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Refinement of evolutionary 
medicine predictions based 
on clinical evidence for the 
manifestations of Mendelian 
diseases
Daniela Šimčíková & Petr Heneberg  *

Prediction methods have become an integral part of biomedical and biotechnological research. 
However, their clinical interpretations are largely based on biochemical or molecular data, but 
not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction 
algorithms. We assembled and curated two large non-overlapping large databases of clinical 
phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated 
with Mendelian diseases. We used these databases to establish and validate the model, allowing us 
to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of 
clinical effects suffered from a lack of specificity, which appears to be the common constraint of all 
recently used prediction methods, although predictions mediated by these methods are associated 
with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of 
the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, 
the comparisons of the clinically observed and theoretical variations led to the identification of 
large previously unreported pools of variations that were under negative selection during molecular 
evolution. The evolutionary variation analysis approach described here is the first to enable the highly 
specific identification of likely disease-causing missense variations that have not yet been associated 
with any clinical phenotype.

Computational prediction approaches are an integral part of biomedical and biotechnological research. The pre-
diction algorithms have great potential in precision medicine, particularly with their recent applications in fil-
tering the exome sequencing outcomes for facilitating diagnoses of rare, hardly classifiable, or puzzling disorders 
suspected of having a genetic origin1,2. The vast majority of coding variations are rare and limited functional data 
are available3,4. This limited availability of evidence-based information is the main argument for the use of pre-
diction algorithms. The prediction algorithms clearly do not outperform evidence-based data in determining the 
effects of individual variations. However, they allow researchers and clinical geneticists to extrapolate of current 
knowledge to genes or variations with as yet unknown or uncertain phenotypes. Among the most important 
modes of use of the prediction algorithms is the assessment of the likely pathogenicity of variations that are dis-
covered de novo during exome sequencing studies and in other next-generation sequencing data. Improvements 
in methods for predicting the pathogenicity of rare coding variations are needed5. Although rare coding varia-
tions are often neglected, approximately 100–400 of these variations are present in the genome of each human3,4 
and many have been shown to cause inherited diseases6,7. As we have shown in the pilot study that focused on 
the glucokinase (GCK), the potential to substantially improve outcomes of already available computational pre-
diction approaches exists when matching them with evidence-based functional data related to clinically reported 
and/or experimentally analyzed variations in the respective gene8.

Most prediction methods assume the de novo protein structure and function based on the knowledge of struc-
tural features of wild-type proteins and amino acid sequences and their evolutionary conservation9–11. Similar 
approaches have been used to decipher the effects of variations in non-coding sequences12. Some approaches, 
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such as PoPMuSiC 2.113, also consider protein thermostability in their estimations14–16. The prediction methods 
may be supervised and thus trained and tested on a properly assembled dataset with reliable annotations15,17. 
Alternatively, they may be designed as autonomous unsupervised methods, which have better generalization 
properties and are able to recognize potentially novel types of omics elements12,14,17, but are not resistant to 
errors incorporated during their development. Most of the prediction methods are based on the evolution-based 
concept12. However, the evolutionary sequence information poorly covers the additive roles of environmental 
factors, and the building and interpretation of multiple sequence alignments (MSAs) is still unable to be fully 
automated18,19. Many prediction approaches integrate multiple biophysical characteristics; a classical example of 
these approaches is SNAP220. Another strategy that increases the specificity and selectivity is the use of consensus 
classifiers, such as REVEL5, which integrate outcomes of multiple prediction algorithms to eliminate randomly 
occurring false-positive responses of the individual algorithms. Recently, the traditional approaches were outper-
formed by an unsupervised prediction method termed EVmutation14, which considers epistasis and thus reflects 
dependencies between positions21,22. When the epistasis is reflected in the inference and subsequent use of MSAs, 
certain variations are labeled as non-acceptable, although they are frequently observed in other positions within 
the sequence14,23, highlighting the need to incorporate the epistatic approach in individual computational algo-
rithms and consensus classifiers.

In the present study, we hypothesized that the reliability of prediction methods would be improved by 
switching from ad hoc to evidence-based thresholds and provide a proof of concept by modelling and validat-
ing this approach for genes associated with Mendelian diseases. We focus on the differences between clinically 
observed missense variations that are or are not associated with Mendelian diseases and show that the use of 
evidence-based tailored thresholds substantially improves the prediction of causative disease-associated missense 
variations (DAVs) among newly identified variations in the course of genomic and proteomic screens.

Materials and Methods
We assembled two curated databases of missense variations in genes encoding proteins associated with Mendelian 
diseases to establish and validate the model (Fig. 1a). When establishing the model, we recognized three cate-
gories of variations: (1) “DAVs” represented variations with available evidence of an association with Mendelian 
diseases. (2) “Partial phenotype-associated” variations were reported to be associated with partial (incompletely 
manifesting) phenotypes of the same Mendelian diseases. And (3) “No phenotype-associated” variations (NPAVs) 
were variations with conclusive evidence of the absence of any clinical phenotype associated with their carriers. 
We predicted the effects of variations using EVmutation14 based on a specific epistatic model, SNAP220, which is 
based on multiple biophysical characteristics, and PoPMuSiC 2.113 that predicts protein thermostability.

In addition to the clinically observed variations, we calculated and analyzed the predictions for theoretical 
variations, i.e., variations that have not been clinically observed. We sorted the variations according to (a) their 
localization within/outside protein domains, (b) the presence and class of enzymatic activity of the protein, (c) the 
number of nucleotide changes needed to obtain the variation of interest, and (d) the American College of Medical 
Genetics and Genomics (ACMG) classification criteria24.

Selection of genes to establish the model. We selected genes encoding proteins associated with 
Mendelian diseases according to the availability of a protein structure, inheritance of diseases, and sufficient num-
bers of clinically observed missense variations (at least nine missense DAVs and at least six missense NPAVs in a 
region for which the protein structure was available). We retrieved data from the Online Mendelian Inheritance 
in Man (OMIM; https://omim.org/), UniProtKB/Swiss-Prot (http://www.uniprot.org/), Protein Data Bank (PDB; 
https://www.rcsb.org/ and Human Gene Mutation Database (HGMD; http://www.hgmd.cf.ac.uk). We obtained 
the evidence for the presence of NPAVs from the ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) and Ensembl 
(http://www.ensembl.org/) databases. We completed information with frequencies of variations and protein 
domains obtained from the Exome Aggregation Consortium browser (ExAC; http://exac.broadinstitute.org/) 
and the Pfam (http://pfam.xfam.org/) database, respectively.

We verified all ambiguous data in the primary literature sources. If we observed conflicting evidence or if 
conclusive evidence was not available, we removed the variations from the analyses. The factors that led to the 
removal of variations from the analyzed datasets are listed below. (1) The evidence for only non-Mendelian dis-
eases (e.g., Parkinson disease) was manifested in the carriers of the variation. (2) The variations were listed as 
benign or likely benign in ClinVar, with high frequencies (f > 8) in ExAC, and thus were classified as 1B or higher 
according to the ACMG criteria for high-quality and abundant data25. (3) The variations were listed as “DM?” in 
the HGMD database. These variations denote “a probable/possible pathological mutation, reported to be path-
ogenic in the corresponding report, but for which (1) the author has indicated that there may be some degree 
of uncertainty; (2) the HGMD curators believe greater interpretational caution is warranted; or (3) subsequent 
evidence has appeared in the literature which has called the putatively deleterious nature of the variant into 
question”26. (4) Variations for which a disagreement occurred between HGMD (classified as “DM”) and ClinVar 
(classified as “benign” or “likely benign”).

We used the key provided in Table 1 to assign of the clinically observed variations. We selected all clinically 
observed variations, which we used to set the thresholds, using the key described above. Additionally, we included 
the GCK variations resulting from the systematic literature review provided in 2017 by Šimčíková et al.8 We clas-
sified nine variations as NPAVs based on the recent literature27–32. We included the hemoglobin variations, which 
were classified as likely non-phenotypic in the HGMD database, in the NPAVs.

The variations classified in ClinVar as VUS (n = 404) were subjected to the analysis using EVmutation, and 
SNAP2 scores shifted slightly but significantly towards their pathogenicity compared to the variations classified 
as benign or likely benign (n = 1589): EVmutation mean ± SD −4.21 ± 2.54 vs −3.84 ± 2.38, t-test p = 0.003; 
SNAP2 mean ± SD −0.9 ± 57.34 vs −12.57 ± 55.85, t-test p < 0.001. Based on these calculations, we excluded 
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the hemoglobin variations that were classified as likely non-phenotypic in HGMD (n = 100). These variations 
received EVmutation scores, but not SNAP2 scores, similar to VUS (EVmutation mean ± SD −4.26 ± 2.25, t-test 
vs VUS p > 0.05; SNAP2 mean ± SD 15.58 ± 42.69, t-test vs VUS p = 0.003).

Figure 1. The efficiency of the EVmutation method in predicting the effects of missense variations with known 
clinical Mendelian disease-associated phenotypes. (a) Flowchart showing the sources and approaches used for 
data retrieval, the construction of datasets and subsequent analyses. The selection of analyzed genes associated 
with Mendelian diseases was based on combined information retrieved from the Human Gene Mutation 
Database (HGMD), UniProtKB/Swiss-Prot, Protein Data Bank (PDB) and Online Mendelian Inheritance in 
Man (OMIM). Information about disease associations and no-phenotype associations of clinically observed 
variations was retrieved from the ClinVar database and the Ensembl browser. Additional information 
about proteins (domains) and variations (frequency) was obtained from the Pfam database and the Exome 
Aggregation Consortium (ExAC) browser, respectively. A vertical line indicates the arbitrary threshold for 
variations with an effect. (b) The distribution of numerical EVmutation scores calculated for missense variations 
with known clinical phenotypes. (c) The relative percentage of correct predictions of disease and no clinical 
phenotypes using EVmutation scores calculated for the 44 analyzed proteins. (d) The distribution of numerical 
EVmutation scores calculated for disease-associated and no phenotype-associated missense variations with 
known clinical phenotypes in 44 proteins that cause Mendelian diseases sorted according to the evolutionary 
conservation of affected amino acids in mammals. Conserved amino acids (GV = 0) were conserved in all ten 
examined mammalian orthologs. Variable amino acids (GV > 0) were not conserved in at least one of the ten 
examined mammalian orthologs of the respective protein.
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All variations included in the dataset we used to establish the model were classified according to the ACMG 
criteria24, differentiating between those classified as benign (1B, 3B and 5B) and pathogenic (0.5P and 1P). The 
frequencies of the variations according to the ACMG classification are provided in Table S10.

We retrieved clinical information on 7178 missense variations (Fig. 1a) located within the coding sequences 
of 44 genes that, if mutated, cause Mendelian diseases. The following genes were included in the dataset we used 
to validate the model: AR, ATP7A, BMPR2, BTK, CD40LG, CDKL5, CPOX, CYBB, DCX, DMD, EDA, ELANE, F9, 
FHL1, FLNA, G6PD, GCK, GCH1, GLA, HBB, HDAC8, HMBS, HNF4A, HPRT1, HSPB1, IDS, IL2RG, ITGA2B, 
KIT, MECP2, MSH2, OTC, PDHA1, PROC, PTEN, PTPN11, RET, SERPING1, SH2D1A, STK11, TGFBR2, TP63, 
TTR and UROD. All the analyzed missense variations were limited to those parts of the genes for which structural 
information was available. We designated 4546 variations as “DAVs”, because the evidence for their associations 
with Mendelian diseases was available. We designated another 291 variations as “partial phenotype-associated”, 
because the evidence for their association with partial (incompletely manifesting) phenotypes of the same 
Mendelian diseases was available. We designated 2093 missense variations as “NPAVs”, because conclusive evi-
dence of the absence of any clinical phenotype associated with their carriers was available. We removed 248 
(3.5%) missense variations from the analyses due to inconsistent, insufficient or anomalous data on the pheno-
types reportedly associated with these variations. Data reliability in databases appears to be a challenge to the 
construction of the dataset. Standardized forms of annotations do not currently exist. Additionally, submission 
processes differ among the databases, ranging from individual to bulk submissions, and are rarely checked for 
consistency with previously published peer-reviewed studies31. Therefore, the construction of the comprehensive 
dataset also prevented or considerably decreased the risk of biases that might arise from errors of omission and 
commission in databases.

Selection of genes to validate the model. We established the validation dataset consisting of 1723 
variations in 63 additional genes associated with autosomal dominant or autosomal recessive diseases to vali-
date the newly reported approach on an independent set of proteins that are associated with Mendelian diseases 
(Table S8). These 63 genes were not included in the dataset that was used to establish the model. We populated 
the dataset based on the classifications of variations retrieved from ClinVar. We also verified the allele counts 
in the ExAC browser, but this information was only available for a limited number of variations in this dataset. 
Thus, this information was not used in the analyses. The genes included in the dataset that was used to validate 
the model were: AARS, ABCC6, ALDH18A1, ARSB, AVP, CASR, CFTR, CLCN1, CLCN7, COL7A1, DNM2, DSP, 
DYNC1H1, ELOVL4, FBN1, FGF23, FGFR3, GALNS, GBA, GJB2, GJA3, GLB1, GNE, GUCY2D, GUSB, HEXA, 
HGSNAT, IMPDH1, KCNA1, LMNA, LMNB1, LRP5, MARS, MPZ, MYH14, MYH3, MYH7, MYH9, MYO6, 
NAGLU, NOTCH3, NR3C2, OPA1, PGFRB, PKD1, PKD2, POLG2, PRKCG, PRPF8, RAF1, RYR1, SGSH, SLC4A1, 
SMPD1, SOS1, SOS2, SPAST, STAT1, STAT3, TECTA, TERT, VCP and YARS. The dataset was composed of the fol-
lowing numbers of variations: 33 benign, 53 benign/likely benign variations, 58 likely benign variations, 475 likely 
pathogenic variations, 104 likely pathogenic/pathogenic variations and 1000 pathogenic variations (Table S8).

1a) In HGMD, the variation is absent. 2

1b) In HGMD, the variation is present, but causes “no phenotype” according to dbSNP. NO PHEN

1c) In HGMD, the variation is present and is defined as a “disease-causing mutation”. 4

1d) In HGMD, the variation is present but has definitions other than those listed in 1b) and 1c) 2

2a) In ClinVar, the variation is present and defined as “benign”, “likely benign” or “variants of uncertain significance” 
(VUSs). NO PHEN

2b) In ClinVar, the variation is absent or present, with definitions other than those listed in 2a). 3

3a) In Ensembl, the variation is present but has no associated phenotype. NO PHEN

3b) In Ensembl, the variation is present and associated with a phenotype. 5

4a) In ClinVar, the variation is present and defined as “benign” or “likely benign”. EXCL

4b) In ClinVar, the variation is present but not defined as “benign” or “likely benign”. 5

5a) In HGMD, all variations classified as “disease-causing mutations” within the respective gene are associated with a 
single disease or syndrome with a Mendelian inheritance pattern. DIS

5b)
In HGMD, the variations classified as “disease-causing mutations” within the respective gene are associated with 
two diseases with a Mendelian inheritance pattern, one caused by the activating and the other by inactivating 
variations (e.g., erythrocytosis vs anemia).

DIS

5c)
In HGMD, the variations classified as “disease-causing mutations” within the respective gene are associated with 
two diseases with a Mendelian inheritance pattern, both of which are caused by variations exerting similar effects 
with a different intensity (e.g., Menkes syndrome vs occipital horn syndrome or Duchenne vs Becker muscular 
dystrophy); variations cause a complete phenotype.

DIS

5d)
In HGMD, the variations classified as “disease-causing mutations” within the respective gene are associated with 
two diseases with a Mendelian inheritance pattern, both of which are caused by variations exerting similar effects 
with a different intensity (e.g., Menkes syndrome vs occipital horn syndrome or Duchenne vs Becker muscular 
dystrophy); variations cause the less pathological phenotype.

PART

Table 1. The key used to assign of the clinically observed variations. Abbreviations used: DIS – disease-
associated; PART – partial phenotype-associated; NO PHEN – no phenotype-associated; EXCL – excluded 
ambiguous data.

https://doi.org/10.1038/s41598-019-54976-4


5Scientific RepoRtS |         (2019) 9:18577  | https://doi.org/10.1038/s41598-019-54976-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Prediction analyses. For all selected proteins, we employed three methods with distinct approaches and 
bases. First, we used the unsupervised epistatic model EVmutation14 with the arbitrary threshold set to zero. 
Second, we used the supervised method SNAP220, which is based on multiple biophysical characteristics and 
trained on annotated databases of clinically observed and/or experimentally tested variations from annotated 
databases (OMIM, PMD and Swiss-Prot). Third, we used PoPMuSiC 2.113, which predicts protein thermosta-
bility. The arbitrary threshold of the EVmutation method was set to zero based on the claim by Hopf et al.14 that 
“values of ∆E above 0 correspond to more probable mutant sequences (putatively beneficial), values below 0 
to less probable mutant sequences (putatively deleterious) and values equal to 0 to equally probable sequences 
(putatively neutral).” Thus, the arbitrary threshold allowed us to differentiate between the “putatively deleterious” 
and “putatively beneficial” mutations. Based on these criteria, the variation effect scores were also set to zero for 
all examined wil-type protein sequences in the protein matrices that were precomputed by Hopf et al.14 (available 
at https://marks.hms.harvard.edu/evmutation/, accessed March 8, 2018). Due to the nature of the EVmutation 
method, almost no “putatively neutral” variations with a zero EVmutation score were observed, except for the 
wild-type alleles. Hopf et al. applied these settings to changes occurring at the protein level, but predictions of the 
changes at the level of the whole organism are more challenging.

We used the pre-computed predictions from EVmutation that were listed according to the UniProtKB/
Swiss-Prot accession numbers. We computed the predicted effects of amino acid changes identified using SNAP2 
according to the NCBI code belonging to relevant protein isoforms. We selected the protein structures with a 
resolution lower than 2.7 Å (except GCH1 and PROC) and used their PDB codes in the prediction computations 
employing PoPMuSiC 2.1. In addition to the clinically confirmed variations, we calculated and analyzed the 
predictions for theoretical variations, i.e., variations that were not clinically observed. We performed these calcu-
lations for the protein regions identical to those, we used to analyze the clinically observed variations. We sorted 
the variations according to a) their localization within/outside of protein domains, b) the presence and class of 
enzymatic activity of the protein, and c) the number of nucleotide changes needed to obtain the variation of inter-
est. When sorting the variations according to the latter criterion, we split theoretical variations into impossible 
(157,639 variations) and possible variations (63,698 variations) according to the method reported by Bromberg 
et al.15. They defined “impossible” amino acid variations as those that require a change of two or three nucleotides 
in the codon, whereas “possible” variations were defined as amino acids variations that require a change in only 
a single nucleotide.

GV approach. Many variations that were previously associated with Mendelian diseases have been 
re-assessed and re-classified as VUSs32–34. In the present study, we limited the MSAs based on the paradigm of the 
VUS25 classification, which differentiates VUSs from likely benign variations by analyzing their conservation in 
other mammalian species. According to multiple indices, the predictions of the effects of the analyzed variations 
may be improved by implementing MSA analyses. The MSA analyses assume that variations identified in related 
species are likely neutral (non-pathogenic), whereas variations identified in conserved parts of the amino acid 
sequence are likely pathogenic. A consensus regarding the inclusion criteria for the analyzed sequences has not 
been reached. Some authors compare the sequences of all proteins in the respective protein family, while others 
limit the analyzed sequences to those that are similar to human sequences33,34.

We used the GV approach to analyze the MSAs of amino acid sequences of the examined human proteins 
and their mammalian orthologs35. The GV approach quantifies the variability in each tested amino acid based 
on the MSA provided. This approach allowed us to classify the variations into those with GV scores of zero (con-
served among mammals) and those with higher GV scores (with at least two sequence variations present in the 
analyzed MSAs). We assembled the MSAs by implementing the paradigm associated with variants of uncertain 
significance (VUS), which claims that the variations are considered VUSs if an amino acid residue that is con-
served in the corresponding protein in other mammals is altered25. Thus, for each analyzed protein, we prepared 
the MSA that contained amino acid sequences of ten mammalian orthologs of the respective gene. Typically, we 
included a dominant human isoform of the respective protein and complemented it with the corresponding iso-
form reported from two species of primates (Primates) and one sequence each from carnivores (Carnivora), bats 
(Chiroptera), rodents (Rodentia), even-toed ungulates or cetaceans (Cetartiodactyla) and insectivorous mammals 
(Eulipotyphla, which is still listed as Insectivora in the NCBI Nucleotide database). The remaining two orthologs 
were both represented by marsupials (Metatheria) or by one marsupial and one monotreme (Monotremata), 
avoiding monotreme sequences when high-quality reads were not available in the NCBI GenBank database. We 
retrieved all sequences from the NCBI GenBank database between May 30 and June 4, 2017.

Additionally, we tested two representative genes, AR and PTEN, to determine whether the addition of more 
evolutionarily distant sequences and the resulting increase in variability led to an improved correspondence of 
GV scores with disease associations of analyzed variations. We used the maximum likelihood method to estimate 
evolutionary divergence in amino acid sequences predicted to be encoded by AR and PTEN among selected 
taxonomic groups. For AR, we tested 29 amino acid sequences of AR orthologs, including the orthologs from 
ten mammalian species, as specified above. The more evolutionarily distant orthologs included sequences from 
Testudines (three species), Amphibia (three species), Crocodylia (two species), Squamata (four species), Aves 
(three species), Euteleostomi (three species) and Chondrichthyes (one species). The NCBI Blast search did not 
retrieve orthologs that would be homologous with AR from more evolutionarily distant species. The PTEN 
protein is more evolutionarily conserved, which allowed us to include more distant taxa. The resulting dataset 
comprised 31 orthologs, ten of which were from the mammalian species listed above, and others consisted of 
orthologs from the following taxa: Aves (three species), Squamata (three species), Archelosauria (three species), 
Teleostei (three species), Chondrichthyes, Coelacanthiformes, Amphibia, Brachipoda, Gastropoda, Mollusca, 
Echinozoa, Arachnida and Insecta (one species each). We retrieved these sequences from the NCBI GenBank 
database between October 8 and October 14, 2017. We aligned the amino acid sequences using ClustalW (gap 
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opening penalty of 5 and gap extension penalty of 0.1 for pairwise alignments, gap extension penalty of 0.2 for 
multiple alignments, and gap separation distance of 4). We manually corrected the alignments for any inconsist-
encies and replaced shorter sequences with more appropriate sequences. We used only sequences of identical 
lengths for further analyses. We used the resulting MSAs to calculate the GV scores. For the AR and PTEN align-
ments, we performed maximum likelihood fits of the 48 amino acid substitution models, excluding positions 
containing gaps. For each model, we calculated the Bayesian information criterion, corrected Akaike information 
criterion and maximum likelihood values. For AR, we analyzed 29 sequences with 380 positions in the final 
dataset. For PTEN, we analyzed 31 sequences with 342 positions in the final dataset. We used best-fit models 
for the subsequent phylogenetic analyses and evolutionary divergence calculations. When building the trees, we 
constructed the initial tree using a neighbor-joining algorithm. We built the trees based on both AR and PTEN 
sequences using the Jones-Taylor-Thornton model. We modeled the non-uniformity of evolutionary rates among 
sites using a discrete Gamma distribution (+G) with five rate categories. We applied a bootstrapping procedure 
with 1,000 replicates. We used the maximum likelihood method to estimate evolutionary divergence in the amino 
acid sequences of AR and PTEN orthologs among selected taxonomic groups. We calculated the number of base 
differences per site by averaging all sequence pairs between groups (distance) ± SE and employed a bootstrapping 
procedure with 1,000 replicates. The models used to estimate inter- and intrasite evolutionary divergence were 
identical to the models used to construct the respective trees.

Revel. We calculated the sensitivity and specificity of the predictions retrieved from REVEL to test whether 
the issue of low specificity is associated with the outcomes of individual computational algorithms or whether 
it also affects the data obtained using state-of-the-art consensus classifiers5. We used REVEL to test a subset of 
21 genes from the dataset that was used to establish the model: GCK, AR, PTEN, CYBB, HNF4A, HBB, MECP2, 
HDAC8, RET, PTPN11, HPRT1, CD40LG, CDKL5, CPOX, DCX, DMD, EDA, UROD, TTR, FLNA and HSPB1. We 
provided REVEL scores for 2721 variations, of which 1570 were DAVs, 241 manifested partial phenotypes, and 
910 were NPAVs. For the aforementioned genes, we tested the identical set of variations as used to establish the 
model, except for PTEN p.P103Q, PTEN p.A137F, and four GCK variations, representing amino acid substitu-
tions caused by substitutions of two or three nucleotides. We obtained the REVEL scores from the pre-computed 
database of REVEL scores that are available for all missense variations retrieved from dbNSFP v2.7, as provided 
by the authors of REVEL5.

Statistical analyses. We calculated the evidence-based thresholds as medians ± 2 × SD, which should 
encompass approximately 95% of the pool of variations used to calculate the threshold. We calculated two types 
of these thresholds. The sensitivity threshold (true positive rate) was calculated based on the 95% chance of con-
firming the association of a tested theoretical variation with the respective disease based on the distribution of 
prediction scores for known DAVs. The specificity threshold (true negative rate) was calculated based on the 95% 
chance of confirming the absence of an association of a tested theoretical variation with the respective disease 
based on the distribution of prediction scores for known NPAVs.

We calculated the weighted means of the scores resulting from the tested prediction methods by assigning 
each predictor a weight ranging from −100 to +100, where 0 was a threshold and 100 was the maximum value 
observed within the respective dataset (EVmutation range from −12.933 to 3.8104, SNAP2 range from −98 to 99, 
and PoPMuSiC 2.1 range from −1.90 to 5.64), and by averaging the values obtained from each of the prediction 
methods.

We tested the differences between predictions between DAVs and NPAVs, and for domain-associated and 
other amino acids using a one-tailed t-test. Differences in the numbers of DAVs and NPAVs in individual 
domains were determined using one-tailed t-tests with Bonferroni’s correction. We tested the differences between 
variations associated with particular classes of enzymes and proteins without enzymatic functions, and between 
categories of possible and impossible theoretical variations using the Kruskal-Wallis one-way ANOVA on ranks 
with Dunn’s post-tests (the Kolmogorov-Smirnov normality test yielded p > 0.05 for each comparison). We ana-
lyzed the difference in the frequency of DAVs and NPAVs among possible and impossible theoretical variations 
using the χ2 test, with the number of possible variations normalized to the number of impossible variations. We 
assessed the differences between DAVs (including multiple phenotypes alone), partial phenotype-associated and 
NPAVs using the Kolmogorov-Smirnov normality test followed by one-way ANOVA with Tukey’s post-tests or 
Kruskal-Wallis one-way ANOVA on ranks with Dunn’s post-tests when the normality tests failed. We did not 
evaluate phenotypes with less than five associated variations. The data are shown as means ± SD, unless indi-
cated otherwise. We performed all calculations using SigmaPlot 12.0, and conducted phylogenetic analyses using 
MEGA 5.2.

Results and Discussion
Outputs of the calculation of thresholds. We hypothesized that the thresholds of predictions obtained 
using SNAP2 and PoPMuSiC 2.1 are subject to evidence-based adjustment, similar to the EVmutation threshold. 
The 95% sensitivity of SNAP2 was ensured by establishing a general evidence-based threshold at a level of median 
− 2 SD, i.e., 61 – 2 × 46.51 = −32.02. However, the use of this threshold increases the percentage of false-positive 
phenotype predictions from 46% to 79%, which is not acceptable. Similarly, a sensitivity of 95% for PoPMuSiC 
2.1 predictions was ensured by establishing a general evidence-based threshold at a level of median − 2 SD, i.e., 
1.17 – 2 × 1.08 = −1.00. However, the use of this threshold increases the percentage of false-positive pheno-
type predictions from 88% to 99.9%, which is not acceptable. When we combined the three prediction methods, 
they displayed high sensitivity but low specificity when using both the arbitrary and general evidence-based 
thresholds.
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Figure 2. The predictions differ for evolutionarily conserved proteins, such as AR or PTEN, for variations 
within and outside of protein domains and for enzymes and proteins without enzymatic functions. (a) 
Evolutionary divergence of the amino acid sequences of AR and PTEN reported as the number of amino acid 
substitutions per site by averaging all sequence pairs between primates and other groups. (b,c) GV scores 
for amino acids within the AR (b) and PTEN (c) sequences. The data are shown separately for GV scores 
calculated based on mammalian protein orthologs (the two lines at the zero GV score) and extended MSAs 
that included more evolutionarily distant taxa. The data are shown for disease-associated and no phenotype-
associated variations. Relative ranks among tested variations are shown to reflect the different numbers of 
variations included in each analyzed group. (d) EVmutation and SNAP2 scores applied to disease-associated 
and no phenotype-associated variations that are present or absent from protein domains. Data are presented 
as medians ± SD. (e) Differences in median EVmutation and SNAP2 scores between disease-associated and no 
phenotype-associated variations located within the indicated protein domains. Abbreviations for the domains: 
AGAL, alpha-galactosidase A; ATCase/OTCase, aspartate/ornithine carbamoyltransferase, carbamoyl-P 
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The absence of any agreement in the predictions of NPAVs and the existence of 58% (arbitrary thresholds) or 
45% (general evidence-based thresholds) variations, which were predicted differently using the three methods, 
was alarming and required a more thorough adjustment of the thresholds to produce reliable prediction out-
comes. Thus, we tested the application of weighted means. The application of weighted means did not exert any 
substantial effect on the sensitivity (92% with arbitrary thresholds or 94% with general evidence-based thresh-
olds) but it decreased the specificity to 39% (arbitrary thresholds) and 31% (general evidence-based thresholds).

This issue would potentially be overcome by applying gene-specific evidence-based thresholds, i.e., the thresh-
olds that were calculated individually for each analyzed gene. However, this approach did not overcome the 
specificity issue, as the problem associated with the incorrect detection of NPAVs remained. PoPMuSiC 2.1 was 
more problematic in this regard, as its predictions were so variable and skewed that the threshold set as a mean − 
2 SD of DAVs often exceeded the range of predictions of NPAVs. Using this approach, PoPMuSiC 2.1 incorrectly 
detected 515 (24.6%) of NPAVs as associated with an effect, although the other two predictors generated correct 
predictions for this pool of variations. Thus, the agreement of the three methods on the non-pathogenicity of 
NPAVs was reached for only five (0.2%) of the 2093 NPAVs.

Next, we tested whether the implementation of two gene-specific evidence-based thresholds per predictor for 
each gene would be the solution. One threshold was set to 95% sensitivity (i.e., the threshold used above) and the 
other threshold was set to 95% specificity. When we implemented the new combination of thresholds, the three 
prediction methods only agreed on the predictions for the effects of 303 variations. Among these variations, 301 
variations (99.3%) were DAVs and two variations (0.7%) were NPAVs. Similar to the previous approach, the 
problematic outcome was primarily caused by the inclusion of hypervariable predictions generated by PoPMuSiC 
2.1. When we excluded PoPMuSiC 2.1 from the analyses, the gene-specific 95% specificity threshold was passed 
by 763 variations (11.5%), of which 752 variations (98.6%) were DAVs and 11 variations (1.4%) were NPAVs. 
The gene-specific 95% sensitivity threshold was passed by 622 variations (9.4%), of which 102 variations (16.4%) 
were DAVs and 520 variations (83.6%) were NPAVs. Thus, these findings provide proof of concept that the 
evidence-based adjustment of thresholds for EVmutation and SNAP2 enables the highly specific selection of 
both DAVs and NPAVs. To our knowledge, this approach is the first to allow the highly specific selection of var-
iations that are not associated with any clinical phenotype. Within the tested dataset, the predictable variations 
accounted for 21% of the tested variations. The other variations were divided into the following three categories: 
a) the predictions of EVmutation and SNAP2 were contradictory (0.2%), b) one of the two predictors did not 
exceed either of the two thresholds (30.4%), and c) both predictors did not exceed their thresholds (48.7%). The 
use of weighted means combined with the two gene-specific evidence-based thresholds per predictor did not 
improve the outcomes and resulted in 33.5% sensitivity and 93.7% specificity.

When we analyzed the EVmutation outputs alone using the identical two gene-specific evidence-based thresh-
olds per predictor for each gene, the gene-specific 95% specificity threshold was passed by 1236 (18.6%) varia-
tions, of which 1188 (96.1%) were DAVs and 48 (3.9%) were NPAVs. The gene-specific 95% sensitivity threshold 
was passed by 807 (12.2%) variations, of which 164 (20.3%) were DAVs and 643 (79.7%) were NPAVs. Thus, the 
use of EVmutation alone was associated with a slightly greater number of both false negative and false positive 
predictions, but provided a prediction for a larger percentage of the analyzed variations. Within the tested dataset, 
the predictable variations accounted for 31% of the total number of tested variations.

When we analyzed the SNAP2 outputs alone using the identical two gene-specific evidence-based thresholds 
per predictor for each gene, the gene-specific 95% specificity threshold was passed by 1390 (20.9%) of variations, 
of which 1343 (96.6%) were DAVs and 47 (3.4%) were NPAVs. The gene-specific 95% sensitivity threshold was 
passed by 1365 (20.6%) variations, of which 403 (29.5%) were DAVs and 962 (70.5%) were NPAVs. Thus, the use 
of SNAP2 alone was associated with a slightly greater number of both false negative and false positive predictions 
but provided a prediction for a larger percentage of the analyzed variations compared to its combination with 
EVmutation or to EVmutation alone. Within the tested dataset, the predictable variations accounted for 41% of 
the tested variations.

EVmutation under default settings. The arbitrary threshold used for the EVmutation analysis enables 
the correct prediction of a phenotype for 99.5% of DAVs and 99.7% of partial phenotype-associated variations; 
this sensitivity is consistent with previously reported data14. However, 94.8% of NPAVs were in the same category 
and were predicted to exert an effect. Thus, the arbitrary zero threshold was associated with only a 5.2% specificity 
for clinically manifested phenotypes (Fig. 1b).

A high number of false positives was observed for all 44 analyzed genes (Fig. 1c). The EVmutation analysis 
provided the correct predictions of DAVs for all tested genes (median sensitivity of 100%, minimum sensitivity of 
92.3% (RET)), but only correctly predicted a negligible fraction of NPAVs (median specificity of 4.4%, minimum 
specificity of 0% (12 genes), maximum specificity of 20% (CD40LG)).

binding and Asp/Orn binding domains; CPOX, coproporphyrinogen III oxidase; DHE1, dehydrogenase E1 
component; FRNADBD, ferric reductase, NAD binding domain; GTPCH, GTP cyclohydrolase I; G6PDH, 
glucose-6-phosphate dehydrogenase, NAD binding and C-terminal domains; HXK, hexokinase; LBDNHR, 
ligand-binding domain of nuclear hormone receptor; PK, protein kinase; PTK, protein tyrosine kinase; PTP 
SH2, Src Homology 2 domain. (f) Median EVmutation and SNAP2 scores calculated for disease-associated and 
no phenotype-associated variations in the four indicated enzyme classes and in proteins without enzymatic 
functions. (g) EVmutation and SNAP2 scores calculated for disease-associated and no phenotype-associated 
variations considered possible or impossible variations according to Bromberg et al.15 Data are shown as 
medians ± SD.
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Tailored EVmutation thresholds. The arbitrary threshold does not provide a reliable prediction of the 
disease association of variations in tested genes. Therefore, we focused on whether the thresholds can be tailored 
either in a general or gene-specific manner. The median ± SD of predictions obtained using EVmutation for DAVs 
reached −6.58 ± 2.23, whereas the values for NPAVs only reached −3.86 ± 2.41. Thus, these two groups of vari-
ations were not separated to an extent that was sufficient for distinguishing between them based on, for example, 
their confidence intervals. Nevertheless, when focusing on the gene-specific level, the median values of predic-
tions of the DAVs for any gene were lower than the median values of the predictions of NPAVs within the same 
genes. The scores and resolution varied across the analyzed genes (Fig. S1a). A sensitivity of 95% was assumed 
by setting the threshold to the median +2 SD of the DAVs, i.e., −6.57 + 2 × 2.22 = −2.13. Thus, the EVmutation 
score of −2.13 was considered a general evidence-based threshold. Its use increases the specificity to 21.5%, 
which is, however, still far from any reliable use of this approach.

Figure 3. The efficiency of the prediction methods in discriminating among multiple diseases caused by 
missense variations in the indicated proteins. EVmutation and SNAP2 scores are shown for proteins with 
significantly different disease-specific scores (a–i) or that result in the opposite phenotypes (j–l). (a) DMD, (b) 
ELANE, (c) FLNA, (d) HPRT1, (e) PTPN11, (f) RET, (g) TGFRB2, (h) TP63, (i) UROD, (j) GCK, (k) HNF4A, 
and (l) HBB.
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Constraints in VUS criteria. The VUS classification differentiates VUSs from likely benign variations based 
on evidence of their conservation in other mammalian species. We identified the conserved variations with the 
zero GV scores, i.e., variations that were conserved across the whole class of mammals, including marsupials 
and/or monotremes. The conserved variations represented 69.7% of NPAVs and 86.2% of DAVs. The conserved 

Figure 4. The detection of variations under negative selection during molecular evolution: an example of the 
application of evidence-based knowledge. (a–f) The distribution of observed disease-associated variations 
compared to the distribution of possible10 theoretical variations. The data are shown for the proteins for which 
negative values were obtained from the calculation of the differences in the 10th percentiles of EVmutation 
scores – (a) PTPN11, (b) HBB and (c) G6PD – and for genes for which positive values were obtained from the 
calculation of the differences in 90th percentiles of SNAP2 scores – (d) G6PD, (e) HNF4A and (f) EDA. (g) The 
heatmap of proteins causing Mendelian diseases sorted according to the likelihood that their variations included 
variations that were under negative selection during molecular evolution. Ranges of differences in median 
values: from −1.093 to 3.36 (EVmutation) and from −25 to 2.6 (SNAP2).
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variations were associated with slightly lower EVmutation scores for both DAVs and NPAVs (Fig. 1d) compared 
to variations that affected evolutionarily variable sites. Nevertheless, the EVmutation scores of the four groups 
of variations overlapped and required further stratification. Thus, we examined the relative proportion of vari-
ations with a GV score >0 individually in each of the 44 analyzed genes (Fig. S2a). All variations in some genes 
displayed a zero GV score (AR and PTEN), whereas variations in other genes were poorly conserved (ELANE, 
PROC and CD40LG). Based on this finding, the arbitrary criteria for the inclusion of protein sequences in the 
MSAs derived from the VUS criteria were not functional since they did not reflect differences in the conservation 
of individual genes. Absolute values of the GV scores (degree of conservation of the respective amino acid) were 
not associated with any differences in clinical phenotypes (Fig. S2a) or EVmutation scores (Fig. S2b) for variations 
of these amino acids. However, the binary response (zero GV score vs any higher GV score) predicted the strati-
fication of variations into DAVs and NPAVs.

We postulated that the MSAs, which were based on VUS inclusion criteria, were insufficient for the analyses 
of highly conserved genes, such as AR or PTEN, because these genes displayed low amino acid sequence diver-
gence among their mammalian orthologs. The solutions consisted of the addition of more evolutionarily distant 
taxa into the alignments (Figs. 2a and S3). This addition increases the divergence between the analyzed groups of 
organisms (Tables S1, S2), which is sufficient to generate a pool of informative amino acids that are susceptible 
to variations during the course of evolution. Although the VUS-based GV score (i.e., the score that was based 
solely on sequences of mammalian orthologs) did not discriminate between the DAVs and NPAVs, the GV score 
based on extended MSAs led to a clear differentiation between DAVs and NPAVs. The DAVs were associated 
with 60–80% of amino acids with a zero GV score. In contrast, the NPAVs reached zero scores in 20–30% of 
cases (Fig. 2b,c). Thus, the MSAs used to calculate the GV scores of highly conserved proteins were improved 
by including sequences from evolutionarily distant organisms until an experimentally or arbitrarily set value of 
sequence divergence between analyzed groups (≥0.1 substitutions per amino acid) was achieved. Even using 
these improved settings, a large group of variations were considered DAVs, despite displaying high GV scores 
(Fig. 2b,c).

Combination of EVmutation with methods based on different approaches. We next focused on 
improving EVmutation-based predictions by combining them with other state-of-the-art prediction methods 
that provide numerical outcomes and thresholds, which can easily undergo evidence-based adjustment. Similar 
to EVmutation, the arbitrary settings of SNAP220 and PoPMuSiC 2.113 do not correspond to the division of clini-
cally observed variations into DAVs and NPAVs (Fig. S4a,b). For SNAP2, 84% of predictions of DAVs and 54% of 
predictions of NPAVs were correct. Thus, the percentage of true disease predictions was slightly lower than with 
EVmutation, but the percentage of true no phenotype predictions was higher by an order of magnitude than with 
EVmutation. For PoPMuSiC 2.1, we obtained correct predictions for 94% of DAVs and only 12% of NPAVs. Thus, 
the number of true disease predictions was slightly lower than with EVmutation, and the percentage of true no 
phenotype predictions was similar to EVmutation. In contrast to EVmutation, the latter two prediction methods 
were associated with a high variability of predictions between the analyzed proteins (Fig. S4c,d).

We hypothesized that the thresholds of predictions obtained using SNAP2 and PoPMuSiC 2.1 could benefit 
from being subjected to evidence-based adjustment, similar to the adjustment of the EVmutation threshold. We 
tested several approaches for calculating the thresholds (see the chapter Outputs of the calculation of thresh-
olds for a detailed description of the applied approaches), but most of these approaches only provided minor 
or no improvements. Additionally, the PoPMuSiC 2.1 scores were associated with such high overlap of the dis-
tribution of DAVs and NPAVs that the outcomes of this method were uninformative. Therefore, we excluded 
PoPMuSiC 2.1 from further analyses. The approach that led to a substantial improvement in the credibility of pre-
dictions was the implementation of two gene-specific evidence-based thresholds per predictor for each gene. One 
gene-specific threshold was set to 95% sensitivity (i.e., the threshold used above) and the other threshold was set 
to 95% specificity. For the combination of EVmutation and SNAP2, the predictable variations represented 21% of 
the total number of tested variations. The predictions were associated with 98.6% specificity and 83.6% sensitivity. 
Thus, this result serves as proof of concept that the evidence-based adjustment of thresholds for EVmutation and 

Gene Phenotype References

PTPN11
Multiple lentigines / LEOPARD syndrome 55–61

Noonan syndrome 62–64

HBB

Thalassemia beta 65–67

Hemolytic anemia 68–70

Erythrocytosis 71–73

G6PD Glucose-6-phosphate dehydrogenase deficiency 74–76

HNF4A
Hypoglycemia, hyperinsulinemic 77–79

Diabetes, HNF4A-MODY 79–81

EDA

Oligodontia 82–84

Ectodermal dysplasia, hypohidrotic 85–87

Ectodermal dysplasia 88–90

Table 2. Major phenotypes associated with genes that were underrepresented among disease-affected carriers. 
See Table S7 for a complete list of phenotypes associated with analyzed variations and source references.
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Figure 5. Validation of the model, identification of the specificity of the consensus classifier REVEL, and the 
application of the American College of Medical Genetics and Genomics (ACMG) criteria for the classification 
of variations. (a) Validation of the threshold values for EVmutation that were suggested in the proposed 
model. Validation was performed using a set of 1723 variations in 63 genes (Tables S8–S10), which were 
classified according to ClinVar. The data are presented as relative percentages of correct predictions using the 
arbitrary EVmutation threshold (0.00), the evidence-based threshold that allows 95% sensitivity (−2.13) and 
the threshold that allows 95% specificity (−8.81). (b,c) REVEL, a consensus classifier, is associated with the 
issue of low specificity, similar to the individual computational algorithms. REVEL scores were retrieved for 
a set of 2721 variations in 21 genes. Mean REVEL scores for the individual genes discriminated well between 
the disease-associated and no phenotype-associated variations (b). However, because a large overlap in the 
predictions was observed, the specificity was low for most of the analyzed genes (c). Data are presented (b) 
as the means ± SE or (c) as relative percentages of correct predictions of the association of the variations with 
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SNAP2 enables the highly specific selection of both DAVs and NPAVs. To our knowledge, this approach is the 
first to enable the highly specific selection of variations that are not associated with any clinical phenotype.

When the two predictors were used alone, the percentage of predictable variations increased (to 31% using 
EVmutation and 41% using SNAP2), but the specificity and sensitivity decreased. For EVmutation, the specificity 
was 96.1% and sensitivity was 79.7%. For SNAP2, the specificity was 96.6% and sensitivity was 70.5%. Thus, the 
use of EVmutation or SNAP2 alone was associated with a slightly higher number of both false negative and false 
positive predictions but provided a prediction for a larger percentage of the analyzed variations when compared 
to their combination.

Factors contributing to the variability within the analyzed dataset. The predictions of the effects 
of DAVs and NPAVs differed for variations located within or outside of the protein domains (t-test p < 0.001 each, 
for EVmutation and SNAP2, respectively). The predictions of the effects of DAVs differed for variations located 
within and outside of the protein domains (t-test p < 0.001 each, for EVmutation and SNAP2, respectively). In 
contrast, the NPAVs did not display any significant difference between their pools located within and outside 
of the protein domains (t-test p > 0.05 each, for EVmutation and SNAP2, respectively) (Fig. 2d). Thus, the pre-
dictions of the variations present within protein domains displayed a higher amplitude (EVmutation −2.722 vs 
−1.973, and SNAP2 71 vs 47). When focusing on particular domain types, the differences between DAVs and 
NPAVs were significant for all major domain types (t-test with the Bonferroni’s correction p < 0.001), except the 
globin domain (t-test with the Bonferroni’s correction p > 0.05 for both predictors) and ligand-binding domain 
of nuclear hormone receptor (SNAP2 t-test with the Bonferroni’s correction p > 0.05) (Fig. 2e and Table S3). In 
the combination approach, the variations that were located within catalytically active protein domains (e.g., tyros-
ine kinases or serine-threonine kinases) were easier to predict than variations that were located outside of any 
domains. The prediction of variations located within certain protein domains lacking intrinsic enzymatic activity 
was highly problematic, but certain enzymatically inactive domains (e.g., the SH2 domain) were still associated 
with an acceptable resolution of the predictions. The rigidity of the SH2 domain structure (needed for pTyr bind-
ing)36 was likely responsible for this difference in prediction outcomes compared with the globin domains. The 
globin domains maintain their function, regardless of their low sequence identity, as long as the hydrophobic core 
and hydrophilic surface are maintained37. The predictions of variations in the amino acid sequences of enzymes 
also showed a better resolution than those of variations located in proteins without enzymatic functions (Fig. 2f). 
Only differences between the DAVs (but not NPAVs) of proteins without enzymatic function and any of the four 
enzyme classes tested were significant (Kruskal-Wallis one-way ANOVA on ranks with Dunn’s post-tests p < 0.05 
each; Table S4). Future algorithms should match the predictions with protein attributes, such as the presence of 
specific protein domains38. The binary presence/absence information for the location in protein domains is used 
to identify driver and passenger somatic mutations involved in oncogenesis39 and has been reflected in several 
prediction systems40. Methods designed to account for the specific characteristics of particular domain types 
should be considered an integral part of prediction algorithms (Fig. 2e).

According to previous studies, that amino acid variations that are caused by single nucleotide polymorphisms 
(“possible” variations) are slightly less deleterious than variations that occur when two or three nucleotides within 
the affected triplet are substituted (“impossible” variations)15. Although the likelihood of impossible variations 
occurring was low, we identified 97 (1.5%) of these variations within the analyzed dataset. Among impossible 
variations, we did not observe a significant improvement in the resolution of DAVs and NPAVs (Kruskal-Wallis 
one-way ANOVA on ranks, with Dunn’s post-tests, p > 0.05 each). The DAVs were equally frequent among 
impossible (71%) and possible (68%) variations (χ2 test p > 0.05 when the data were normalized to the total 
number of impossible variations) (Fig. 2g).

Because the effects of DAVs were not predicted by arbitrary thresholds, but by gene-specific thresholds (Figs. 1 
and 3), we hypothesized that the prediction methods would differentiate between multiple diseases caused by 
variations in a single protein. Dunn’s and Tukey’s post-tests indicated the possibility of such differential diagnoses 
in several proteins (see Table S5 for an overview of outputs of statistical tests). We plotted the EVmutation and 
SNAP2 prediction scores for DAVs in nine proteins, for which the variations associated with the multiple pheno-
types statistically differ (Fig. 3a–i), and for two proteins (GCK and HNF4A) in which variations cause opposite 
phenotypes, i.e., diabetes and hyperglycemia (Fig. 3j,k) or (HBB) erythrocytosis and anemia (Fig. 3l). Despite the 
statistically significant differences, the variability in predictions of the genes prevented the assignment of the var-
iations to particular diseases, except for extreme values. Examples are listed below: (a) The EVmutation score of 
DMD > −7 predicts muscular dystrophy of the Becker type (Fig. 3a). (b) Noonan syndrome with multiple lentigi-
nes is associated with variations with an EVmutation score for PTPN11 < −4 and a SNAP2 score for PTPN11 > 30 
(Fig. 3e). (c) The EV mutation score for UROD > −4 or the SNAP2 score for UROD < 0 predict the manifestation 
of porphyria cutanea tarda instead of hepatoerythropoietic porphyria (Fig. 3i).

Identification of variations under negative selection. We then used the newly obtained evidence-based  
knowledge to predict theoretically possible variations that have never been encountered in the clinic. This 
approach might highlight critical constrained variations that have not yet been linked to human disease pheno-
types. Some of these variations likely exhibit such extreme constraints because they lead to extreme developmental 

diseases (upper row) or no phenotypes (lower row). (d) Application of the ACMG criteria for the classification 
of variations, which classify the variations as benign (1B and higher) and pathogenic (0.5 P and higher) 
according to the population frequencies of the variations (Table S11). The EVmutation and SNAP2 scores were 
analyzed separately for the disease- and no phenotype-associated variations. Data are shown as means ± SE.
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disorders, are embryonically lethal or cause a long-term selection pressure by decreasing the fitness of their carri-
ers. Although the theoretical ratio of impossible to possible variations was 2.47:1, the clinically observed ratio was 
0.0143:1. The impossible and possible variations differed significantly in the scores obtained from both predic-
tors (t-test p < 0.001 each), with EVmutation scores reaching −6.00 ± 2.42 and −4.83 ± 2.49, and SNAP2 scores 
reaching 40 ± 51 and 18 ± 56 for impossible and possible variations, respectively. The gene-specific comparisons 
of the distribution of scores of impossible and possible variations and their comparison with the distribution of 
clinically documented DAVs and NPAVs are provided in Fig. S5.

The previous single-gene-oriented case study identified the potential existence of a pool of underrepre-
sented variations in both healthy and disease-affected variation carriers8. Since the present study provides the 
first large-scale adjustment of prediction scores based on clinical data, we focused on the detection of variations 
undergoing negative selection during molecular evolution. When performing this analysis (and in contrast to 
the aforementioned case study)8, we excluded any variations considered impossible by Bromberg et al.15 and 
analyzed the similarities of distributions of DAVs and possible theoretical variations. For simplicity, we compared 
the positions of the 10th percentiles for EVmutation scores and 90th percentiles for SNAP2 scores, which represent 
the predictions of amino acid changes with the most deleterious effects on proteins. Since possible theoretical 
variations include both putative DAVs and NPAVs, we expected that the analyzed values calculated based on pos-
sible theoretical variations should be closer towards the scores of NPAVs. The differences in the 10th percentiles 
of EVmutation scores ranged from −1.093 to 3.360 (mean 0.921) and the differences in the 90th percentiles of 
SNAP2 scores ranged from −25.0 to 2.6 (mean −11.5).

In three genes (PTPN11, HBB and G6PD), the positions of 10th percentiles of the EVmutation scores were 
lower for DAVs than possible theoretical variations in the same genes. Similarly, in three genes (again G6PD, but 
also HNF4A and EDA) the positions of 90th percentiles of the SNAP2 scores were higher for DAVs than possible 
theoretical variations in the same genes. Thus, the variations that were predicted to be the most deleterious by 
EVmutation and/or SNAP2 were substantially depleted among DAVs compared to the spectra of possible the-
oretical variations in the same genes. These variations were therefore underrepresented among disease-affected 
variation carriers (Fig. 4a–f) and were under negative selection during molecular evolution. The heatmap of 
analyzed proteins, which were sorted according to the likelihood that their variations included variations under 
negative selection during molecular evolution, is shown in Fig. 4g. The phenotypes that are commonly associated 
with variations in these five genes are listed in Table 2. Confirmation of the negative selection against the under-
represented variations should consist of a series of studies that would compare the in vitro or in vivo effects of the-
oretical variations, which were hypothesized to be under negative selection, with clinically observed variations, 
which were within the range that did not seem to be subject to negative selection. During the peer-review of this 
manuscript, Havrilla et al.41 published a detailed map of constrained coding regions (CCR) in human genes and 
revealed that the most constrained regions are located in known disease loci. The genes encoding proteins associ-
ated with Mendelian diseases that we identified by applying the 10th/90th percentiles of DAVs partially overlapped 
with genes that ranked highly in the study by Havrilla et al.41. Namely, the CCR percentiles were 95.2% – 97.8% 
for PTPN11 and 97.8% for HNF4A. However, other genes, namely HBB, G6PD and EDA were not among top hits 
in the previous CCR study.

Validation and conclusions. We validated the threshold values for EVmutation scores that were suggested 
in the proposed model. We established an independent dataset of variations in genes associated with Mendelian 
diseases (Tables S8, S9). The tested variations were classified according to ClinVar. The mean EVmutation 
scores for pathogenic and benign variations were consistently below their previously suggested zero threshold 
(Table S10). The shift of the general EVmutation threshold to −2.13 led to a similar and significant improvement 
in the specificity of predictions of benign and likely benign variations, while the sensitivity remained higher than 
96% for the pathogenic variations (Fig. 5a).

We calculated the sensitivity and specificity of the predictions retrieved from REVEL to determine whether 
the issue of low specificity was specifically associated with the outcomes of individual computational algorithms, 
such as EVmutation, or whether it also affected the data obtained from state-of-the-art consensus classifiers5. 
REVEL predictions exhibited similar issues to the individual predictors. The scores for DAVs and NPAVs were 
gene-specific (Fig. 5b). The specificity was both low and gene-specific (Fig. 5c). Thus, although despite the con-
sensus classifiers have the potential to eliminate the errors generated by individual predictors, they were prone to 
the systemic issue of low specificity.

All studies of human variations have a limitation in terms of how the variations are classified. For example, the 
incomplete penetrance may cause errors in the classification of rare variations42. We re-analyzed the EVmutation 
and SNAP2 scores based on the ACMG criteria for the classification of variations to corroborate the key outcomes 
of the present study (Fig. 5d)24. Variations classified as pathogenic according to the ACMG criteria were identi-
fied in both the DAV and NPAV datasets. EVmutation and SNAP2 identified only the first of these two groups as 
pathogenic. This difference in predictions was absent for common and rare variations among the NPAVs, which 
may reflect possible biases in the training or testing datasets for both of these methods14,20.

The outcomes of prediction methods are often uncritically used, particularly by non-specialists in the field, 
who benefit from their use for the purpose of narrowing the number of hits identified during omics screens per-
formed for scientific or clinical purposes. The uncritical use of the prediction methods is facilitated by including 
them in the tools commonly used for these purposes, such as the inclusion of SIFT and PolyPhen algorithms in 
the Ensembl genome browser (http://www.ensembl.org/; Release 90 cited). Based on accumulating evidence, the 
prediction methods are often over-interpreted, mainly because they exhibit high false positive rates8,43, and suffi-
ciently complex datasets used for the design, testing and training of the methods are lacking44. Any distinct effects 
observed at the molecular level depend on the context and can be compensated by intrinsic regulatory pathways 
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of the organism, which particularly applies to the effects of variations in nonessential peripheral enzymes and 
signaling proteins14,45,46.

New prediction methods are rapidly released, and EVmutation is one of the most recent contributions to the 
field14. EVmutation is important because it includes epistasis when modeling the effect of the respective vari-
ation. We provided the first match for the EVmutation (and SNAP2 and PoPMuSiC 2.1) prediction outcomes 
with clinical phenotypes of a large pool of pathogenic and benign variations in genes associated with Mendelian 
diseases. EVmutation, similar to the other tested prediction methods, had high sensitivity but also extremely low 
specificity. We suggested the use of evidence-based thresholds, which were obtained by calculating and testing 
several variants of the thresholds until we reached 98.6% sensitivity and 83.6% specificity, leaving the certain pool 
of variations unresolved (if needed, the size of this pool can be decreased at the cost of decreasing the sensitivity 
and/or specificity). The predictions provided better resolution for variations located in enzymes and predomi-
nantly those within enzymatic domains. For some proteins, the use of numerical outputs of predictions combined 
with evidence-based thresholds distinguished between multiple diseases caused by variations in the same protein. 
We identified large previously unreported pools of variations that underwent negative selection during molecular 
evolution and were absent in patients. These variations were particularly prominent in G6PD, PTPN11, HNF4A 
and HBB. Further research should focus on the use of evidence-based thresholds for categories of variations 
defined using the Human Phenotype Ontology (such as the Phenomizer or Phevor)47,48 and phenome-wide asso-
ciation studies (PheWAS)49,50.

Based on the large-scale analysis provided in the present study, we suggest the use of evidence-based thresh-
olds to improve the outcomes of any prediction methods that produce numerical scores. Improved settings of the 
individual methods will facilitate the outcomes of consensus classifiers represented by REVEL5, PredictSNP51, 
PredictSNP252, CADD53 or DANN54. The evolutionary variation analysis approach described here is the first to 
enable the highly specific identification of likely disease-causing missense variations that have not yet been asso-
ciated with any clinical phenotype.

Data availability
All data are available in the main text or in the Supplementary Materials.
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