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Contribution of changing 
precipitation and climatic 
oscillations in explaining variability 
of water extents of large reservoirs 
in Pakistan
Ibrar ul Hassan Akhtar   1,3 & H. Athar 1,2*

Major threat that Pakistan faces today is water scarcity and any significant change in water availability 
from storage reservoirs coupled with below normal precipitation threatens food security of more 
than 207 million people. Two major reservoirs of Tarbela and Mangla on Indus and Jhelum rivers are 
studied. Landsat satellite’s data are used to estimate the water extents of these reservoirs during 
1981–2017. A long-term significant decrease of 15–25% decade−1 in water extent is found for Tarbela 
as compared to 37–70% decade−1 for Mangla, mainly during March to June. Significant water extents 
reductions are observed in the range of −23.9 to −53.4 km2 (1991–2017) and −63.1 to −52.3 km2 
(2001–2010 and 2011–2017) for Tarbela and Mangla, respectively. The precipitation amount and 
areas receiving this precipitation show a significant decreasing trend of −4.68 to −8.40 mm year−1 
and −358.1 to −309.9 km2 year−1 for basins of Mangla and Tarbela, respectively. The precipitation 
and climatic oscillations are playing roles in variability of water extents. The ensuing multiple linear 
regression models predict water extents with an average error of 13% and 16% for Tarbela and Mangla, 
respectively.

The Asian Waters and River Basins
Fresh water resources being scarce can’t be taken as granted and there is a need to identify the hotspots for adap-
tation in major river basins of Asia1. The Indus river basin (IRB) has been identified as most vulnerable to change 
in water availability due to unpredictable glacier melt and uncertain future precipitation regime2–4. The large-scale 
irrigation systems connected to Indus, Ganges, and Yangtze basins are now facing high irrigation water demand 
to secure the food for over a billion people through increased crops cultivation and improved yields5,6.

Global surface water for irrigation has significantly increased through the construction of large reservoirs 
during the 20th century7. By the end of 20th century, irrigation water supply from reservoirs has increased from 
5% to 40% as compared to the start of the 20th century. One of the main reasons is an increase in irrigated areas 
and building of large reservoirs at global scale. For instance, an evaluation of 1300 reservoirs in California, USA, 
revealed that 200 reservoirs storage capacity is 45 million acre feet (MAF), which subsides the impacts of extreme 
climate events8. Countries like USA have benefited from economic and societal development through continual 
construction of dams/reservoirs9. Although, major reservoirs always remained a controversial topic, however, 
changing climate along with an increase in population and higher water demands are leading to question: how 
well is our assessment of variability in water storage reservoirs? The IRB like other major river basins in Asia10, 
was and is facing most of key challenges related to ongoing climate change events triggered by population growth, 
environmental degradation, urbanization, poor water governance, and political instability. The IRB system is 
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spread across four countries namely, Pakistan, India, Afghanistan and China11. It is semi closed with a foremost 
opportunity to add value to water through storages12.

Water Situation in Pakistan
The Indus basin irrigation system representing the largest irrigation network of world has only two large storage 
reservoirs namely, Tarbela on Indus river and Mangla on Jhelum river in Pakistan5. Any abrupt change in water 
supply from these upstream reservoirs coupled with downstream below normal precipitation leads to high losses 
to Pakistan’s economy and threatens the food security. There is no single large reservoir on Chenab river, mainly 
due to terrain limitation and lack of water resource planning13. Increased population and geo-political landscape 
are leading towards scarcity in available water resources14. Irrigated economy is based on GDP contribution of 
major crops, livestock and other crops which are under threat of changing climate15. Water coming from high 
mountain areas of IRB is a key element of livelihood as it feeds the Indus basin irrigation system16. Water res-
ervoirs are mostly considered as a source of hydro energy17. Pakistan has insufficient water storage capacity as 
compared to other countries like USA, China and India18. Water reserves in Tarbela and Mangla support irrigated 
system spread across Punjab and Sindh for only 20 days as compared to 220 days in India19,20. Pakistan’s smaller 
storage capacity makes it essential to invest in reservoirs, given highly variable river flows and changing climate. 
It is proposed that an integrated water resource management of IRB be adapted, given that it is a highly climate 
vulnerable country and being dependent largely on water originating from high mountains21.

A detailed analysis at river basin scale indicates that irrigation reservoirs are able to make more water avail-
able in specific seasons only, especially in some Asian basins, where natural water availability is highly variable 
throughout the year7. Two largest reservoirs of Pakistan constitute the sole sources of water availability for irri-
gation purposes and have operational impacts on various societal sectors such as generation of 60% of hydro-
power. At the same time, these reservoirs lay foundation for food security for a population of over 207 million22. 
Pakistan is facing rising water scarcity which is leading to socio-economic impacts on various developmental 
sector’s growth23. Tarbela and Mangla reservoirs are multi-purpose storage reservoirs and supply irrigation water 
to 18.2 million hectares with a distribution of 84% for Kharif/summer and 16% for Rabi/winter crops24,25. Part of 
the upper Indus river basin (PUIRB) of two reservoirs covers around 0.171 million square kilometer (km2), and 

Figure 1.  Study area showing the Tarbela-Indus and Mangla-Jhelum reservoirs, associated basins and sub-
basins of PUIRB. Tarbela is the only major reservoir in PUIRB stretching from Gilgit in north Karakoram to 
eastern and central Himalaya in disputed Kashmir and in north western India. Mangla reservoir is spread across 
Azad and Jammu Kashmir and considerably smaller in term of basin size. The ALOS GDEM based topography 
shows the diversification of ecosystem that exists in basins of both reservoirs. Two Landsat satellite grids show 
the image foot prints. Landsat satellite data were obtained from the Earth Resources Observation and Science 
(EROS) Center of the United States Geological Survey, USA (https://earthexplorer.usgs.gov/) and ALOS GDEM 
data were obtained from ALOS Science Project, Earth Observation Research Center (EORC), Japan Aerospace 
Exploration Agency (JAXA) (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/).
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is spread across Gilgit Baltistan, Khyber Pakhtunkhwa, Azad and Jammu Kashmir in Pakistan and in disputed 
occupied Kashmir in India (Fig. 1 and Extended Table 1).

The hydrology and water management department of Pakistan, referred to as water and power development 
authority (WAPDA) provides information related to water reserves in the two large reservoirs. Water reserves are 
around 9.87 MAF in August, 2019 as compared to 6.43 MAF in August, 2018 which is still lower than last five 
years (2014–2018) average of 10.6 MAF during August and is associated with a big gap in storage capacity and 
inflows26. This is due to lower than normal precipitation in the basin areas triggered by climate change during 
201827. The situation can be alleviated through only exceptional monsoon or early glacial melting. Thus, a detailed 
study incorporating these recently changing precipitation patterns is timely for assessment of their influence on 
the two large water reservoirs of Pakistan.

Climatic Variability and Water Reservoirs in Pakistan
The large reservoirs are considered as an integral part of the surface water hydrology through their influential role 
in diluting the extreme events of floods and drought along with optimum water resource management at regional 
scale28. These large reservoirs have undoubtedly improved the socio-economics of the countries by improving 
the economic growth as well as by alleviating poverty29. Large reservoirs have both positive impacts by providing 
the water during deficit periods and negative impacts by changing the local basin environment through reservoir 
effects30. A recent study has demonstrated that how precipitation and El Niño Southern Oscillations or ENSO 
can be linked with remote sensing data-based land covers through vegetation proxies in Indonesia31. In irrigated 
areas, vegetation sensitivity is more linked with water availability through storage reservoirs. We attempted to 
link remote sensing-based water extents (WEs) of the two reservoirs with gridded precipitation and climatic 
oscillations (COs) of ENSO, North Atlantic Oscillations or NAO and Indian Ocean Dipole oscillations or IOD 
in this study.

Thus, an updated view of the monthly, seasonal and inter-annual variability of WEs of large reservoirs along 
with role of upstream precipitation, precipitation surface area and COs is provided. This will deliver the basic 
information about WE of reservoirs which is considered as an equivalent to water storage volume32–34. This will 
also help the policy makers for informed decisions related to future water apportionment and allocations under 
normal, flood, and drought conditions and ensure more objectivity in water sharing among various stakehold-
ers35,36. Long term (1981–2017) Landsat satellites data are analyzed to optically estimate the WEs of the Tarbela 
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Figure 2.  Optical Landsat satellites series data (3, 5, 7 and 8) are used to extract the WEs for Tarbela and 
Mangla reservoirs covering 37 years (1981–2017). (a) Shows extracted WEs from multispectral Landsat imagery 
based on NDWI and conversion to vector layer. (b) MET and AGR seasons based temporal evolution of WEs 
for Tarbela (1992–2017) and for Mangla (1993–2017). Four out of six seasons show major reduction in WEs for 
Tarbela & Mangla starting from Pre Rabi to Pre Kharif (WDs to Pre MS) covering December to June. Landsat 
satellite data were downloaded from the Earth Resources Observation and Science (EROS) Center of the United 
States Geological Survey, USA (https://earthexplorer.usgs.gov/).
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reservoir in Khyber Pakhtunkhwa (34.09°N & 72.70°E) and Mangla reservoir in Azad and Jammu Kashmir 
(33.15°N & 73.64°E), for the first time (Fig. 2). This is to explore the co-variations between WEs and precipitation 
amount, surface area receiving this precipitation at basin and sub-basin scale, and their possible linkages with 
global COs (ENSO, NAO and IOD).

Results
Remote sensing and WE variations.  Monthly and seasonal variability in WEs are presented for the study 
period of thirty-seven years (Fig. 3). Monthly WE variability shows distinctive temporal profile for both reser-
voirs. Tarbela shows less steep decrease and increase in WEs as compared to Mangla. October represents the first 
month after the end of Monsoon (MS) season in PUIRB and start of Rabi cropping season in downstream Punjab. 
These WE variations have increased in last 15 to 25 years and reached to dead storage level during 2000 and 2010 
for Mangla and Tarbela, respectively.

Mangla WE reaches its dead level by March of each year and ranged between 22 km2 (2004) and 112 km2 
(2007). This is due to the fact that basin area of the Mangla is smaller, less glaciated, and monsoon precipitation 
is a major source of water accumulation. Tarbela reservoir reaches its dead water level by the end of May each 
year and ranged between 35 km2 (2010) and 185 km2 (2015). This relatively prolong time to reach the dead level 
in Tarbela is due to the large basin area as well as more glaciated areas contributing to water inflows to reservoir 
along with precipitation received from Western Disturbances (WDs) as compared to Mangla.

Both reservoirs have seasonality in their WEs. Mangla reservoir reaches its maximum WE by August and 
ranged between 181 km2 (2004) and 304 km2 (2015). Tarbela reservoir reaches its maximum by end of September 
each year and ranged between 175 km2 (2001) and 249 km2 (2005). In comparison, worst/best years in term of 
WEs are observed to be May, 2010/September, 2005 and April, 2000/September, 2014 for Tarbela/Mangla res-
ervoir, respectively. Seasonal maximum WEs of 171/249 km2 are observed during 2008 and 2005 for Tarbela in 
comparison to 26/256 km2 for Mangla.

Tarbela reservoir showed maximum variations in WEs during Post WD/Post Rabi and Pre MS/Pre Kharif 
seasons ranging from 49 km2 to 188 km2. Mangla showed variations throughout six seasons. Tarbela and Mangla 
showed highest/lowest WEs during MS and Post Kharif of 2005/Pre MS and Pre Kharif of 2010 and MS and 
Kharif of 2015/Post WD and Post Rabi of 2000. These variations are considered as a major influencing factor in 
terms of water availability for downstream crops production. We explored these WE variations of the reservoirs 
by linking them with upstream precipitation regimes, and with global COs.

Precipitation and WE trends.  The European Centre for Medium-Range Weather Forecasts (ECMWF) 
based ERA Interim data hereafter referred to as ERA and Asian Precipitation Highly-Resolved Observational 
Data Integration towards Evaluation (APHRODITE) based data hereafter referred to as APH are two independ-
ent gridded precipitation datasets at global and regional scales, respectively10. Total precipitation amount (Tp) and 
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Figure 3.  The WEs of Tarbela and Mangla reservoirs at (a) monthly and (b) seasonal scale during 1981–2017. 
(a) Monthly WEs show less variable curve representing the water storage in Tarbela as compared to Mangla 
during 1981–2017. This is mainly attributed to hydro-meteorological regimes in the respective basins. 
Driest/Wettest months recorded are May, 2010/ Sep, 2005 and Apr, 2000/ Sep, 2014 for Tarbela and Mangla, 
respectively. (b) The MET and AGR seasons also showed distinct WE behavior for both reservoirs.
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precipitation receiving surface area (Ap) are computed for Tarbela, Mangla and for overall basin. The ERA Tp and 
APH Ap showed significant annual linear decreasing trend and is associated with ENSO episodes (Fig. 4). The 
APH Ap showed significant decreasing trends of −358.1 (R2 = 0.62), −309.9 (R2 = 0.39) and −319.1 (R2 = 0.43) 
km2 year−1 for Mangla, Tarbela and overall basin, respectively. The ERA Tp showed significant negative linear 
trends of −4.68 to −8.40 mm year−1 (R2 = 0.15 to 0.20). No significant trend is observed for APH Tp and ERA 
Ap. Categorized annual ENSO episodes suggest that the decreases in Tp and Ap are linked to El Niño and La Niña 
events. This highlights that there are long term decreasing trends in upstream Tp and Ap linked to COs.

Decadal percent changes are computed in WEs, Tp, and Ap (Extended Fig. 1, Extended Table 2). Tarbela 
reservoir WE shows a reduction of 15–25% decade−1 with reference to normal based on 1981–2017. Maximum 
negative change has occurred during Post WD (Post Rabi) and Pre MS (Pre Kharif) with more than 50% change 
decade−1. The APH Tp and APH Ap are found more variable during Pre WD (Pre Rabi) while during rest of sea-
sons, the change is around ±10% decade−1. The ERA Tp shows a positive change of 15 to 20% decade−1 during 
1981–2000. Least decadal changes are observed for the ERA Tp. The Mangla reservoir showed even more seasonal 
fluctuations in WE at decadal scale. This WE has suffered highest decline of more than 75% decade−1 during Post 
WD, Pre MS, MS and Post Kharif seasons of 1991–2000. These changes have been observed in the range of 37% to 
70% change decade−1 during 2001–2017. Similar variation patterns are observed in ERA and APH Tp for Mangla 
reservoir albeit with higher amplitudes.

Significant decadal changes are observed for WEs in the range of −23.9 to −53.4 km2 (1991–2017), ERA Ap 
of −223.8 to −242.2 km2 (2001–2010), and APH Ap of 228.9 to 196.1 & −277.6 to −284.7 km2 (1981–1990 and 
2001–2007) during MET and AGR seasons in Tarbela basin. Mangla basin showed significant decadal change in 
WEs in the range of −63.1 to −52.3 km2 (2001–2010 and 2011–2017) and in APH Ap ranging from 276.0 to 232.9 
& −325.4 to −308.9 km2 (2001–2007 and 1981–1990) during MET and AGR seasons.

Relationship with COs and precipitation.  The variations in WEs are correlated with Tp, Ap and Sea 
Surface Temperature Anomalies (SSTA) for the three different COs (Fig. 5). Mangla WE showed significant 
negative correlation during January, April and October attributing to less precipitation from WD except for 
September. Significant positive correlation was found during September owing to strength of the MS ERA Tp. 
The Tarbela and overall basin revealed significant negative correlations with Tp and Ap at varying monthly 
timescale. The COs have both positive and negative correlations with Mangla and Tarbela WEs, depending upon 
the month of the year. Mangla reservoir is significantly sensitive to positive phase of the ENSO and the IOD. 
Tarbela correlations showed more strong positive relationship with ENSO (January to June) and NAO (January) 
and negative correlation with the IOD. Overall basin showed strong negative correlation between WE change 
and the NAO.

Further, COs along with Tp and Ap are correlated at monthly scale to assess their co-variability over the Tarbela, 
Mangla and overall basins (Extended Fig. 2). Correlation magnitude and sign depends upon the geographical 
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Figure 4.  ERA and APH data based linear trends for Mangla-Jhelum basin, Tarbela-Indus basin and overall 
basin. The ERA based Tp and APH based Ap show a significant decrease of 5.38 mm year−1, 4.68 mm year−1, 
8.40 mm year−1 and 319 km2 year−1, 310 km2 year−1 and 358 km2 year−1, respectively. Two very strong El Niño 
events of 1982–1983 and 1997–1998 reduced Tp (from 481 mm year−1 to 292 mm year−1 and 591 mm year−1 to 
446 mm year−1 for 1982–1983 and 1997–1998). A similar decrease in Tp has been observed for Mangla-Jhelum 
basin during 1982–1983 and 1997–1998 (from 358 mm year−1 to 292 mm year−1 and 438 mm year−1 to 346 mm 
year−1, respectively). The Ap also decreased from 50233 km2 year−1 to 42442 km2 year−1 and 48286 km2 year−1 
to 39758 km2 year−1 for Tarbela during 1982–1983, and 1997–1998. Mangla also shows a decrease in Ap during 
1982–1983, 1997–1998 and 2007 (44180 km2 year−1 to 38432 km2 year−1, 40199 km2 year−1 to 34740 km2 year−1 
and 36543 km2 year−1 to 30230 km2 year−1, respectively). Strength of ENSO phases are represented by VS (very 
strong), S (strong), M (moderate), W (weak) and N (neutral).
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location of the reservoir and time of the year. The ENSO was observed as most influencing the Tp and Ap for 
Mangla basin followed by Tarbela basin and overall basin than NAO and IOD. The ENSO and Tp over Mangla 
basin showed the highest co-variability. The ENSO showed maximum range of variability in cumulative SSTA 
(CSSTA) from ≤−9.5 to ≥9.5 °C year−1 and least CSSTA is observed for IOD (≤−1.8 to ≥9.5 °C year−1). Flood 
and drought years (provided by Pakistan Meteorological Department) are compared with the identified extreme 
wet to extreme dry years for ENSO, NAO and IOD oscillations (Extended Fig. 3). Three reported extreme floods of 
2010, 2011 and 1992 showed association with extreme wet class for ENSO, NAO and IOD, respectively. The ENSO 
and IOD is observed to link more with drought events in Pakistan as compared to NAO. In general, south Asia 
is also showing an increasing trend of flood events from 6 in 1981 to 20 in 2017 as compared to drought events.

Mann Kendall (MK) and Sen’s slope trend analysis has been applied at three month running mean, as well as 
at seasonal and annual time scale SSTA for COs (Extended Tables 3 and 4). No significant trends are observed 
in ENSO SSTA at three months and seasonal time scales. The Tarbela, Mangla and overall basin referenced years 
showed significant decreasing trend of NAO SSTA from −0.03 to >−0.06 °C month−1 year−1 for MJJ, JJA and JAS 
of summer season (summer season extends from May to September). Tarbela reference years show no significant 
trend in IOD based SSTA. The IOD shows significant increasing trend of 0.010 to >0.014 °C month−1 year−1 for 
SON, OND and NDJ during winter season (winter season extends from November to March). There is a signif-
icant increase in summer as well as in winter IOD SSTA of 0.011 to >0.024 °C month−1 year−1. The NAO based 
SSTA displayed significant decreasing trends from 0.020 to >0.243 °C season−1 year−1, for MS and Kharif seasons. 
The Tarbela related IOD SSTA is not showing any significant trend, while Mangla is displaying an increasing trend 
of 0.010 to >0.014 °C season−1 year−1 in IOD SSTA for Pre WD (Pre Rabi) and Post MS only.

Sub-basin scale trends analysis.  Seasonal MK and Sen’s trends analysis is presented for ERA and APH 
based Tp and Ap at sub-basins scale (Fig. 6). The ERA Tp shows a significant decreasing trend of 4.7 to 5.2 mm 
season−1 year−1 in Jhelum, Kunhar, Neelum sub-basins of Mangla and upper Indus sub-basin of Tarbela during 
Post WD. Gilgit sub-basin is displaying a significant decreasing trend of 2.3 to 2.5 mm season−1 year−1 in ERA 
Tp during Pre MS season. The APH Tp is displaying significant decreasing trends in Post WD mostly for the 
sub-basins of Tarbela (1.9 to 5.7 mm season−1 year−1) as compared to Neelum sub-basin of Mangla (2.2 mm 
season−1 year−1). The ERA Ap suggests a significant decrease of 11 to 152 km2 season−1 year−1 only for Tarbela 
sub-basins of Gilgit, Hunza, lower part of upper Indus, Shingo, Upper Indus and Zanksar. However, APH Ap 
shows maximum seasonal decreasing trends across sub-basins of both Mangla and Tarbela. Jhelum sub-basin of 
Mangla shows a significant seasonal decrease of 114 to 148 km2 season−1 year−1 during Pre WD, WS, Post WD 
and Post MS. The sub-basins of Kunhar, Neelum and Poonch are displaying a decrease in Ap only in Post WD 
(66 to 126 km2 season−1 year−1). For Tarbela, 25 out of 26 sub-basins show significant decreasing trends of 48 
to 228 km2 season−1 year−1 during Post WD. The MS precipitation is significantly decreasing only in Gilgit and 
Shyok sub-basins.

Multiple linear regression models.  Multiple linear regression models (MLRs) are developed for the pre-
diction of WEs of the two reservoirs using monthly variables of ENSO, NAO, IOD, ERA and APH Tp & Ap 
(Table 1). We have addressed the issue of over fitting, high R2 value, and spurious relationships for 148 predic-
tor variables (n = 19,388) through steps of principal component analysis (PCA), and multi-collinearity removal 
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precipitation but for different months. Significant positive correlations are observed for ENSO and IOD only.
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(variance inflation factor <2.0). The Tarbela WE can be predicted based on stepwise MLR model using 8 different 
explanatory variables of ENSO, ERA Tp of T6, T25, GB520P, GL5D, ERA Ap T3, T9 and APH Ap T9 (training 
data set R2 = 0.626; RMSE = 33.01 km2 and validation data set with same R2 and RMSE = 69.92 km2). The ERA 
Tp of disputed Kashmir sub-basin of T25 is observed as the most influential variable. Best model approach based 
on best adjusted R2 is employed to identify best MLR model for Mangla reservoir. The WE of Mangla can be pre-
dicted by using 10 variables of NAO, ERA Tp M1, M2, APH TpGL5, GL5D, APH Ap M4, M5, GL5, GL5P, GL5D 
(training data set R2 = 0.509; RMSE = 48.16 km2 and validation data set with same R2 and RMSE = 92.47 km2). 
The APH Ap in GL5P sub-basin is observed as the most influential variable.

During MLRs model development, all possible predictor variables-based combinations are evaluated to assess 
their individual role as well as their combined role in WEs predictions. These combinations are (i) COs (ii) ERA 
Tp and Ap (iii) APH Tp and Ap (iv) ERA + APH Tp and Ap (v) COs+ ERA Tp and Ap (vi) COs+ APH Tp and Ap 
and (viii) All predictor variables. Our resultant MLR model presented in Table 1 is the best one and showed no 
higher relationship as compared to models based on any of the above predictor’s combinations.

The above presented WEs prediction models provide real time information to be incorporated into water 
accounting and sharing plan. Though, the accuracy of the models is limited, nevertheless the developed models 
hold merit to be considered for further engagement of variables in future research studies. Inclusion of the COs 
nevertheless in model is based on the fact that the global COs are modulating the weather systems responsible for 
the precipitation regimes in the upper Indus Basin. The study thus suggests that there are connections between 
the reservoir’s WE and Tp and Ap in the respective basins. Thus, WEs are predicted somewhat skillfully for better 
water management.

Discussion
The presented analysis provides an independent (remotely sensed) information set about WEs of the reservoirs 
at both monthly and seasonal scales which was previously not available for irrigation water distribution for crops 
production downstream. We examined the upstream precipitation behavior of both the reservoirs to link WE 
behavior with it. Interestingly, ERA based Tp and APH based Ap show a significant decreasing trend. This high-
lights that both Tp and Ap are inherently different as one is modeled and the other one is based on a dense net-
work of meteorological stations.

COs play a role in a hydrological cycle at global, regional and basin scales37. The ENSO is a complex climate 
system which demands improvements in climate related products and services to secure billions of population 
against vulnerability to natural disasters38. Climate system of Pacific Ocean had faced three major El Niño events 
in the 20th Century i.e., 1997–1998, 1982–1983 and 1925–192639. These COs are responsible for specific weather 
regimes on land at global and regional scales by influencing the precipitation patterns, temperature regimes, and 
atmospheric pressures changes. Winter precipitation in western Himalaya is linked to NAO affecting WDs40. A 
large amount of precipitation in western Himalayas is governed by positive NAO phase as compared to lower 
amount in negative NAO phase based on ERA-40 and 20CR precipitation datasets41.

Mangla reservoir WE variability is different from Tarbela as its basin is situated in peak MS belt and less influ-
enced by the WD. However, Tarbela reservoir WE is equally influenced by WD and MS precipitation. The ENSO, 
NAO and IOD are observed to directly and indirectly impact the precipitation weather system at 6–12 months 
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Figure 6.  The MK and Sen’s slope trend analysis for ERA and APH based Tp and Ap at sub-basin scales. 
Bars with four-point star represent the significant trends at 95% confidence level. The ERA Tp and Ap show 
decreasing trends mostly in Mangla and some of Tarbela sub-basins during post WD and pre MS. Most of the 
significant decreasing trends are observed for APH Tp and Ap throughout the sub-basins of PUIRB during post 
WD, pre MS and MS seasons.
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in advance at global scale as compared to WEs with 1–3 months at local scale39. Annual cumulative SSTA based 
indices classification scheme indicates higher variability for ENSO as compared to NAO and IOD. All three COs 
are found to be associated with flooding events in Pakistan which identify the interactions among them. Drought 
is found to be more influenced by the ENSO and IOD signifying the role of summer season.

Sub-basin analyses are carried out to identify hotspot sub-basins as well as hotspot seasons in Tarbela and 
Mangla basins in term of changing Tp and Ap. The ERA Tp trends show more significant decrease in three 
sub-basins (26840 km2) of Mangla and five sub-basins of Tarbela (18479 km2) during Post WD as compared to Pre 
MS which affected only three sub-basins of Gilgit for Tarbela (12743 km2). In contrast, all sub-basins of Tarbela 
are showing a decrease in APH Tp during Post WD as compared to one sub-basin of Mangla. The Post WD season 
is identified as the one displaying most changing Tp for Tarbela as well as for Mangla which could be a reason of 
early water shortage for summer crops. Both ERA and APH based Ap are showing even more decreasing trends 
than Tp. All sub-basins of Tarbela and Kunhar, Neelum and Poonch sub-basins of Mangla are showing a decrease 
in spatial extent of precipitation during Post WD season. The Jhelum sub-basin is found as changing hotspot of 
Mangla basin both for WD as well as for MS Tp. The sub-basins of Gilgit, Hunza, Shingo, upper Indus, Zanksar 
and Shyok are acting as hotspots in term of Ap decrease.

The MLRs are developed for prediction of WEs to provide an early information to water planning and manage-
ment stakeholders to ensure irrigation water supply downstream around critical growth stage of crops. Prior to this 
study, water supply is planned based on short to long term weather forecasting only. This study suggests that there 
is connection between the WEs and upstream Tp and Ap. It is reported that water accounting by Indus river system 
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Table 1.  Multiple linear regression models are developed to predict the WEs of the Tarbela and Mangla 
reservoirs. Three different regression models’ approaches are employed using different number of predictor 
variables at monthly scale. Difference in number of predictors for the Tarbela and Mangla is due to different 
number of sub-basins. Best models are showed in bold (with highest R2 value). Most influential predictor is also 
identified based on its maximum contribution to model performance and is displayed in bold in extreme column.

https://doi.org/10.1038/s41598-019-54872-x


9Scientific Reports |         (2019) 9:19022  | https://doi.org/10.1038/s41598-019-54872-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

authority13 does not take into account precipitation, evaporation and other information essential for water account-
ing25,42. Briscoe and Qamar indicated that Pakistan water apportionment accord of 1991 needs well calibrated systems 
for water storage reservoirs monitoring, river flows and transparent along with real time reporting43,44. Overall, IRB 
water balance lacks accuracy and large amount of water remains unaccounted. Remotely sensed data availability has 
increasing capacity in recent past to provide vital information to assess the poorly monitored IRB45. This research 
study will add on to possible solution related to better IRB water resource management by providing relevant local 
climate model construction being identified as one of knowledge gap in newly approved National Water Policy 2018 
of Pakistan23.

Conclusions
We pointed out that Landsat satellites-based observed WE of reservoirs for the period of 1981–2017 are an indi-
cator of water storage status. These are linked with precipitation amount, and surface area receiving the pre-
cipitation in upstream basins, along with climatic oscillation specific sea surface temperature anomalies. These 
satellites-based WE assessments will ensure the downstream water and food security to millions of people inside 
Pakistan by integrated incorporation of available forecasts of precipitation, spatial area receiving this precipitation  
inside basins of these reservoirs, along with ENSO, NAO and IOD based SSTA anomalies, as pointed out in this 
study. Previously, such linking is only partially explored in the form of selected stream inflow simulations at spe-
cific gauge points based on hydrological models.

A range of WE models are developed and presented in this study. Using the multiple linear regression mod-
els that best explain the variability in WE, the relevant stakeholders can estimate the WE year-round for water 
management and for research and development. Precipitation behavior in Tarbela sub-basins T3 (2283.2 km2 
with 10.7 km2 of glaciated area) and T25 (7201.1 km2 with 179.7 km2 of glaciated area) is dominantly relevant 
for WE variability in Tarbela reservoir. Similarly, precipitation behavior in sub-basin of GL5P (17327.0 km2 with 
180.8 km2 of glaciated area) is more pertinent to WE variability in Mangla reservoir, situated in region of Pakistan. 
Given the considerable multifaceted challenges related to long term weather monitoring in high mountain areas, 
our obtained results in this study provide information for policy makers/managers for sub-basins where more 
careful weather monitoring is suggested out of all sub-basins for each reservoir, separately.

Methods
The IRB is spread across four different countries of Pakistan, India, Afghanistan and China, of which major part 
lies in Pakistan followed by India, and the other two countries11. We selected the study area covering two major 
water reservoirs in Pakistan constructed on rivers of Indus and Jhelum, which are a major source of water (Fig. 1). 
Every reservoir receives water from a particular basin area and boundary delineation is a primary requisite for 
research related to hydrology, water resource management, climate change impacts, agricultural water productiv-
ity, and environmental and watershed management46–52.

We used an integrated approach for this study (Extended Fig. 4). Satellite data based digital elevation models 
(DEMs) has been widely used for basin boundary delineation using manual to automatic procedures53,54. We used 
ALOS PRISM 30 m resolution global DEM for basin delineation based on semi-automatic basin and sub-basins 
extraction approach called soil and water analysis tool (SWAT)55. This SWAT tool uses flow direction analysis based 
on D8 flow routing algorithm56,57. The extracted basin boundary after refinements represents around 170,600 km2 
and lie in the upper IRB under study. Pakistan’ PUIRB is spread across 96,700 km2 and out of it 19,100 km2 is gla-
ciated with around 8000 glaciers58,59. Rest of the PUIRB basin lies in disputed area of Kashmir with an area of 
73,900 km2 that includes glaciated area of 6,600 km2 with 4900 glaciers. The PUIRB basins consist of a number of 
sub-basins and are documented for both reservoirs and various rivers basins (Extended Table 1). The Tarbela-Indus 
basin consists of 26 sub-basins linked with 9 sub-basins of Gilgit, Hunza, lower part of upper Indus, Shigar, Astore, 
Shyok, Shingo, Zanskar and upper Indus (138,505 km2). Tarbela specific basin is fed by 14 different rivers of Gilgit, 
Khunjrab, Shimshal, Indus, Hunza, Shigar, Astore, Shyok, Nubra, Hushey, Shingo, Dras, Suru and Zanskar. The 
Mangla-Jhelum consists of five sub-basins linked to five rivers of Neelum, Jhelum, Kunhar, Kanshi and Poonch rivers 
(32,095 km2).

We used annual, seasonal (Meteorological or MET and Cropping or AGR) and monthly time scales for the 
current study. Summary of the specific seasons is presented in Extended Table 5. The MET seasons in Pakistan are 
characterized by two major weather systems which are WD linked to winter precipitation and MS system linked 
to summer precipitation. Irrigation water distribution through reservoirs is adjusted in view of the two cropping 
seasons of Kharif (summer) and Rabi (spring). Cotton, rice, sugarcane and maize are major summer crops, while 
wheat is most dominating spring crop in Pakistan60,61.

Landsat satellite data.  The Landsat satellite 3, 5, 7 and 8 data covering period of 1981–2017 are used to 
extract the WEs of both reservoirs (Extended Table 6). Landsat grid number 150/36 covers Tarbela reservoir while 
grid number149/37 covers Mangla reservoir. A total of 404 cloud free Landsat satellite images are downloaded 
and processed using an open sources QGIS tool. The normalized difference water index (NDWI) is computed 
using modified NDWI to detect the WE of reservoirs62. All NDWI images are subsetted using reduced area of 
interest (AOI) to optimize the size of the images for efficient processing based on developed ArcGIS models. The 
NDWI threshold of 0.00–0.20 is used to extract the WE more effectively in the form of binary raster (1 = water 
and 0 = no water) as recently proposed63,64. The NDWI binary images are further vectorized to get the WE. All 
peak storage WEs of August to October months are used to establish both reservoirs’ maximum boundary. All 
AOI specific multi-temporal WEs contain some water features outside the reservoir site and are removed using 
vector clipping approach developed in ArcGIS model environment. The Landsat 7 satellites scan line corrector 
(SLC) error is corrected in vector layer by using polygons aggregation tool in ArcGIS (see Section on Codes and 
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ArcGIS model) instead of using gap filling approach in raster domain. We measured the approximate size of 
missing data line width size and used a distance parameter of 320–360 m for error correction. The Mangla WE 
is revised by subtracting approx. 58.3 km2 from computed WE after 2009 till 2017 due to Mangla raising project 
(2004–2009).

Gridded precipitation data.  Gridded precipitation datasets may be used as proxy to in situ data for 
ungauged locations with varying cons and pros64. The APH data with 0.25° × 0.25° spatial resolution is used for 
the period of 1981–200765,66. The APH precipitation data is based on dense rain gauge network of 5000–12000 
stations and is primarily generated through distance weighting spatial interpolation method. We downloaded 
the APHRO MA V1101 data spread across 60° E–150° E, 15° S–55° N. The APH precipitation data set is selected 
because of its fine spatial resolution and performance relative to several other existing gridded precipitation data 
sets available for Pakistan67–69, as well as in similar climatic conditions70,71. The daily ERA precipitation data with 
0.25° × 0.25° spatial resolution are also employed72. The ERA Web API and python procedure is used for down-
loading the daily precipitation (parameter = 228.128) in annual netcdf file format. Both gridded precipitation 
data are extracted based on reservoir’s specific basin extents using ArcGIS automatic data extraction tool in the 
database format (dbf). These daily precipitation dbf files are converted to annual files using Visual Basic macro 
developed using Microsoft excel.

The APH and ERA precipitation variables of Tp and Ap at monthly, seasonal and annual time scales are com-
puted using Eqs. (1 and 2), respectively.

= + + + … +Tp p p p p (1)d d d dn1 2 3

where pd1 is the observed precipitation amount on day 1 and so on. The Ap is based on summing up the grid box 
areas of 0.25° × 0.25° or 625 km2, where the observed precipitation exceeds the threshold of 0.1 mm day−1. An 
objective definition of threshold is difficult and depends on spatial resolution of the data73:

∑= −Ap a H p x( )
(2)i

i i 0

where ai is the area of grid box, pi is daily precipitation and x0 is the threshold criterion. The H( )⋅  is the Heaviside 
function in Eq. (2).

CO indices.  We assessed the statistical relationship between the reservoir’ WEs variability and COs indices 
of ENSO, NAO and IOD based on SSTA37,74,75. Three month running average approach is used to compute the 
SSTA anomaly. Selection of specific indices are based on sensitivity of winter and summer precipitation in PUIRB 
of Pakistan and have already been used in numerous earlier studies76,77. The WEs of reservoirs are found to be 
related with SSTA based indices as evidenced via correlation analysis. The annual CO classification scheme has 
been proposed using cumulative SSTA by developing 11 classes based on percentiles taking into account nega-
tive/positive phases of the oscillations that prevailed throughout 1981–2017, following ref. 75 (Extended Fig. 3, 
Extended Table 7).

Sensitivity and statistical analysis.  Annual trends of Tp and Ap are computed for each reservoir’ basin 
using linearly regressed fits during the period of 1981–201777. These trends are also linked with identified ENSO 
positive and negative phase years78. The time series data of hydrological nature can be statistically analyzed using 
parametric or non-parametric trend tests to identify the underlying trends79. The trends in Tp, Ap, monthly and 
seasonal indices of ENSO, NAO and IOD are computed using nonparametric MK test and Sen’s slope at p ≤ 0.05 
and also addressed the issue of serial correlations and biasness for Mangla, Tarbela basins and overall upper 
IRB80–82. Further, sensitivity analysis for linear relationship of reservoirs’ WE with Tp, Ap, three CO indices as 
well as between precipitation and COs is performed by utilizing Pearson correlation coefficient (CC) based on 
Eq. (3)83,84:

= ∑ − −

∑ − × ∑ −
=

= =

CC
WE WE P P

WE WE P P

( )( )

( ) ( ) (3)
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i i
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i
,

1

1
2

1
2

where i represents the observed value, and overbar is the mean observation value. The P represents precipitation. 
The correlations among WE and CO are computed by replacing P with CO in Eq. (3).

Decadal change analysis (1981–2017).  Long term decadal change analysis (DC) is performed for four 
consecutive period of 1981–1990, 1991–2000, 2001–2010 and 2011–2017 with respect to 37 years median value 
(Extended Fig. 1):

=
− −

−

DC
ERATp ERATp

ERATp (4)
ERATp

i 1981 2017

(1981 2017)

where i represents the given minimum value observed for a decade and denominator is a median value for 37 
years. The DC for ERA Ap, APH Tp, APH Ap and WE are computed by replacing ERA Tp with these variables 
in Eq. (4) and so on. Two sample t-test is applied to evaluate the decadal change in mean of WE with respect to 
normal WE of both reservoirs84.
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Combined impact of precipitation and COs on WEs.  We also examined the co-variability of WE of 
reservoirs with Tp, Ap and three COs along with yearly trends based on MLRs (Table 1, Extended Table 8). Before 
developing model, we incorporated the new precipitation related variables based on glaciated area at sub-basin 
and its location in Pakistan or disputed areas (Fig. 7). Three variable classes are established which are GL5 (precip-
itation from glaciated area less than 5% of sub-basin total area), GB520 (precipitation from glaciated area between 
5 – 20% of sub-basin total area) and GG20 (precipitation from glaciated area greater than 20% of sub-basin 
total area). These three classes are further categorized based on precipitation received as overall basins (GL5, 
GB520 and GG20), within Pakistan (GL5P, GB520P and GG20P) and the disputed areas that lie in basins (GL5D, 
GB520D and GG20D). Initially, developed regression models are subject to two statistical procedures of PCA and 
multi-collinearity testing. The PCA is employed to reduce the dimensionality of a large number of interrelated 
variables and to retain the dominant variations present in the data84,85. Multi-collinearity among independent 
variables is examined based on correlation coefficient matrix analysis84. Three approaches are employed to find 
the best model for the prediction of WE variability. These are best (parameters are minimum variable, maximum 
variable and adjusted R2), stepwise (independent variable in and out based on probability criteria of in 0.05 and 
out 0.10) and forward (same as stepwise except for the variable is added only). The validation is carried out based 
on random 15 observations from the matrix. Best regression model is selected based on highest R2 value and 
lowest root mean square error (RMSE)83:

∑= −
=

RMSE km
n

WE WE( ) 1 ( )
(5)i

n

pre obs
2

1

where WEpre (WEobs) stands for predicted WEs (observed WEs).

Codes and ArcGIS model.  Landsat satellite data calibrations and NDWI is computed by using RSGIS tool-
box86 in QGIS ver 2.18.17 software (https://qgis.org/en/site/forusers/download.html and https://github.com/
PrathamGitHub/NITK_RS-GIS_17/blob/master/RSGIS_M.py); Landsat 7 SLC error is corrected using polygon 
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Figure 7.  Sub-basin characteristics based on distribution and size of glaciated areas using Rudolph glacier 
inventory. The glaciated area percent contribution at sub-basin scale is used to generate new predictor variables 
for multiple linear regression models for WE prediction. We have addressed the following question: whether 
precipitation of glaciated sub-basins play some role in WE variability or not? Detailed information is provided 
in Extended Table 1. Glacier inventory data was downloaded from http://www.glims.org/RGI/randolph50.
html (RGI Consortium (2015). Randolph Glacier Inventory -A Dataset of Global Glacier Outlines: Version 
5.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. https://doi.
org/10.7265/N5-RGI-50).
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aggregation (https://www.ian-ko.com/ET_GeoWizards/UserGuide/aggregatePolygons.htm); ERA interim 
data is downloaded automatically by using ERA Web API (https://confluence.ecmwf.int/display/WEBAPI/
Web-API+Downloads). We also used SDM toolbox for the conversion of netcdf into tif format (http://sdm-
toolbox.org/downloads) and developed a number of GIS models for basic processing like automatic clipping, 
data extraction and others. Similarly, hundreds of dbf extracted files are compiled into single Excel file based on 
developed VB macro. All GIS models and codes are available on request.

Data availability
We have used the following published datasets: Landsat satellite data (https://earthexplorer.usgs.gov/); ALOS 
30 m GDEM (http://www.eorc.jaxa.jp/ALOS/en/aw3d30/); APHRODITE APHRO_MA_025_V1101 (http://
www.chikyu.ac.jp/precip/english/products.html); ERA Interim Reanalysis data (http://apps.ecmwf.int/datasets/
data/interim-full-daily/levtype=sfc/); Randolph RGI50 (version 5, http://www.glims.org/RGI/); ENSO monthly 
SSTA data (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long. anom.data); NAO monthly 
SSTA data (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nao.long.data); IOD monthly SSTA data 
(http://www.jamstec.go.jp/frcgc/research/d1/iod/e/iod/dipole_mode_index.html).
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