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Three-Dimensional Skyrmions 
with Arbitrary Topological Number 
in a Ferromagnetic Spin-1 Bose-
Einstein Condensate
Huan-Bo Luo1, Lu Li1 & Wu-Ming Liu2*

We propose a new scheme for creating three-dimensional Skyrmions in a ferromagnetic spin-1 Bose-
Einstein condensate by manipulating a multipole magnetic field and a pair of counter-propagating 
laser beams. The result shows that a three-dimensional Skyrmion with topological number Q = 2 can 
be created by a sextupole magnetic field and the laser beams. Meanwhile, the vortex ring and knot 
structure in the Skyrmion are found. The topological number can be calculated analytically in our 
model, which implies that the method can be extended to create Skyrmions with arbitrary topological 
number. As the examples, three-dimensional Skyrmions with Q = 3, 4 are also demonstrated and are 
distinguishable by the density distributions with a specific quantization axis. These topological objects 
have the potential to be realized in ferromagnetic spin-1 Bose-Einstein condensates experimentally.

Skyrmions are topological objects that were first proposed in high-energy physics in 1960s1, and nowadays attract 
much attention in many condensed matter systems, such as superconductivity2, quantum Hall systems3, liquid 
crystals4, magnetic systems5, and Bose-Einstein condensates (BECs). The order parameters of BECs have rich 
structures due to the spin degree of freedom and can support various topological objects, e.g. solitons6,7, vorti-
ces8–10, monopoles11–15 and knots16,17. With the development of magnetic and optical techniques, one can manipu-
late precisely the spin in BECs. Thus, BEC system provides an ideal platform to study the dynamics of topological 
spin structures, such as Skyrmions.

In BEC systems, two-dimensional Skyrmions have been studied massively in theory18–20 and realized in 
experiment by using the phase-imprinting technique21. In general, three-dimensional Skyrmions are unstable 
toward shrinkage due to the gradient energy. There are two strategies to realize a three-dimensional Skyrmion 
in a BEC. The first is to introduce a non-Abelian gauge field22, which will prevent the Skyrmion from shrinkage 
so that a stable Skyrmion can be formed in a ground state of the BEC. Another is the dynamical creation of 
three-dimensional Skyrmion and then study it at a short time before it shrinks23. Recently, using the later strategy, 
a three-dimensional Skyrmion (Shankar Skyrmion) with unit topological number was experimentally realized 
in a ferromagnetic spin-1 BEC by manipulating a three-dimensional quadrupole magnetic field24. In addition, a 
recent study also described the creation of 3D skyrmions in the cyclic and nematic phases of spin-2 BEC by solv-
ing the 3D Gross-Pitaevskii equation25. In the spin-1 ferromagnetic BEC, order parameter manifold has the SO(3) 
symmetry and can host a topological object known as a Shankar Skyrmion26. The Skyrmion can be identified by 
estimating its topological number. However, due to the lack of suitable magnetic field, the Shankar Skyrmions 
with higher topological number (Q ≥ 2) have not yet been well studied.

In this paper, we propose a new scheme for creating a three-dimensional Skyrmion in a ferromagnetic spin-1 
BEC by manipulating a multipole magnetic field and a pair of counter-propagating laser beams. Thus, atomic 
spin is affected by the light field and behaves like it in the magnetic field. At first, we present a model and the new 
results are obtained by means of numerical simulations based on this model. We simulate their dynamical crea-
tion of Skyrmion with Q = 2 and compare the topological properties of the Skyrmions with Q = 2, 3, 4. We also 
present analytic results to support our discussion. All the results suggest that it is possible to create and observe 
Shankar Skyrmions with higher topological number in experiments.
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Results
Model.  We consider a typical 87Rb BEC trapped in an optical potential V(r). The dynamics of the BEC at an 
external magnetic field B(r) can be described by the three-dimensional spin-1 Gross-Pitaevskii (GP) equation
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where ξΨ = n  is the order parameter with n being the atomic density and ξ = (ξ1,ξ0,ξ−1)T being the 
three-component spinor. c0 = 4π2(a0 + 2a2)/(3 m) and c2 = 4π2(a2 − a0)/(3 m) are density-density and spin-spin 
coupling constants with a0 = 5.387 nm, a2 = 5.313 nm, and m = 1.443 × 10−25 kg for 87Rb27,28. In this case, c2 < 0, 
which implies that the ground state is ferromagnetic in the absence of external magnetic field29. The total number 
of particles is chosen to be N = 4.4 × 104. gF = −1/2 is the Landé g factor for 87Rb and μB is the Bohr magneton. 
The optical trapping potential has the form of V(r) = mω2(x2 + y2 + z2)/2 with ω = 100 Hz being optical trapping 
frequency. F = (Fx, Fy, Fz)T is a vector of spin-1 Pauli matrices and the local spin is ξ ξ= †tS r F( , ) . In our model, 
we use weak magnetic field (about 100 G) and the evolution time is short (within 1 ms), thus linear Zeeman effect 
is dominant and the quadratic Zeeman effect is omitted. In addition, we do not consider the effect of Earth mag-
netic field, because we can always add a uniform basis magnetic field in z-axis to balance the Earth magnetic field 
in real experiment.

The general form of the spinor for the ferromagnetic phase can be obtained by rotating the standard spinor 
ξ0 = (1, 0, 0)T as follows29
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where ϑ is a constant phase, α(r), β(r), and τ(r) are the spatial dependent Euler angles, UR(α,β,τ) =  α β τ− − −e e eiF iF iFz y z  
is the spin rotation operator, and φ(r) = ϑ − τ(r) denotes the phase of the condensate. As a result, the local spin 
can be expressed as S(r) = (sin β cos α, sin β sin α, cos β)T. Thus the order parameter manifold for the ferromag-
netic phase is given by SO(3) and support three-dimensional Skyrmion, (which is also called as Shankar 
Skyrmion). As a three-dimensional Skyrmion, the spin texture is three-dimensional spatial dependent in BEC.

For the system (1), the Shankar Skyrmion is created through the action of magnetic field, in which the local 
spinor can be approximately expressed as

ξ ω ξ= − ⋅ˆt i tr r B r F( , ) exp[ ( ) ( ) ] , (3)L 0

which describes the Larmor precession of the spinor around the magnetic field, where ωL(r) = μB gF|B|/ℏ is the 
Larmor angular frequency, and B̂ = B/|B| denotes the unit vector of the magnetic field. Every point of the Shankar 
Skyrmion is realized by rotating the initial spinor ξ0 at position r through angle ωLt about the direction B̂. From 
Eq. (3), one can see that all atoms satisfy ξ(r, t) = ξ0 if |ωL(r)|t = 2 lπ, l = 1, 2, … is met, which establishes the 
boundaries of the Shankar Skyrmion indexed by l and any enclosed volume can therefore be compactified into the 
3-sphere S3. The Three-Dimensional skyrmion is formed when any boundary approximately equals to the radius 
of the BEC. In the time interval, the skyrmion is not complete in the BEC but it will not decay in a short time. For 
the simplicity, we only consider the case l = 1. Thus, the Shankar Skyrmion can be classified by the third homot-
opy group π3(SO(3)) = ℤ and characterized by a topological number as follows30
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with ξ ξ= ∇†i mv /s   and Ωs = ∇ × vs being the superfluid velocity and the vorticity, respectively. The topological 
number counts the number of times the space SO(3) is covered and can be calculated in a finite volume 
Σ:|ωL(r)|t ≤ 2π where the Skyrmion is restricted. Note that because spin vector field S(r) is in S2, we can expect a 
knot structure in the Shankar Skyrmion.

Construction of magnetic filed.  In our system, the magnetic field dominates the dynamics of the spin 
field. Three-dimensional quadrupole magnetic field with the form B(r) = b(x, y, −2z)T can be used to create 
the three-dimensional Skyrmion with unit topological number in such system24. It is necessary to discuss the 
detailed structure of the quadrupole magnetic field. In the vertical direction, it is a gradient magnetic field with a 
zero-point at z = 0. In the horizontal plane, there is an isolated singular point at the origin (Bx = 0, By = 0). In the 
punctured plane ℝ2|∥{0}, we define the angle function θM of the two-dimensional magnetic field by
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which describes the change of the magnetic field direction in the horizontal plane. The total change in θM over a 
closed circle around the origin point divided by 2π is given by
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and this turns out to be always a unit, independent of the radius of the circle. This integration define the winding 
number W of magnetic field around the closed circle.

Inspired by the fact, we here consider the horizontal multipole magnetic field Bmult(r) = (Bx, By, 0), where the 
components Bx and By are given by

+ = −B iB b x iy( ) (7)x y n
n

with n being the positive integer. We can easily get the winding number W = −n from Eq. (6), where the negative 
sign means that the angle function θM decreases while traveling along the circle counterclockwise. The multipole 
magnetic field meets ∇ · Bmult = 0 and ∇ × Bmult = 0, and can be easily set by n + 1 pairs of Helmholtz coils (n is 
even) or anti-Helmholtz coils (n is odd) arranged around z-axis in experiment. A schematic plot for the case n = 2 
can be found in Fig. 1(a).

In the vertical direction, a gradient magnetic field with a zero-point (Bz∝z) should be still suitable for creating 
Skyrmions. Other functions, such as sinz, tanz and z3, which have the similar shape within certain range around 
the zero-point, can be considered as alternative solutions. But not to select Bz∝z2, in this case, Bz ≥ 0 is always 
satisfied. Thus, the order parameter can only cover half of its manifold after rotating and therefore can not form a 
Skyrmion. Here we choose sinusoidal function as the magnetic field in vertical direction, i.e., Bz∝ sin z, and the 
detailed mechanism for generating this kind of magnetic field is discussed below.

In order to construct the vertical magnetic field, we introduce an effective magnetic field induced from the 
interaction between light and atom, which can be characterized by Beff(r) = icE* × E, where the coefficient c 
depends on the details of the atomic structure as well as on the light frequency31,32. Such electric field may be 
realized in experiment. For the example, we can consider two laser beams polarized along x̂ and ŷ, thus the cor-
responding electric field can be expressed by γ= +− Ω − ˆ ˆb c e e eE x y/2 ( )n n

i t ikz ikz , where γn is associated with the 
intensity of laser, Ω and k are the frequency and wavenumber of laser. The similar scheme has been used to pro-
duce an artificial spin-orbit coupling33. In this case, the effective magnetic field can be written as

γ= − .b kzB r( ) (0, 0, sin(2 )) (8)n n
T

eff

Thus, we can construct a new magnetic field, which is superposition of the multipole magnetic field Bmult(r) 
and the effective magnetic field Beff(r) as follows

= + .B r B r B r( ) ( ) ( ) (9)n mult eff

Especially, when n = 2, the magnetic filed is the superposition of a sextupole field in the horizontal plane and 
a sinusoidal function in the vertical direction, which can be expressed as

γ= − − − .b x y xy kzB r( ) ( , 2 , sin(2 )) (10)T
2 2

2 2
2

Figure 1.  (a) The experimental set-up showing sextupole magnetic field generated by coils. The large blue 
arrows represent the laser beams. The small red arrows indicate the current directions. The configuration of the 
magnetic field B2 in the horizontal plane (b) and in the vertical direction (c), where the arrows and colors in (b) 
indicate the direction of the magnetic field and the scale of the angle function θM, respectively. (d,e) The isolines 
of the magnetic field intensity in xOy plane and xOz plane, respectively, and the direction of the magnetic field 
at the isolines. Here, the parameters are b2 = 3.9 × 103 G/cm2, γ2 = 200 μm2 and k = 0.029 μm−1.
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The detailed structure of the magnetic field given by Eq. (10) is shown in Fig. 1(b–e). From Fig. 1(b) one can 
see that, in xOy plane, the magnetic field exhibits a feature of the sextupole field and the angle function vary 
from −π to π twice along the clockwise around the origin, which means that its winding number equals to −2. 
Figure 1(c) presents the profile of the magnetic component Bz, which is monotonous and possesses the feature of a 
gradient magnetic field with zero point at z = 0. In fact, the z-component of the magnetic field exhibits periodicity 
with z, and it can form a skyrmion in any half period. If the condensate is large enough, it will form skyrmion 
lattices. We consider the simplest case that the condensate only supports a single skyrmion. Figure 1(d,e) show 
the isolines of the magnetic field intensity in xOy and xOz planes, respectively, which are the closed curves. In 
the xOy plane, the magnetic field rotates two circles at the isoline, which similarly corresponds to the fact that the 
winding number is two. But in the xOz plane it only rotates semicycle. Comparing with the quadrupole magnetic 
field, the difference is that the winding number equals to 2. So, we suggest that the magnetic field can create a 
three-dimensional Skyrmion with topological number Q = 2.

Creation of a three-dimensional Skyrmion.  We demonstrate the dynamics of BEC by numerically solv-
ing GP Eq. (1) in the magnetic field given by Eq. (10). In the numerical simulation, the initial state with spinor ξ0 
can be obtained by calculating the ground state of the BEC in the presence of an uniform magnetic field in z direc-
tion, i.e., B0 = (0, 0, 0.1 G)T. In this case, all the atoms occupy in m = 1 state, i.e., spin up, as shown in Fig. 2(a,f). 
This is because the spin will be parallel with the magnetic field to minimize the energy in ferromagnetic state29. 
Then we change the uniform magnetic field to the magnetic field B2 and observe its evolution. Note that, based on 
the Thomas-Fermi approximation, the BEC in the harmonic potential is a ball-shaped distribution and its radius 
can be approximately determined by RTF = [5Nc0/(4 mω2)]1/5. For our choice of the parameters, RTF ≈ 11.4 μm. 
Also, it can be shown that in the evolution the BEC is the rotational symmetric about z-axis. Note that the wave-
length of laser is chosen to fit the shape of the BEC and the laser wavelength seems pretty long. However, in real 
experiment, if we use a pancake-shape BEC, thus a small laser wavelength is enough.

The density distributions at different evolution times are shown in Fig. 2. One can see that, atoms initially 
occupy in m = 1, as shown in Fig. 2(a,f). Under the action of the magnetic field B2, atoms gradually appear in 
m = 0 and m = −1, as shown in Fig. 2(b,g). Until t = 320 μs, atoms in m = 1 form a distribution of a sphere sur-
face, whose south and north poles are connected by a column. Atoms in m = 0 and m = −1 exhibit the profiles 
of a torus and a ring, respectively, as shown in Fig. 2(c,h). So a three-dimensional Skyrmion in spin field may 
be created in the BEC. Obviously, in the evolution, the system is in phase-separated and the sphere surface of 
m = 1 component forms the boundary of the Skyrmion. For such choice of the parameters, the boundary of 
the Skyrmion in spin field is determined by [(x2 + y2)2 + γ2

2sin2(2kz)]1/4 = [2πℏ/(b2μB|gF|t)]1/2 ≈ 10.7 μm, which 
equals approximately to RTF given by the Thomas-Fermi approximation. Figure 3 presents time evolution of the 
topological number (4) and there is a plateau that the topological number Q ≈ 2 range from t = 300 μs to 350 μs. 
At t = 320 μs, the numerical calculation for topological number within the boundary gives Q = 1.9960 ≈ 2. This 

Figure 2.  Detailed temporal evolution of density distributions of the order parameter during Skyrmion 
creation. The corresponding magnetic field B2 is described in Eq. (10). The left four columns are the cross 
section at z = 0 at (a) t = 0 μs, (b) t = 150 μs, (c) t = 320 μs and (d) t = 640 μs. The right four columns are the 
cross section at y = 0 at (f) t = 0 μs, (g) t = 150 μs, (h) t = 320 μs and (i) t = 640 μs. Here, the maximal density is 
normalized to unit and the field of view is 27.7 μm × 27.7 μm. The other parameters are the same as in Fig. 1.
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integer-valued topological number confirms that the Skyrmion is created. With the further increasing of the 
evolution time, the Skyrmion will shrink but isn’t destroyed, as shown in Fig. 2(d,i). At the same time, the second 
ring in m = 1 and m = −1 appear, as shown in Fig. 2(d). According to Eq. (3), they correspond to |ωL(r)|t = 4π 
in m = 1, and |ωL(r)|t = 3π in m = −1, respectively, which are beyond the boundary of the Skyrmion given by 
|ωL(r)|t = 2π.

To further understand the structures of the three-dimensional Skyrmion created by the magnetic field B2 at 
t = 320 μs, Fig. 4 shows the spin texture of S(r) in the BEC and the distribution of the phase φ(r) for the order 
parameter. One can see from Fig. 4(a) that the spin field covered whole spin space (S2) in xOz plane, which can 
be reduced to be a two-dimensional Skyrmion. Also, from Fig. 4(b,c), one find that a vortex ring23 is formed in 
the BEC. In fact, in the xOy plane, as shown in Fig. 4(b), the distribution of the phase is separated into a disk with 

Figure 3.  Time evolution of the topological number Q calculated in a spherical area with Thomas-Fermi radius 
RTF ≈ 11.4 μm. The corresponding magnetic field B2 is described in Eq. (10). The parameters are the same as in 
Fig. 1.

Figure 4.  (a) The spin texture of S in the BEC created by the magnitic field B2 at t = 320 μs, where the arrows 
and their colors indicate the spin direction and value of Sz. (b,c) The distributions of the phase φ(r) for the order 
parameter in the xOy and xOz planes, where the arrows in (c) indicate the vortices. The parameters are the same 
as in Fig. 1.
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several rings isolated by the singular circles, which corresponds to β = 0,π from Eq. (2). So, the local spin at the 
singular circles points in turn downwards (Sz = −1) and upwards (Sz = 1), where the singular circle with Sz = −1 
is the center of the vortex ring and the singular circle with Sz = 1 corresponds to the boundary of the Skyrmion. 
When Sz =  ± 1 (β = 0,π), the order parameter given by Eq. (2) as well as the spin vector is invariant under the 
transformations φ → φ + π and α → α + π. Hence, there is a π phase difference between the two sides of the sin-
gular circles. Obviously, the winding number of the phase in each ring equals to two. At the xOz plane, there are 
two vortices with the center located at the singular circle of Sz = −1, as shown by the arrows in Fig. 4(c). Therefore 
a vortex ring is formed along an axisymmetric singular circle in the BEC.

Figure 5(a) presents the isolines of the spin field in the BEC, where the red, blue and black curves correspond 
to the cases of Sy = 1, Sy = −1, and Sz = −1, and Sz = −1 is the core of the Skyrmion. One can see that these curves 
construct the fibers of Hopf fibration34, and each curve is linked with each other exactly twice so that any two 
curves consist of a solomon link, e.g., the red and blue curves. The property also exhibits the characteristics of the 
knot, and so create a knot-like Skyrmion in the spin field. In experiments, the three-dimensional Skyrmion can be 
described by the density distributions of the each component of the BEC with quantization axis along + y, which 
can be obtained by a unitary transformation, i.e., Ψ + y = U + yΨ with
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Figure 5(b) presents the density distributions for the order parameter in xOy plane with quantization axis 
along + y. One can see that the shape of m = 1 in the cross-section plane z = 0 appears as an ellipse and its major 
axis is along y-axis, which is corresponding to the red curve in Fig. 4(a). The similar pattern also appears in 
m = −1 while its major axis is along x-axis, which is corresponding to the blue curve in Fig. 4(a). The density 
distributions of m = 0 appears as a square within two circles and the outer circle is the boundary of the Skyrmion.

Skyrmions with higher topological number.  Now, we turn to discuss the more general case. First, we 
are going to reveal the topological connection between the magnetic field given by Eq. (9) and the Skyrmion. 
The three-dimensional Skyrmion is identified by a topological number of the map from real space S3 to the order 
parameter manifold SO(3), where the topological number is given by Eq. (4). Especially, when the spinor ξ is 
approximately replaced by Eq. (3), the topological number can be calculated analytically. In the following, we 
demonstrate the process under the action of the magnetic field given by Eq. (9).

Introducing the coordinate transformation

Figure 5.  (a) The isolines of the spin field in the BEC created by the magnetic field B2 at t = 320 μs, where the 
red, blue and black curves correspond to the cases of Sy = 1, Sy = −1 and Sz = −1, respectively. (b) The density 
distributions for three components of the order parameter in xOy plane with quantization axis along + y. The 
parameters are the same as in Fig. 1.
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magnitude can be expressed as |Bn| = bnρ, where ρ2 = (x2 + y2)n + (γn sin(2 kz))2, φ varies from 2π to 0, θ varies 
from π to 0, and ρ aries from 0 to ρ0 = |2πℏ/(bnμB gFt)|. The third formula in Eq. (12) imply γn ≥ ρ0 where ρ0

1/n is 
the boundary of the skyrmion. Therefore, the skyrmion is confined in a region along the z-direction and the con-
dition −π/2 < 2 kz < π/2 is always satisfied. So, the spinor described by Eq. (3) can be expressed as
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which can diagonalize the spin projection operator B̂ · F as Fz, i.e., ⋅ =ˆ†U U FB F z. Employing Eq. (13), we can 
calculate the superfluid velocity


θ λ θ θ λ ϕ θ λ= ∇ + − ∇ − ∇ .

m nv sin sin sin (cos 1) cos (14)
s 2

and the vorticity


θ λ ϕ λ

θ λ λ θ
θ θ λ θ ϕ

Ω
= ∇ × ∇

+ − ∇ × ∇
+ − ∇ × ∇ .

m n

n

sin sin

sin (cos 1)
2 sin cos (cos 1) (15)

s 2

Combining Eqs. (14) and (15), we find


θ λΩ⋅ = − .

m v 2 sin (1 cos )
(16)s s

2

2

Thus, the topological number Q given by Eq. (4) yields

∫ ∫ ∫π
θ θ ϕ λ λ= − = .

π π

π
Q n n

8
sin d d (1 cos )d

(17)2

0

2

0

0

2

Because the winding number for the multipole magnetic field Bmult(r) given by Eq. (7) is W = −n, we can 
easily conclude that the absolute value of the winding number equals to the topological number of the corre-
sponding Skyrmion, i.e., Q = |W|. Thus, we can create three-dimensional Skyrmion with arbitrary topological 
number theoretically.

As the examples, we will demonstrate the structures of the three-dimensional Skyrmions with the topological 
number Q = 3 and Q = 4 by applying octupole and ten-pole magnetic field. From Eq. (9), the detail magnetic field 
for Q = 3 is explicitly given by

γ= − − + −b x xy x y y kzB ( 3 , 3 , sin( )) , (18)T
3 3

3 2 2 3
3

where b3 = 3.7 × 10−6 G/μm3, γ3 = 2.1 × 103 μm3 and the evolution time t = 320 μs. Similarly, the detail magnetic 
field for Q = 4 is explicitly given by

γ= − + − −b x x y y xy x y kzB ( 6 , 4 4 , sin( )) , (19)T
4 4

4 2 2 4 3 3
4

where b4 = 3.4 × 10−7 G/μm4, γ4 = 2.3 × 104 μm4 and the evolution time t = 320 μs. The configurations and angle 
function of the octupole and ten-pole magnetic fields are shown in Fig. 6(a,e), respectively. From them, one can 
see that the magnetic fields exhibit the feature of the octupole and ten-pole field and the angle function vary from 
−π to π three times and four times along the clockwise around the origin, respectively, which means that their 
winding number is −3 and −4.

The numerical simulations of Skyrmions created by B3 and B4 are summarized in Fig. 6. In the Skyrmions, the 
red and blue curves, which are the isolines for Sy = 1 and Sy = −1, are linked exactly three times and four times, as 
shown in Fig. 6(b,f). The features of phase φ(r) for B3 and B4 are similar to Fig. 4(b) and the winding numbers are 
three and four, respectively, as shown in Fig. 6(c,g). The density of m = 0 component with quantization axis along 
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+y exhibit a hexagram (see Fig. 6(d)) and octagram (see Fig. 6(h)) pattern, thus it is easy to distinguish Skyrmions 
with different topological number in experiment. The densities of m = 1 and m = −1 components correspond to 
the red and blue curves shown in Fig. 6(b,f), respectively. The numerical results also give the topological number 
Q = 2.9893 ≈ 3 for B3 and Q = 3.9751 ≈ 4 for B4.

Discussion
In conclusion, we investigated the creation of a three-dimensional Skyrmion with topological number Q = 2 
in spin-1 BEC by manipulating a sextupole magnetic field and a pair of counter-propagating laser beams. We 
described the structure of the Skyrmion by the spin vector and the phase of the order parameter. Meanwhile, 
the vortex ring and knot structure were found in the Skyrmion and were discussed in detail. The topological 

Figure 6.  (a,e) The configurations of the octupole and ten-pole magnetic field, where the arrows and colors 
indicate the direction of the magnetic fields and the scale of the angle function θM. (b–d) and (f–h) The 
structures of Skyrmions created by B3 and B4 at t = 320 μs, respectively. Here, (b,f) the isolines of the spin vector, 
i.e., the red curve for Sy = 1 and the blue curve for Sy = −1. (c,g) The phase φ(r) of the order parameter in the 
xOy. (d,h) The density distributions for each components in xOy plane with quantization axis along +y. The 
maximal density is normalized to unit and the field of view is 27.7 μm × 27.7 μm.
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numbers of Skyrmions were calculated analytically and numerically in our model, which indicate that the method 
can be extended to create Skyrmions with arbitrary topological number. The numerical results confirmed that 
three-dimensional Skyrmions with Q = 3, 4 can be created. Thus, based on the recent experiment for create a 
Skyrmion with unit topological number24, we believe that this method can be extended to create Skyrmions with 
arbitrary topological number.

Methods
Here we have investigated geometry properties of spinor Bose-Einstein condensates in different magnetic fields 
by numerically solving the mean field Gross-Pitaevskii equations. In detail, we use a norm-preserving imaginary 
time propagation method to solve the full three-dimensional Gross-Pitaevskii equations and employ a GPU to 
accelerate the numerical simulation. The topological numbers are analytically obtained, which also confirmed by 
the numerical results.
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