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the improvement of photocatalysis 
o2 production over BiVo4 
with amorphous feooH shell 
modification
Ying Zhang, Lei Shi*, Zhongxing Geng, tieqiang Ren & Zhanxu Yang*

A novel amorphous FeOOH modified BiVO4 photocatalyst (A-feooH/BiVo4) was successfully produced 
and characterized by various techniques. The results showed that amorphous FeOOH with about 2 nm 
thickness evenly covered on BiVo4 surface, which caused resultant A-feooH/BiVo4 exhibiting higher 
visible light photocatalytic performance for producing o2 from water than BiVo4. When the covered 
amount of amorphous FeOOH was 8%, the resultant photocatalyst possessed the best photocatalytic 
performance. To find the reasons for the improvement of photocatalytic property, electrochemical 
experiments, DRS, pL and Bet, were also measured, the experimental results indicated that interface 
effect between amorphous FeOOH and BiVO4 could conduce to migration of photogenerated charge, 
and exhibit stronger light responded capacity. these positive factors promoted A-feooH/BiVo4 
presenting improved the photocatalytic performance. in a word, the combination of amorphous feooH 
with BiVo4 is an effective strategy to conquer important challenges in photocatalysis field.

Semiconductor photocatalysis has achieved keen attention in utilizing solar power to solve environments deteri-
oration and energy crisis1–3. Hence, numerous photocatalyst materials were developed, including TiO2

4–6, ZnO7, 
WO3

8–10, CdS11,12, SnS2
13, Ag based photocatalysts14–16, etc. However, the development of photocatalysts with high 

efficient is still a huge and continuous undertaking.
The Bi-based photocatalyst materials, such as Bi2O3

17, BiOCl18, BiOBr19, BiOI20, BiVO4
21–23, Bi2WO6

24, and 
Bi2MoO6

25, have obtained great attention. Among these as-prepared photocatalysts, BiVO4 with strong visible 
light response capacity and good stability has been extensively investigated in environmental remediation and 
water splitting26–31. Nevertheless, a big problem that affects the photocatalytic property of BiVO4 is its unsatisfied 
charge carrier separated efficiency. To conquer this problem, many researchers had developed some methods for 
modifying BiVO4. Cao et al. successfully prepared Au-BiVO4 photocatalyst, which could present much higher 
visible-light photocatalytic performance for wastewater treatment and clean energy product than the individual 
BiVO4

32. Except Au modification, Pd, AuPd and CoPd were used to modify BiVO4 to enhance its photocatalytic 
property33–35. However, these noble metals or noble metal alloys were high cost so that this method was difficult to 
be wide application. Hence, it was necessary to develop an economical and convenient method to modify BiVO4.

Recently, amorphous semiconductor materials have been exploited and exhibited specific photocatalytic 
property36,37. Compared to crystals, amorphous semiconductor materials exist a most remarkable advantage 
that it possesses much smaller band gap than their crystalline counterparts, which conduces them to present 
more expansive light absorption range, which is an important condition for conversing solar energy37. However, 
amorphous semiconductor materials exhibited the short-range atomic order, and existed a number of defects, 
which could become the charge recombination centers, causing themselves inactive or weak performance. So 
could numerous defects existed on amorphous semiconductor materials as the electrons capturer be applied for 
modifying other photocatalysts? This view is very significative and interesting. Hence, considering the wide light 
responded property and cost, Fe based semiconductors enter into our view. Among Fe based semiconductors, 
FeOOH exhibits extensive visible light response capacity, which caused FeOOH coupled with other photocata-
lysts to modify the visible-light-irradiation photocatalytic property, some FeOOH with certain crystalline phase 
was used to modify photocatalyst materials, such as β-FeOOH/TiO2

38, β-FeOOH/g-C3N4
39, α-FeOOH/AgVO3

40, 
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etc. Actually, FeOOH contained various crystalline phases, including α-phase, β-phase, δ-phase, γ-phase, and 
amorphous phase. Among these different crystalline phase FeOOH, amorphous FeOOH could exhibit excellent 
oxygen evolution rate by photoelectrochemical and superior pseudocapacitive performance41,42. However, it is 
relative lack of report about amorphous FeOOH as a modifier to be used in photocatalysis. Hence, combined with 
above proposed view, it is essential to investigate the role of amorphous FeOOH modifier.

Figure 1. The X-ray diffraction patterns of as-prepared photocatalysts.

Figure 2. The XPS high resolution (A) survey spectra, (B) Bi 4f, (C) V 2p and (D) Fe 2p spectra of A-FeOOH/
BiVO4(8 wt%).
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Herein, a novel amorphous FeOOH modified BiVO4 was successfully prepared, and photocatalytic perfor-
mance for producing O2 from water was investigated. It could be found that, after amorphous FeOOH evenly cov-
ered the surface of BiVO4, as-prepared photocatalysts exhibited better migration of photogenerated charges, and 
stronger visible light responded activity. These positive factors promoted A-FeOOH/BiVO4 presenting improved 
the photocatalytic performance. Hence, this work shows an effective and simple modified method for designing 
and preparing highly efficient photocatalysis materials.

experimental
the synthesis of catalysts. To obtain BiVO4 material, in a beaker, Bi(NO3)3·5H2O (5 mmol) dissolved in 
HNO3 solution (5 mL 3 mol·L−1) and ethylene glycol (20 mL) mixed solution. Then in other beaker, NH4VO3 
(5 mmol) and 0.25 g sodium dodecylbenzenesulfonate (SDBS) were dissolved in hot water (20 mL). After stirred 
for 30 min, above two solution mixed, and the pH of solution was adjusted to 5 using NaOH solution. Stirring for 
60 min, obtained suspension solution was placed into high pressure reactor with PTFE liner, maintained at 180 °C 
for 24 h. After filtration, wash and desiccation, BiVO4 was prepared.

Figure 3. The SEM images of (A) BiVO4 and (B) A-FeOOH/BiVO4(8 wt%) and (C) SEM-EDS mapping images 
of A-FeOOH/BiVO4(8 wt%).

Figure 4. The (A) TEM and (B) HRTEM images of A-FeOOH/BiVO4(8 wt%).

https://doi.org/10.1038/s41598-019-54940-2


4Scientific RepoRtS |         (2019) 9:19090  | https://doi.org/10.1038/s41598-019-54940-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Amorphous FeOOH/BiVO4 was prepared as follows: BiVO4 (400 mg) was mixed into 40 mL deionized water 
containing FeCl3·6H2O and NH4HCO3 (The molar ratio of FeCl3·6H2O and NH4HCO3 is 1:3). Stirring for 60 min, 
the solid powder was obtained through centrifugation, wash and desiccation. According to the theoretical content 
of amorphous FeOOH in amorphous FeOOH/BiVO4, the obtained powder catalysts were marked as A-FeOOH/
BiVO4(2 wt%), A-FeOOH/BiVO4(5 wt%), A-FeOOH/BiVO4(8 wt%) and A-FeOOH/BiVO4(10 wt%), respectively.

characterizations and photocatalytic experiment. Supporting Materials showed their details.

Results and Discussion
Figure 1 demonstrates the XRD of resultant photocatalysts. As can be observed, resultant BiVO4 exhibited highly 
crystalline, and there were some mainly diffraction peaks at 2θ of 18.6°, 28.9°, 30.5°, 34.4°, 35.3°, 39.4°, 42.3°, 
46.1°, 46.6°, 47.3°, 53.3°, 58.3° and 59.9o, which indexed (101), (013), (112), (200), (020), (211), (105), (123), 
(204), (024), (301), (303) and (224) diffraction planes of monoclinic BiVO4

43. For amorphous FeOOH, there was 
no obvious diffraction peak to be found. Hence, in A-FeOOH/BiVO4(8 wt%), XRD diffraction peaks of BiVO4 
could only be detected. The XRD results exposed that amorphous FeOOH had little impact the crystal phase of 
BiVO4. Moreover, no other diffraction peak was found, meaning that resultant samples possessed the high purity.

Whereafter, the XPS of A-FeOOH/BiVO4(8 wt%) was further investigated. As revealed in Fig. 2A, Bi, V, O 
and Fe could be found in the survey XPS spectra, according with the composition of material. Bi 4 f XPS spec-
trum (Fig. 2B) presented 164.3 eV and 159.1 eV two peaks that attributed to Bi 4f5/2 and Bi 4f7/2 in BiVO4

44,45. 
V 2p XPS spectrum (Fig. 2C) had two peaks at 516.3 eV and 524.3 eV, matching with V 2p1/2 and V 2p3/2 in 
BiVO4

46. Figure 2D (Fe 2p XPS spectrum) shows 724.2 (Fe 2p1/2) and 710.8 eV (Fe 2p3/2) that were consistent with 
FeOOH47. Hence, the results of XPS further confirmed that sample contained FeOOH and BiVO4, consistent to 
the XRD.

The morphologies of BiVO4 and A-FeOOH/BiVO4(8 wt%) were seen through SEM. As revealed in Fig. 3, 
BiVO4 and A-FeOOH/BiVO4(8 wt%) exhibited similar star-shaped particles with the size of about 3.5 μm, which 
demonstrated that introduced amorphous FeOOH did not influence on the feature of BiVO4. In addition, the 
elemental compositions of the resultant A-FeOOH/BiVO4(8 wt%) were measured through EDS mapping analysis. 
The related element mapping images were exhibited in Fig. 3C. Clearly, Fe, V, Bi and O only appeared in observed 
view, meaning the successful preparation of A-FeOOH/BiVO4.

Subsequently, to further observe the microstructure of A-FeOOH/BiVO4, transmission electron microscopy 
were also analyzed. As revealed in Fig. 4A, A-FeOOH/BiVO4(8 wt%) exhibited the similar star-shaped particles, 
which was consistent with the SEM. Clearly, amorphous FeOOH could not be observed at low resolution TEM 
image. As a result, the HRTEM of A-FeOOH/BiVO4 (Fig. 4B) was provided. The lattice fringe spacing of 0.237 nm 
attributed to BiVO4 (220) was obviously observed. Moreover, the thickness of ultrathin amorphous FeOOH nan-
olayers was about 2 nm, and evenly adhered on the surface of BiVO4. Amorphous FeOOH nanolayers did not 
reveal a lattice spacing, demonstrating traditional amorphous structure.

Figure 5. (A) Photocatalytic evolution O2 curves and (B) OER over various samples, (a) BiVO4, (b) A-FeOOH/
BiVO4(2 wt%), (c) A-FeOOH/BiVO4(5 wt%), (d) A-FeOOH/BiVO4(8 wt%) and (e) A-FeOOH/BiVO4(10 wt%).

Samples Light source Application Catalyst mass Performance References

WO3 Visible light O2 production 200 mg 246.2 μmol in 5 h 49

BiVO4 nano-leaves Visible light O2 production 100 mg 300 μmol in 5 h 50

BiVO4 Visible light O2 production 1000 mg 186 µmol in 6 h 51

a-Fe2O3 Visible light O2 production 10 mg 10.5 µmol in 15 h 52

A-FeOOH/BiVO4(8 wt%) Visible light O2 production 100 mg 723 µmol in 6 h This work

Table 1. Comparison of photocatalytic activity in previous reports and this work.
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The photocatalytic property over resultant photocatalysts was measured through producing O2 from slitting 
water. Before producing O2, to improve oxygen evolution rate, the sacrificial agent need be added. The previ-
ous report indicated that BiVO4 could exhibit better photocatalytic performance for producing O2 in the NaIO4 
solution than that in the AgNO3 solution48. Meanwhile, to verify this result, we also measured the photocatalytic 
performance for producing O2 over A-FeOOH/BiVO4 photocatalyst in the same concentration NaIO4 or AgNO3 
solution. As shown in Fig. S1, A-FeOOH/BiVO4 photocatalyst in the NaIO4 solution could present high oxy-
gen evolution rate (OER) than A-FeOOH/BiVO4 photocatalyst in the AgNO3 solution. Hence, in this system, 
we selected NaIO4 solution as the sacrificial agent. Then the results of oxygen evolution over all of photocata-
lysts were shown in Fig. 5A. For a series of resultant A-FeOOH/BiVO4 photocatalysts, O2 could be persistently 
produced with reaction time prolonging. Compared with pure BiVO4, resultant A-FeOOH/BiVO4 photocata-
lysts could clearly display the improvement of photocatalytic capacity for producing O2. When loading amount 

Figure 6. (A) Stability test in O2 photosynthesis for A-FeOOH/BiVO4(8 wt%), (B) the XRD of fresh 
A-FeOOH/BiVO4(8 wt%) and used A-FeOOH/BiVO4(8 wt%) and (C,D) The SEM images of used A-FeOOH/
BiVO4(8 wt%).

Figure 7. The UV-Vis absorption spectrum of (a) BiVO4 and (b) A-FeOOH/BiVO4 (8%).
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of amorphous FeOOH was 8%, the sample had the optimal catalytic rate of O2 evolution. Then Fig. 5B gives 
their OER. Their OER were 162.3, 691.7, 1077.1, 1206.3 and 962.8 μmol h−1 g−1 for pure BiVO4, A-FeOOH/
BiVO4(2 wt%), A-FeOOH/BiVO4(5 wt%), A-FeOOH/BiVO4(8 wt%) and A-FeOOH/BiVO4(10 wt%), respectively. 
The OER of A-FeOOH/BiVO4(8 wt%) was around 7.4 folds more than pure BiVO4. In addition, the O2 production 
rates of different materials in previous reports have been in Table 149–52, and compared with this work. Obviously, 
as-prepared A-FeOOH/BiVO4(8 wt%) in this work could present excellent advance.

Furthermore, as we known, the stability is a very significant index to appraise its ability. Thus, recycling tests 
for producing O2 over A-FeOOH/BiVO4(8 wt%) were investigated. As demonstrated in Fig. 6A, the A-FeOOH/
BiVO4(8 wt%) presented relative stable OER, after 6 times cycled experiments, as-prepared A-FeOOH/
BiVO4(8 wt%) still presented 70% photocatalytic activity of fresh sample. Besides, the XRD of used A-FeOOH/
BiVO4(8 wt%) was measured in Fig. 6B. Its XRD did not have obviously change in comparison to fresh A-FeOOH/

Figure 8. The photoluminescence spectra of (a) BiVO4 and (b) A-FeOOH/BiVO4 (8%).

Figure 9. (A) Transient photocurrent property and (B) EIS of (a) BiVO4 and (b) A-FeOOH/BiVO4 (8%).

B

CA. avg=69.55   CA. avg=48.35   

A

Figure 10. Water contact angle of (A) BiVO4 and (B) A-FeOOH/BiVO4(8 wt%).
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BiVO4(8 wt%). And the morphology of used sample was also observed in Fig. 6C,D. It can be observed that used 
sample exhibited a certain aggregate in comparison to fresh sample, which might result in the declined photocat-
alytic property. Besides, the whole morphology did not present great change.

Obviously, it was found that covered amorphous FeOOH could effectively modify BiVO4 to improve catalytic 
activity. Why? To find the reason for promoting effect, some analyzed instruments were tested to investigated 
light response capacity, the photoinduced charge separated rate and surface area of as-prepared photocatalysts, 
which are deemed as the main factors to effect on the photocatalytic performance53–55.

Figure 7 presents the UV-Vis absorption spectrum of resulted BiVO4 and A-FeOOH/BiVO4(8 wt%). Pure 
BiVO4 presented remarkable light absorption between 200 and 800 nm. The absorption edge was 525 nm. Band 
gap was 2.36 eV. After covered by amorphous FeOOH, the light absorption capacity of as-obtained A-FeOOH/
BiVO4(8 wt%) gained the obvious enhancement. Hence, the enhanced photocatalytic property might be 
anticipated.

Photoluminescence (PL) property could analyze the separation and transfer efficiency of photoinduced 
charges56. Therefore, the PL of BiVO4 and A-FeOOH/BiVO4 (8%) were measured in Fig. 8. The emission band 
intensity of A-FeOOH/BiVO4 (8%) was clearly declined in comparison of pure BiVO4. This result implied that 
covered amorphous FeOOH could effectively reduce the recombined efficiency of photoinduced electrons and 
holes, conducing to improve photocatalytic property57.

Subsequently, electrochemistry measurements (photocurrent and EIS measurement) were used to assess 
the separated and transfer efficiency of photoinduced charges. Currently, the stronger photocurrent manifests 
the more effective separation and transfer rate of photo-charges58,59. As illustrated in Fig. 9A, pure BiVO4 and 
A-FeOOH/BiVO4(8 wt%) could produce certain intensity photocurrent signals. And the order of photocur-
rent intensity from strong to weak was A-FeOOH/BiVO4(8 wt%) > pure BiVO4. Evidently, resultant A-FeOOH/
BiVO4(8 wt%) exhibited the better photocurrent intensity, revealing that the separated rate of photogenerated 
charges for A-FeOOH/BiVO4(8 wt%) photocatalyst was significantly improved by covering amorphous FeOOH.

Then EIS techniques were further used to estimate charge separation property. Figure 9B gives the EIS of 
pure BiVO4 and A-FeOOH/BiVO4(8 wt%). Small frequency semicircle radius exposes a better charge transfer 
rate. As demonstrated in Fig. 9B, the semicircle radius of A-FeOOH/BiVO4(8 wt%) was shorter than that of pure 
BiVO4, meaning that A-FeOOH/BiVO4(8 wt%) possessed a higher separation and transport rate of photogen-
erated charges.

Besides, the BET surface area of pure BiVO4 and A-FeOOH/BiVO4(8 wt%) were 4.9 and 5.2 m2 g−1, respec-
tively. The addition of amorphous FeOOH had little effect on the surface area of photocatalyst. Additionally, the 
surface hydrophilic property of photocatalyst was performed to measure interact with the water. As presented 
in Fig. 10A,B, water contact angle (CA) of BiVO4 (69.55°) and A-FeOOH/BiVO4(8 wt%) (48.35°) was measured. 
This result meant that the covered amorphous FeOOH made BiVO4 possess water favorable wetting capacity, 
providing a good chance to oxidate H2O in aqueous environment60.

Hence, combined with above analyzed results, it was found that, the main reason that as-prepare A-FeOOH/
BiVO4 possessed the better photocatalytic performance than BiVO4 could be explained that the former exhib-
ited higher efficiency for separation of photogenerated charges, and stronger strong visible responded activity 
compared with the latter. Hence, the remarkable improvement of photocatalytic capacity for producing O2 was 
obtained.

Whereafter, to speculate the photocatalytic mechanism, the energy structure of BiVO4 might be calculated61

= −Eg E E (1)VB CB

= − +E X E 1/2Eg (2)VB e

Herein Eg, EVB, ECB, X, Ee are band gap of photocatalyst, the valence band potential, conduction band poten-
tial, electro negativity of component atoms, hydrogen scale (4.5 eV), respectively. Here, for BiVO4, X is 6.15 eV62, 
Eg is 2.36 eV (Fig. 7). Hence, the CB and VB potentials of BiVO4 were respective 0.47 and 2.83 eV.

Figure 11. The proposed mechanism of photocatalytic water oxidation over A-FeOOH/BiVO4 photocatalyst.
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Finally, in Fig. 11, a probable photocatalytic mechanism for A-FeOOH/BiVO4 was presented. BiVO4 could 
generate electrons and holes under light irradiation. Due to quantum-tunneling effect (QTE)63,64, formed charges 
from the conduction band of BiVO4 could transfer through amorphous FeOOH, or cationic vacancy network in 
amorphous FeOOH phase65. Then NaIO4 as the electrons sacrificial agent consumed electrons. Because the cati-
onic vacancy might be also activated by trapping hole66, then holes remained on the VB of BiVO4 would migrate 
to amorphous FeOOH surface to produce O2. Hence, in this process, the existence of amorphous FeOOH could 
boost the separation of photoinduced charges for A-FeOOH/BiVO4 system, obtaining the enhancement of pho-
tocatalytic performance.

conclusions
We successfully produced a novel amorphous FeOOH modified BiVO4, and investigated it photocatalytic perfor-
mance for producing O2 from water. It could be found that, amorphous FeOOH modified BiVO4 exhibited higher 
migration rate of photogenerated charges, and strong visible responded capacity than BiVO4, which resulted that 
amorphous FeOOH modified BiVO4 could present better photocatalytic property than BiVO4, and kept excellent 
performance and structure stability. Hence, this work provides a simple and inexpensive modified method for 
design and synthesis of effective photocatalysts.

Received: 21 September 2019; Accepted: 19 November 2019;
Published: xx xx xxxx
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