fig. 6e). We then wondered if neutralization of miR-146a would restore 
c-Fos expression in patients. After transfecting PBMCs from chronic HIV-1 infected patients with miR-146a 
inhibitor, we observed a significant increase of c-Fos mRNA (Fig. 6f), but no significant changes at protein level 
(Supplementary Fig. 1).

These data suggest that miR-146a might contribute to immune exhaustion partially through suppressing 
c-Fos, probably indirectly.

Figure 4. miR-146a reduces the production of antiviral cytokines and suppresses the function of T cells. CD8+ 
T cells from healthy individuals were transfected with 50 nmol/ml miR-146a mimic or miR-146a inhibitor, 
a randomized oligonucleotide served as a mock, and cultured in 1 mg/ml anti-CD3 for 48 h. (a) The relative 
mRNA levels of IFN-γ, IL-2, and TNF-α after transfected with miR-146a mimic and miR-146a inhibitor were 
assessed for real-time PCR using GAPDH as endogenous control. The levels of IFN-γ, IL-2, and TNF-α in the 
supernatant were detected by ELISA. (b) Quantitative PCR for GZMB, perforin and CD107a mRNA relative 
levels after transfected with miR-146a mimic or miR-146a inhibitor. Data shown as mean ± SEM. *p < 0.05, 
**p < 0.01.
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Figure 5. The blockage of miR-146a increases the antiviral genes production and decreased exhaustion markers 
in chronic HIV-1 infected patients. PBMCs from chronic HIV-1 infected patients (n = 24) were transfected 
with 50 nmol/ml miR-146a inhibitor or the randomized oligonucleotide as a mock. (a–c) Relative mRNA levels 
of IFN-γ, IL-2 and TNF-α in PBMCs from chronic HIV-1 patients were quantified by quantitative RT-PCR 
using GAPDH as internal controls. (d–f) The secretion of IFN-γ, IL-2 and TNF-α were detected by ELISA. 
Quantitative PCR detection of PD-1, CTLA-4, TIM-3 and LAG-3 mRNA relative levels (g–j) and CD107a, 
GZMB and perforin (k–m) mRNA relative levels in PBMCs from chronic HIV-1 patients, GAPDH was used as 
internal controls. Data shown as mean ± SEM.
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Discussion
Cellular immune exhaustion has attracted increasing attention. Immune cells lose effect function and prolifer-
ation ability during chronic HIV infection. Recently, the functions of miRNAs in the immune response against 
viruses had attached attention and how miRNA expression may contribute to HIV-1 infection remains to be 
focused on. Previous studies have pointed out that the expression of miR-146a is lower in Elite Controllers as 
compared to Viremia Progressors30, which suggested that miR-146a may contribute to progression of HIV-
1-infected patients. However, it remains unclear whether miR-146a is linked to cellular exhaustion in chronic 
HIV-1-infected individuals. Here in this study, we first found that miR-146a level was significantly higher in 
chronic HIV-1-infected group, especially when CD4+ T cells were under 350 cells/µl. As CD4+ T cell count is 
an important indicator that can reflect the status of cellular immune function, the negative correlation between 
miR-146a and CD4+ T cell counts suggests that miR-146a may be associated with the AIDS disease progression.

Immune exhaustion, typically defined by elevated expression of inhibitory molecules as PD-1, CTLA-4, 
TIM-3 and LAG-331, is one of the hallmarks of HIV infection. We found that the PBMC levels of CTLA-4, TIM-3 
and LAG-3 were higher in chronic HIV-1 infected patients, and showed a positive correlation with miR-146a 
relative level. But we failed to detect PD-1 mRNA in those freezing samples, although PD-1 is among the first 
reported inhibitory molecules related to immune exhaustion, typically up-regulated on HIV-1-specific CD8+ T 
cells and serves as a major regulator of apoptosis that have an effect on the frequency of antiviral T cells in HIV 
infection31–33. In addition, we also demonstrated that miR-146a could up-regulate the expression of exhaustion 
markers in many cell lines (data not shown). These findings suggested that miR-146a accumulated in chronic 
HIV-1 infection, positively correlated with exhaustion markers, and might intensify the cellular exhaustion.

We found that miR-146a could impair the antiviral response and cytotoxicity of CD8+ T cells. Moreover, 
blocking of miR-146a could recover the production of antiviral cytokines and ameliorate the exhausting state of 
immune cells in chronic HIV-1 infection. In other words, the blocking of miR-146a can partially restore the func-
tion of PBMCs in chronic HIV-1 infection. We performed the experiments on PBMCs, instead of derived T cells 
or other purified cell types, isolated from HIV-1 infected individuals and healthy controls, as the PBMCs stated 
in a mixed cell culture, could more accurately reflect what happen in vivo, to present in a more appropriate way 
about the state of exhaustion following cell-to-cell interaction during persistent HIV-1 infection.

We observed up-regulated miR-146a but down-regulated c-Fos in PBMCs from chronic HIV-1 patients. miR-
146a mimic reduced while miR-146a inhibitor increased c-Fos proteins in human primary CD8+ T cells. In 
addition, c-Fos mRNA levels were significantly increased after miR-146a inhibitor treatment in 24 HIV-1 chronic 
patients’ PBMCs. However, we did not observed consistent c-Fos protein changes in PBMCs from 10 randomly 
selected HIV-1 patients under miR-146a inhibitor. This inconsistence indicated that other mechanisms might also 
be involved in c-Fos protein expression beyond regulation at c-Fos mRNA level. We could not define c-Fos as a 
direct target of miR-146a, at least based on the data provided here.

Figure 6. c-Fos expression was decreased in PBMCs from chronic HIV-1 infected patients. (a) Convincing 
data of c-Fos mRNA relative levels in PBMCs from early stage (n = 48) and chronic stage (n = 64) individuals 
of HIV-1 infected patients by quantitative PCR detection. (b) c-Fos mRNA levels in CD4+ T cell counts <350 
cells/μl group (n = 40) and CD4+ T cell counts ≥350 cells/μl group (n = 24) from chronic stage individuals 
compared to healthy controls (n = 35), GAPDH was used as an endogenous control. (c) Western Blotting of 
c-Fos protein levels in PBMCs from healthy controls (n = 5), early stage (n = 5) and chronic stage (n = 5) HIV-1 
individuals. (d) Correlation between c-Fos mRNA and miR-146a expression (relative) was analyzed using 
Spearman’s correlation test (n = 64). Values of the correlative coefficient (r) and p are shown. (e) CD8+ T cells 
from healthy individuals were transfected with 50 nmol/ml miR-146a mimics or miR-146a inhibitors for 48 h. 
c-Fos expression was measured by Western Blot. (f) PBMCs from chronic HIV-1 infected patients (n = 24) were 
transfected with 50 nmol/ml miR-146a inhibitor or the randomized oligonucleotide as a mock, levels of c-Fos 
mRNA in PBMCs from chronic HIV-1 patients were quantified by quantitative RT-PCR. *p < 0.05, **p < 0.01.
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In conclusion, we discovered that PBMCs isolated from chronic HIV-1-infected patients had higher expres-
sion levels of miR-146a that were accompanied by a suppressed cellular cytotoxic activity. Our findings indicate 
that chronic HIV-1 infection and persistent immune activation may induce miR-146a expression, and the accu-
mulation of miR-146a may subsequently result in the inhibition of the antiviral function of immune cells and lead 
to immune exhaustion. Therefore, miR-146a might be considered as an assistant predictor for immune exhaus-
tion with potential to evaluate cellular immune functions in HIV/AIDS.
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