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Machine Learning based Analytical 
framework for Automatic 
Hyperspectral Raman Analysis of 
Lithium-ion Battery electrodes
Ankur Baliyan* & Hideto imai

the intelligence to synchronously identify multiple spectral signatures in a lithium-ion battery 
electrode (LiB) would facilitate the usage of analytical technique for inline quality control and product 
development. Here, we present an analytical framework (Af) to automatically identify the existing 
spectral signatures in the hyperspectral Raman dataset of LiB electrodes. the Af is entirely automated 
and requires fewer or almost no human assistance. the end-to-end pipeline of Af own the following 
features; (i) intelligently pre-processing the hyperspectral Raman dataset to eliminate the cosmic 
noise and baseline, (ii) extract all the reliable spectral signatures from the hyperspectral dataset 
and assign the class labels, (iii) training a neural network (nn) on to the precisely “labelled” spectral 
signature, and finally, examined the interoperability/reusability of already trained NN on to the newly 
measured dataset taken from the same LIB specimen or completely different LIB specimen for inline 
real-time analytics. furthermore, we demonstrate that it is possible to quantitatively assess the 
capacity degradation of LIB via a capacity retention coefficient that can be calculated by comparing 
the LMo signatures extracted by the analytical framework (Af). the present approach is suited for 
real-time vibrational spectroscopy based industrial applications; multicomponent chemical reactions, 
chromatographic, spectroscopic mixtures, and environmental monitoring.

Raman spectroscopy is a fast, non-destructive, and inexpensive spectroscopic tool to probe the molecular varia-
tions for a given specimen. The characteristic fingerprinting pattern of Raman spectrum provides much-needed 
access to the sample information at the molecular level. Besides, extending the singleton Raman spectrum anal-
ysis to the hyper-spectral domain either spatially or temporally, considerably, will help vibrational spectroscopy 
to be put to use, routinely, for the quality control (QA/QC) and product development applications. At present, 
hyperspectral Raman spectroscopy is mostly confined to the laboratory-scale measurement and analysis, and 
there are specific reasons for it not being used as the real-time quality-control analytical tool; (i) the presence of 
the cosmic noise and background signature in the hyperspectral dataset, (ii) inability to accurately identify the 
number of spectral signature in the hyperspectral dataset, and (iii) non-transferability of the existing analytical 
model from one set of hyperspectral measurement data to another set of newly hyperspectral measured dataset1.

Hyperspectral Raman imaging caters the ability to image multiple chemical signatures simultaneously, and the 
spatial information is collected in the X–Y plane, and the spectral information is represented in the Z-direction, 
hyperspectral images are represented in the form of data cubes (Fig. 1). The analysis of hyperspectral Raman 
dataset (multidimensional) is usually cumbersome, complicated, and multistep process2. With modern scientific 
characterization instrumentation and faster than ever data generation capabilities, there is an urgent need for an 
innovative machine learning (ML) based computational framework to automate the entire life cycle of hyperspec-
tral analysis3. The analytical model should be constructed with fewer or no human assistance. In addition, it is 
desired that the analytical model should be reusable, particularly on the newly measured dataset taken from the 
same specimen or completely different specimen4.

Recently, a number of ML techniques such as; principal component analysis (PCA), multiple curve resolution 
(MCR-ALS), independent component analysis (ICA), partial least square discriminant analysis (PLS-DA), voxel 
component analysis (VCA) and non-negative matrix factorization (NNF) have been applied for the identification/
clustering of the significant spectral signatures from the test specimen5–10. Among all, MCR-ALS analysis, also 
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referred to as un-mixing, has been extensively utilized to resolve the multiple pure spectral signatures and of their 
respective concentration components in the hyperspectral datasets. Essentially, MCR-ALS is responsive to the 
small variation within the specimen, and it helps to associates this variation to the contribution of the respective 
components (spectral/concentration) that can be measured and analysed, either qualitatively or quantitatively3,11. 
The indispensable condition for MCR-ALS analysis, to know beforehand, is the number of spectral signatures 
that are expected to be present in the hyperspectral datasets. An incorrect selection of the number of components 
can either lead to the inclusion of noise (i.e., overestimation) or loss of information (i.e., underestimation)2,6. In 
order to determine the appropriate number of components, to begin with, some methods such as; PCA, parallel 
analysis test, cross-validation, NMF-SO, and Kaiser criterion have been commonly used5,6,12,13. Unfortunately, for 
any chosen dataset processed via MCR-ALS, the end-results using such methods are not consistent and result-
ing in a different number of spectral and concentration profiles. This inconsistency curtails the reliability of the 
MCR-ALS analysis2,6.

The peculiar challenge with MCR-ALS is to determine the total number of components that exist in the chosen 
dataset; more importantly, the reliability of the emerged components, whether they are not falsely true. Although, 
Hiromi et al. have purposed an innovative approach by tagging the component “reliable” or “unreliable” based on 
the reproducibility of its appearance, regardless of the number of components chosen for analysis6. Nevertheless, 
the clustering of the concentration profiles, which is in unfolded spectral format, is quite vague and provides 
no visual confirmation to validate whether the rejected concentration profiles were really worth throwing out. 
Furthermore, the MCR-ALS analysis, encompass an analytical model that genuinely represents the characteristics 
of the test specimen, is a laborious process without having any reusability/transferability benefits, i.e., the newly 
established analytical model that is meant explicitly for a particular test specimen.

Here, we propose an MCR-ALS based machine learning analytical framework (AF) to automate the entire 
pipeline of hyperspectral Raman analysis of lithium-ion battery (LIB) electrodes. The AF pipeline to make an 
analytical model involve; intelligently pre-processing the hyperspectral Raman data with fewer or no human 
assistance, accurately identifying the reliable spectral signature from the hyperspectral dataset and assign the 
class labels, training a neural network (NN) on to the accurately “labelled” spectral signature, and finally, testing 
the reusability of already trained NN to evaluate other test samples in real-time (Fig. 2 for schematic diagram). 
We started with data pre-processing; airPLS and modified-PCA based algorithms to remove the background and 
cosmic noise from the raw dataset. Subsequently, determine the appropriate number of components (Nc) with 
NMF automatic relevance determination (NMF-SO-ARD) and performed the cluster-aided MCR-ALS analysis 
by sequentially changing the number of expected component from n = 1 to Nc, and tagging the component “reli-
able” or “unreliable” based on the reproducibility of its appearance (see the image 2).

Figure 1. Illustration of hyperspectral images (3D data cubes), the spatial information is collected in the X–Y 
plane and the spectral information is represented in the Z-direction.
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The reliable component periodically appears irrespective of the number of components chosen n = 1, 2, 3… 
Nc. To cluster the reliable components, the concentration profiles were refolded to form images because, in con-
trast to the spectral format, the concentration profile provides better visual representation in pictographic format. 
Clustering of all the refolded concentration image dataset classifies concentration images into distinct clusters 
(collection of similar images). Clusters containing higher co-relation and reproducible images were stamped, as 
reliable clusters, and was retained for NN modelling. Each retained cluster was marked as a known class label. 
However, clusters having dissimilar images were rejected. Noting, by averaging all the concentration images and 
corresponding spectral profiles, within an individual retained cluster, provides a trusted singleton concentration 
image and spectrum profile.

Lastly, we trained a neural network (TNN) using the retained spectral data set and spectrum class labels and 
accessed the accuracy of TNN against the same dataset that the TNN was derived. In addition, examined the 
interoperability of the TNN from one dataset to another dataset, extending the benefit of reusable TNN analytical 
model. Such a trained model is very efficient and reliable, considering the analysis can be completed in real-time. 
The present approach is suited for real-time vibrational spectroscopy based quality control (QA/QC) and product 
development tools for routine industrial applications such as; multicomponent chemical reactions, industrial 
processes, chromatographic, spectroscopic mixtures, and environmental monitoring, etc.

necessity of the neural network Model
It is essential to illustrate what sorts of benefits will be served by the neural network model (NN). The limitations 
of routine MCR-ALS analysis are that it consumes considerable time before reaching an optimal solution of a 
given data-set, i.e., concentration maps and respective spectrum. Usually, the background subtraction, cosmic 
noise, MCR-ALS, and clustering required roughly forty to fifty minutes (on a personal computer- see details in 
the results section). In addition, the instrument-operator has no idea of the quality of the acquisition data being 
recorded during the characterization of the substrate. Considering, the analytics is often done in offline-mode 
that need separate plugins for background subtraction/cosmic noise/MCR-ALS. In a nutshell, MCR-ALS based 
analytical model is exclusive to the data-set it was created and cannot be reused to evaluate other similar speci-
mens from the same batch or different specimen from the other batches, i.e., restricting the reusability/transfer-
ability of the MCR-ALS analytical model.

The central idea of training a NN is to do the analytics in nearly real-time, for the purpose of curtailing the 
analytics turnaround time to a few seconds after the acquisition of the data to pre-processing to spatially mapping 
the concentration profiles. In an ideal scenario, it would be interesting if one could build an analytical model 
using MCR-ALS via any chosen specimen dataset. Afterword, MCR-ALS based analytical model is translated 
to create an NN model. Such a strategy will not only assist the instrument-operator to judge the quality of the 
acquisition data instantly but at the same time, the neural network-based model can be used to evaluate other 
analogous samples in real-time that would save time, cost and energy. Therefore, the necessity of NN becomes 
imminent, and the use of NN allows hyper-spectral Raman analytics even with the personal computer almost in 
real-time.

Figure 2. Machine learning based analytical framework (AF). The pipeline of the hyperspectral Raman analysis 
of LIB electrodes has domains; (i) intelligently pre-processing the hyperspectral Raman data with fewer or no 
human assistance, (ii) accurately identifying the reliable spectral signature from the hyperspectral dataset and 
assign the class labels, (iii) training a neural network (NN) on to the accurately “labelled” spectral signature, (iv) 
testing the reusability of already trained NN to evaluate other test samples in real-time.
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Material and Method
Lithium-ion battery (LIB) cells were procured (Panasonic, Japan) and subsequently analyzed by Raman spec-
troscopy (Alpha-300 confocal Raman microscope - WITec, GmbH) for hyperspectral Raman dataset. A typical 
cylindrical 18650-type LIB cell (2.1 Ah) consists of a graphite anode, Li(Ni1−x−yMnxCoy)O2 (NMC) cathode and 
electrolyte; lithium hexafluorophosphate salt (LiPF6) dissolved in a mixture solvent of ethylene carbonate (EC), 
propylene carbonate (PC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC). The diameter and 
height of LIB cell were 16 and 65 mm, respectively. The double-coating electrode was wound in the cylindrical 
cell; the thickness of single-side of the cathode was about 80 μm. Charge/discharge of LIB cells was done at 25 °C 
with 1C rate up to 500 cycles in the voltage range of 2.6–4.2 V. The battery cells were charged and discharged in 
constant current-constant voltage (CC-CV) and CC mode, respectively.

Raman sample preparation and image acquisition. In total, three LIB cells were prepared, (a) Pristine 
sample – without any charge/discharge, (b) after 500 cycles of charge/discharge – from interior region of the 
cathode, and (c) after 500 cycles of charge/discharge – from outer region of the cathode (Fig. S1 for illustration). 
Here onward, (a), (b), and (c) will be addressed as pristine, 500_IN, and 500_Out samples, respectively. LIB 
cells were disassembled under argon (Ar) atmosphere inside an argon glove box. All the samples were rinsed in 
pure DMC and dried under vacuum, subsequently cross polished for the Raman characterization. Samples were 
sealed under argon in a specially designed sample holder to avoid air exposure. Raman spectra in the spectral 
range (100–3700 cm−1) were acquired with an Alpha-300 confocal Raman microscope (WITec, GmbH) using a 
solid-state 532 nm laser (laser power: 0.5 mW, optical lens: 40x, integration time: 1 second). Typically, for each 
sample thousands of spectra are acquired [pristine (scan width: 45 μm, Scan Height: 45 μm, Point per Line: 60, 
Lines per Image: 60), 500_IN (scan width: 55 μm, Scan Height: 20 μm, Point per Line: 72, Lines per Image: 26) 
and 500_Out samples (scan width: 45 μm, Scan Height: 45 μm, Point per Line: 60, Lines per Image: 60)], each 
containing position resolved information (Table T1 in SI). No, any additional data smoothing was done, and as 
measured data is used for further ML analysis.

Analytical framework. Our analytical framework is built on the Matlab platform. At first, Raman imaging 
Dataset for each sample was exported into a.txt file and was converted to.mat file for further data processing. 
Extracting the vital information needs pre-processing of Raman spectra, i.e., background subtraction and despik-
ing, followed by multivariate data analysis methods to generate the chemical composition and spectral signature. 
The main building blocks of the analytical framework is as follows; (1) Pre-processing the Raman dataset to 
remove the baseline and cosmic noise from the dataset, (2) Estimating the appropriate Nc with NMF-SO-ARD 
followed by cluster assisted-MCR-ALS regression analysis to extract the spectral and concentration profile by 
fitting the various number of components n = 1, 2, 3 …. Nc, (3) Refolding the concentration profiles into image 
format, (4) feature extraction via image analytics and classification to assign the class labels, (5) designing a NN 
analytical model by training a NN on to the spectral profile with known class labels, and (6) reusing the already 
trained NN to test the random LIB Raman dataset for predicting the unknown concentration profile.

Raman data-set. We collected 3600, 1872 & 3600 Raman spectra from pristine, 500_IN, and 500_Out LIB 
samples, respectively. A typical hyperspectral Raman image is a 3D dataset, hereafter addressed as a 3D spectral 
hypercube (Fig. 1), the structure of the 3D spectral hypercube X (m by n by k), where m and n axes represent spa-
tial information of Raman image, and k number of data points per spectrum along the wavelength axis, respec-
tively. Finally, 3D spectral hypercube X was folded into a 2D matrix by systematically placing recorded spectrum 
one over the other along the wavelength axis, transforming the hypercube (X: l × k), where l = m*n represent the 
total number of Raman measurement for a particular sample.

Baseline correction & despiking. An adaptive iteratively reweighted penalized least-squares (air-
PLS) algorithm was used to remove the baseline from the Raman dataset (X: l × k), addressing the dataset as 
baseline-corrected dataset (XB: l × k) (see SI for Baseline Correction). In order to remove the cosmic noise from 
the baseline-corrected Raman dataset (XB: l × k), we have used the modified version of the PCA-despiking algo-
rithm originally purposed by X. Zhang et al.14. In modified PCA-despiking algorithm concept is shown in Fig. S2, 
the baseline-corrected Raman dataset (XB: l,k) is sent as the input variable to the algorithm function, and the 
algorithm returned the despiked dataset as output variable (XBD: l,k), the despiked dataset is transposed (XBD: 
k,l), and again sent as an input (XBD: k,l) to the PCA-despiking algorithm function, subsequently, transposing 
the output variable (XBD: k,l) to make sure it returned to the initial dimension (XBD: l,k), this process is repeated 
until all the cosmic noise peaks were removed. Spike range and PCA variance cut-off were set to 20 and 0.85, 
irrespective of the dataset processed. (Code for the algorithm will be available after the publication of this article 
in supplementary information). The baseline-corrected dataset was normalized (row normalization) before the 
cluster-assisted MCR-ALS analysis.

cluster-assisted McR-ALS. MCR-ALS analysis helps to identify the spectral (St) and concentration profile 
(C) from the large Raman dataset. However, accuracy is limited by the fact that the spectral and concentration 
profile are not consistent across the number of components (n = 1, 2, 3 …) estimated by MCR-ALS analysis. In 
conventional MCR-ALS analysis, the spectrum data set is analyzed by specifying the desired number of compo-
nents (it may be any positive integer)15. Whereas, in the cluster-aided-MCR-ALS (C-MCR-ALS), the MCR-ALS 
calculation was performed repeatedly by changing the number of components sequentially from one to an appro-
priate number of components (Nc); Nc, a positive integer, was estimated with NMF-SO-ARD was found to be 8, 
irrespective of any LIB sample6. A flow chart illustrating the process of cluster-aided C-MCR-ALS is shown in 
Fig. S3. Here, C-MCR-ALS analysis was performed for all three LIB samples, sequentially changing n from one 
to Nc = 8. For individual LIB sample, the total number of resulting components (Z) was 36 (concentration profile: 
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C = 36 & spectral profile: St = 36). For a particular LIB sample, all the concentration profiles (C, l × Z) were com-
bined into one dataset, and spectral profile (St, Z × k) was put in another dataset. All concentration profiles (C, l 
× Z) were refolded back to form the Raman concentration images (C: m × n, Z) (RCI) dataset.

cluster Analysis and label assignment strategy. The strategy for the assignment of labels is as follows, 
we have the Raman concentration images (C: m × n, Z) (RCI) dataset and corresponding spectral profile (St, Z 
× k) and there is a one-to-one mapping between the former and latter. If we are able to assign the class labels 
either of the two (RCIs or spectral profiles), others will automatically get the same class label. For training NN, 
labeled spectral profiles are needed, and that can be done simply by clustering of the spectral profiles. However, 
the challenge with clustering of the spectral profiles is that spectral clustering is quite vague, and visual confir-
mation of clusters is difficult given the large number of Raman feature space (wavenumber). Since the RCIs are 
in image format, clustering of RCIs provide the opportunity to validate the clusters visually and discarding of 
not trustworthy cluster becomes effortless. For this reason, the RCIs data-set was used for the clustering of RCIs 
into various clusters and based on cluster-IDs of each cluster the RCIs were assigned class labels. Because of the 
one-to-one relationship between the RCIs and spectral profiles, the spectral profiles also have access to the class 
labels. Having spectral profiles that are labeled, a neural network is ready to be trained.

cluster analysis and label assignment. Cluster analysis was performed on Raman concentration images 
(C: m × n, Z) (RCI) dataset using the Orange software with an add-on package of image analytics16. The image 
embedding widget uses the inception algorithm to transform each image from the RCI dataset into 2048 feature 
vectors, and hereafter the processed RCI dataset is addressed as an embedded dataset (E: 2048, Z). A correla-
tion coefficient (CC), i.e., threshold, was chosen to classify the embedded dataset (E: 2048, Z) of similar fea-
tures into various clusters using the hierarchical clustering widget. Hierarchical clustering segregates the RCI 
images-dataset into numerous clusters (NH: number of clusters), simultaneously, a numerical cluster-ID (ID = 1, 
2, 3.. NH) is get assigned to each cluster. In order to bring clarity about what a cluster contained, a typical cluster 
has a bunch of images, from RCI images-dataset, whose feathers are similar to each other. Therefore, all the 
images in a typical cluster will have common cluster-ID (ID) automatically assigned. Since there is a one-to-one 
mapping of RCI image data-set (C: m × n, Z) and the images in clusters, by default, every RCI image and its cor-
responding spectral profile will also get the respective cluster-ID as the class label.

The clusters with higher correlation coefficient and minimum leaf size > = 3 were marked as ‘reliable clusters.’ 
Conversely, the clusters with lower correlation coefficient and minimum leaf size <3 were considered ‘unreliable 
clusters’. The reliable clusters were retained, whereas the unreliable clusters were not retained and discarded. 
Since there is a one-to-one mapping of RCI image data-set (C: m × n, Z) and the images in clusters, the images 
contained in unreliable clusters were also dropped from RCI (C: m × n, Z) dataset. Thereby, retained concen-
tration profile (R_C: m × n, ZT) and corresponding spectral profile was moved to the new database (R_St, ZT × 
k); i.e., Z > ZT = reliable number of concentration/spectral profile. Finally, averaging the concentration profiles 
and corresponding spectral signatures of each cluster provides a trusted singleton Raman concentration profile 
and spectrum, respectively. All of the reliable singleton Raman spectra were searched in Database (DB), and 
cluster-ID was replaced with the labels found in the DB; such as: carbon, LMO, background etc. However, if the 
cluster-ID was not found in the database it can be manually assigned such as ‘A’, ‘B’, ‘C’, and so on.

training the neural network from labeled class members. Configuration of the NN. A typical NN 
architecture (Fig. S4) is consists of four layers; one input layer, two hidden layers, and one output layer, respec-
tively17. The input layer, sometimes, so-called “the visible layer,” connects the input variables (R_St, ZT × k) to the 
first hidden layer, where ZT = reliable number of spectral profiles and k = number of data points per spectrum 
along the wavelength axis, respectively. In our network, first and second hidden layers have 10 and six percep-
trons, respectively. The last layer in the NN is the output layer, received input from the last hidden layer of the 
network, and has the output nodes equal to the number of cumulative reliable clusters identified by C-MCR-ALS 
analysis6. Therefore, once the NN is trained, the output layer can predict the equal number of ‘class labels’. For 
instance, if the cumulative reliable clusters identified by C-MCR-ALS analysis is found to be ‘five,’ then the NN 
architecture needs ‘five output nodes, which in turn will predict five types of class labels. However, we found 
that the cumulative reliable clusters identified by C-MCR-ALS analysis, irrespective of the LIB Raman data-
set (Pristine/500_IN/500_Out), was found to be four. Thereby, the NN architecture for all LIB Raman dataset 
(NN_Pristine/NN_500_IN/NN_500_Out) had four output nodes in the last layer, irrespective of LIB Raman dataset.

Training the neural network. A neural network classifier was trained on to the reliable components (R_St), 
extracted with C-MCR-ALS analysis (ZT: training-set), using the spectrum class labels from a particular LIB 
sample. Neural network (NN) corresponding to the each LIB Raman dataset (Pristine/500_IN/500_Out) was 
trained and named NN_ Pristine, NN_500_IN, and NN_500_Out, respectively. The accuracy of each NN was examined 
with fivefold cross-validation.

Testing the neural network. Once the NN is trained, prediction of the class labels either from the same Raman 
dataset that the NN was derived or from the entirely new Raman dataset acquired using other LIB samples 
becomes straightforward. However, the test-data set should have undergone the baseline and cosmic-noise 
removal process (see baseline correction model section in SI). Three neural networks NN_ Pristine, NN_500_IN, and 
NN_500_Out, was tested against the each LIB Raman dataset (Pristine/500_IN/500_Out) and the corresponding pre-
dicted concentration profiles as the class labels are plotted in image format. Finally, the efficacy of the purposed 
scheme is compared by cross-validating the results from the univariate (human intelligence), cluster-assisted 
MCR-ALS (Unsupervised intelligence), and Neural network predicted spectral classes (Supervised intelligence).
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Results and Discussion
The charge/discharge cycle dependency of capacity retention in LIB cell is shown in Fig. S5(a). The capacity 
retention is plotted against square-root of cycle number. The capacity retention inside the LIB cell decrease with 
an increase in the charging/discharging cycles and, until 300 cycles, the drop in capacity retention curve is pro-
portional to the square-root of cycle number. Beyond 300 cycles, the capacity retention rate no longer follows 
the square-root law and drop much quickly, possibly, due to the side reaction inside the LIB cell. The resistance 
inside the cell also increases as the charging/discharging cycle progresses (Fig. S5(b). To investigate the effect 
of side reaction on to cathode electrode before and after the charging/discharging of the of LIB cell, three LIB 
samples were subjected to Raman spectral mapping; (1) Pristine (without any charging/discharging), (2) 500_IN 
sample (after 500 cycle of charge/discharge form interior outer region, and (3) 500_Out sample (after 500 cycle of 
charge/discharge from outer region, respectively. The objective of sampling from two different spatial positions 
after 500 cycles of charge/discharge, in the LIB cell, was to investigate spatial uniformity (interior and exterior). 
Figure 3 shows the univariate analysis of Raman spectral dataset analysis based on human intelligence. Results 

Figure 3. The univariate analysis of Raman spectral dataset analysis based on human intelligence. The 
human intelligence identifies the existence of two components, namely carbon and LiMO2 (M = Ni, Mn, Co), 
irrespective of any LIB samples.
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show the presence of two components, namely carbon and LiMO2 (M = Ni, Mn, Co), irrespective of any LIB 
sample. Human intelligence means the hyperspectral Raman data set (X) analysis done by an expert having three 
years of experience in handling LIB Raman analysis.

Raman analysis of pristine LiB sample. A typical hyperspectral Raman image is a 3D dataset (Fig. 1). 
The structure of the 3D spectral hypercube XPristine (60 × 60 × 1550) contains LiMO2, carbon, binder, and back-
ground information. The 3D spectral hypercube XPristine was folded into a 2D matrix (XPristine: 3600, 1550) by 
systematically placing recorded spectrum one over the other along the wavelength axis. Figure S6(a) shows the 
raw Raman spectral dataset plot using the 2D XPristine matrix. The signal from the main lithium and carbon peaks 
in the Raman data is minimal in contrast to the cosmic noise and fluorescence contributed by the background. It 
is because the Raman spectrum is acquired using the CCD detectors, and the detectors often suffer from random 
thermal noise and spikes caused by cosmic noise. Thermal noise causes the background signature is less severe 
as compared to the “fluorescence” caused by the intrinsic binder of LIB cell, leaving a baseline trail. Additionally, 
the spikes overlay the band of interest had a larger peak area; it can potentially screw the data analysis results. The 
baseline correction was done before the despicking (cosmic removal). An adaptive iteratively reweighted penal-
ized least-squares (airPLS) algorithm was used to remove the baseline from the Raman dataset14,18. Figure S6(b) 
shows the baseline corrected Raman spectral data set (XPristine). It is evident from the graph that the baseline was 
corrected, and fluorescence was effectively removed.

For Despiking, although, there are several techniques such as wavelet processing, median/polynomial filters, 
and Savitzky-Golay. However, these methods often have severe constraints, given that, knowing the peak width 
of spikes is the prerequisite. Nevertheless, newly purposed PCA based despiking algorithm is very promising14. 
The PCA-despiking algorithm uses principal component analysis (PCA) that allows the number of variables in a 
multivariate data set to be reduced by retaining the crucial features and excluding the features whose contribution 
is either negligible or more like noise. The PCA-despiking algorithm is an ML technique that retains the essential 
features (i.e., scores) depending on the threshold (T) specified by the user14. Although the PCA-despiking algo-
rithm works well on various kinds of dataset, nevertheless, it has a significant challenge; in particular, it fails to 
eliminate the spikes from the dataset in case the cosmic noise peak position for multiple spectra found to be iden-
tical. Conceding that, changing the threshold or using the algorithm in a loop does not facilitate to eliminate the 
cosmic noise (Fig. S7)). Predominantly, it is because the algorithm is well suited if the noise peaks are at random 
position, we exploited this problem for our advantage to purpose a modified version of the PCA-despiking. We 
have used the algorithm in the loop by alternatively transposing the dataset until all the peaks are altogether elim-
inated. Transposing the dataset, before calling the PCA-despiking algorithm, causes the randomness in the data-
set, consequently removing all the spikes from the dataset. Figure S6(c) shows the baseline-corrected despiked 
Raman spectral data set (XPristine-BD: 3600 × 1550). It is evident from the graph that the cosmic noise was utterly 
eliminated, and lithium and carbon peaks can be seen with ease.

Cluster-aided-MCR-ALS analysis of despiked Raman spectral data set (XPristine-BD: 3600 × 1550) was done 
repeatedly by changing the number of components sequentially from n = 1 to Nc = 8. For Xpristine-BD LIB dataset, 
the total number of resulting components (Z) was 36 (concentration profile: C = 36 & spectral profile: St = 36). 
The concentration profiles (CPristine, 3600 × 36) were refolded back to form an image of dimension (CPristine, 60 
× 60), i.e., a total of 36 concentration images. The refolded concentration profile and corresponding spectral 
profiles (St

Pristine, 36 × 1550) are shown in Figs. 4 and S8, respectively. As can be seen in Fig. 4, a few components 
repeatedly emerged, irrespective of the component selected; however, some component emerged either once or 
only a few times. The reliability of a component is directly proportional to its occurrence in the concentration 
profile data set.

Given the fact that images are more intuitive to the human brain then spectrum, the refolding of individual 
concentration profiles turned them into image format (CRF); sub-pixel Raman images (RCI)1. Motegi et al. have 
used the unfolded concentration profile for clustering6. However, a typical concentration profile in unfolded for-
mat (CUF) is a one-dimensional (1D) spectrum vector, and clustering such CUF is reasonably vague and provides 
no visual confirmation whether the rejected cluster was really worth throwing out. On the contrary, the CRF has 
unique advantages because the cluster can be visualized to verify the effectiveness of the clustering process and 
provide additional visual safeguards before discarding the cluster. The feature extraction of RCI was done using 
the inception algorithms, followed by the hierarchical clustering6. Hierarchical cluster analysis of extracted fea-
tures helps to group similar images into groups called clusters.

Clusters with a lower correlation coefficient (<70%) and minimum leaf size <3 were rejected. Hierarchical 
cluster analysis was repeated with the remaining RCIs with an increase in the CC (<80%). This process was 
repeated until the CC reached (>90%), and beyond that, clustering does not improve. The remaining RCIs and 
their corresponding spectral profile CTrusted-Pristine and ST

Trusted-Pristine are ready to be trained by NN, given the class 
labels are assigned to them. After the hierarchical cluster analysis (HCA), the averaged concentration image in 
the respective cluster is shown in Fig. 5. All the clusters were assigned unique class labels depending on their 
spectral signature. There are primarily four clusters; (a) Carbon, (b) LiMO2, (c) background and (d) LiMO2 + flu-
orescence, (Table T2 in SI). Carbon, LiMO2, background, and LiMO2 + fluorescence clusters were labeled with 
specific variable class name ‘C’, ‘LMO’, ‘BG’ and ‘LMO-II’, respectively and so by default, all the corresponding 
spectrum within a particular cluster also got the same class label. Since the dataset size of the ST

Trusted-Pristine is 
much smaller in contrast to the CTrusted-Pristine, ST

Trusted-Pristine based NN can be trained faster with the less compu-
tational cost. The entire analysis took around 40 minutes, starting from the background removal until the HCA 
(Intel-powered PC running Windows 7 with 4.0 GB of RAM).

Notably, unsupervised intelligence (C-MCR-ALS) results show that carbon and LiMO2 are a great match 
with univariate results (Fig. S9)19. In contrast to univariate analysis, the unsupervised intelligence extracted 
two additional components, namely; BG and LMO-II. The third component is the BG, where carbon and LMO 
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microparticle can be seen evidently with a background signature that helps to ascertain the boundary between 
the LMO and C microparticle. The presence of the fourth component is surprising and indicates that LiMO2 is 
composed of two phases; LMO without any fluorescence and LMO-II with fluorescence.

training the neural network classifier (NNPristine). For supervised intelligence, a neural network 
(NNPristine) classifier was trained on spectral components that were extracted by Cluster-aided-MCR-ALS analy-
sis (ST

Trusted-Pristine: training-set). Subsequently, the class labels of hyperspectral Raman dataset (test-set: Pristine, 
500_IN, and 500_Out LIB samples) were predicted. Figure S10 shows the predicted concentration images for 
pristine, 500_IN, and 500_Out samples, respectively. With pristine LIB neural network model, results comparing 
the human, unsupervised, and supervised intelligence is shown in Fig. 6.

Raman analysis of 500_In LIB sample. Hyperspectral Raman image for 500_In LIB sample, is a 3D spec-
tral hypercube X500_In (72 × 26 × 1550). The 3D spectral dataset X500_In was folded into a 2D matrix (X500_In: 1827, 
1550). Raman spectral dataset plot using the 2D X500_In matrix is shown in Fig. S11(a). The baseline-corrected was 
done using Modified-PCA before the despiking (cosmic removal), baseline corrected Raman spectral data set is 
shown in Fig. S11(b); as a result, the baseline was corrected, and fluorescence was effectively removed. Baseline 
corrected despiked Raman spectral data set (X500_In-BD: 1827, 1550) shows that the cosmic noise was eliminated 
and LiMO2 and carbon peaks can be distinctly identified (Fig. S11(c)).

Cluster-aided-MCR-ALS analysis of despiked Raman spectral data set (X500_In-BD: 1827, 1550) was done repeat-
edly by changing the number of components sequentially from n = 1 to Nc = 8. For X500_In-BD LIB dataset, the total 
number of resulting components (Z) was 36. The concentration profiles (C500_In, 1827 × 36) were refolded back 
to form thirty-six (36) sub-pixel RCI having a dimension (C500_In, 72 × 26). The RCI and corresponding spectral 
profiles (St

500_In, 36 × 1550) are shown in Fig. S12. Hierarchical cluster analysis (HCA) of averaged concentration 

Figure 4. The concentration profiles (CPristine, 3600 × 36) were refolded back to form an image of dimension 
(CPristine, 60 × 60), i.e., a total of 36 concentration images. Few components repeatedly emerged, irrespective of 
the component selected. However, some components emerged either once or only a few times. The reliability of 
a component is directly proportional to its occurrence in the concentration profile data set.
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image in the respective cluster is shown in Fig. S13 (we used a similar analytical pipeline, as mentioned for pris-
tine sample analysis). Each Cluster was assigned a unique class label depending on their spectral signature. There 
are primarily four clusters: Carbon, LiMO2, LiMO2 + fluorescence, and background with the class label ‘C’, ‘LMO’, 
‘LMO-II’ and ‘BG’, respectively (Table T3 in SI). All the corresponding spectrum within a particular cluster also 
assigned the same class label15.

Figure 5. Hierarchical cluster analysis (HCA) of XPristine dataset. The averaged concentration image and 
corresponding spectra in the respective cluster can be seen. The clusters were assigned unique class labels 
depending on their spectral signature, primarily four clusters were identified; (a) Carbon, (b) LiMO2, (c) 
background, and (d) LiMO2 + fluorescence (LB).
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The unsupervised intelligence (C-MCR-ALS) analysis depicts that carbon and LMO mapping matches exactly 
with univariate results (Fig. S14). Unsupervised intelligence extracted two additional components, namely 
‘LMO-II and BG. Analogous to the pristine electrode, 500_IN also have LMO in two different phases (LMO 
& LMO-II). However, the high fluorescence coming from the core of LMO is surprising, given the fact that the 
binder is always attached on to the surface of the LMO microparticle20. However, a closer look reveals that there 
is little contrast within the LMO-microparticle (Fig. S15 LMO at higher magnification); it is because that some 
particles of the binder might have fallen on the LMO microparticle during the cross-polishing or handling of the 
LIB sample2. The fourth component is the BG, where carbon and LMO microparticle can be seen evidently with 
a background signature that helps to ascertain the boundary between the LMO and C microparticle. The fourth 
component is merely because the entire wavelength (multiple variables) was used, which is the residual imprint 
of data and acts as a background1.

Training the neural network classifier (NN500_In). A neural network (NN500_In) classifier was trained 
on spectral components that were extracted by Cluster-aided-MCR-ALS analysis (ST

Trusted-500_In: training-set). 
Subsequently, the class labels of hyperspectral Raman dataset (test-set: Pristine, 500_In, and 500_Out LIB sam-
ples) were predicted. Figure S16 shows the predicted concentration images for pristine, 500_IN, and 500_Out 
samples. With 500_IN LIB neural network model, results comparing the human, unsupervised, and supervised 
intelligence are shown in Fig. 7.

Raman analysis of 500_Out LIB sample. Hyperspectral Raman image is a 3D spectral hypercube X500_Out 
(60 × 60 × 1550). The 3D X500_Out dataset was folded into a 2D matrix (X500_Out: 3600, 1550). Here too, a similar 
analytical pipeline, as mentioned for pristine sample analysis. Raw Raman spectral, baseline corrected, and base-
line corrected despiked Raman spectral data set (X500_Out-BD: 3600, 1550) is shown in Fig. S17. It is evident from 

Figure 6. Results from three type of analytics is compared for pristine LIB sample; human, unsupervised, and 
supervised intelligence.
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the Fig. S15 that the baseline and cosmic noise were eliminated, and LMO2 and carbon peaks, obviously, can be 
seen. Cluster-aided-MCR-ALS of a matrix (X500_Out-BD: 3600, 1550) was done repeatedly by changing the number 
of components sequentially from n = 1 to Nc = 8. The concentration profiles (C500_Out, 3600 × 36) refolded to 
form sub-pixel RCIs (C500_Out, 72 × 26 × 36) and corresponding spectral profiles (St

500_Out, 36 × 1550) is shown 
in Fig. S18. After HCA, averaged concentration images is shown in Fig. S19. Coincidently, four clusters were 
extracted; Carbon, LiMO2, Carbon + fluorescence (CFL), and background (Table T4 in SI) and labeled as ‘C’, 
‘LMO’, ‘CFL’ and ‘BG’, respectively. All the spectrum within a particular cluster also assigned the same class label. 
The unsupervised intelligence (C-MCR-ALS) analysis depicts that carbon and LiMO2 mapping matches exactly 
with univariate results (Fig. S20). CFL is because of the fluorescence caused by the presence of the binder, depict-
ing the boundary between the Li and carbon microparticle. The fourth component cannot be assigned to the 
LMO because the peak position is around 300 cm−1; the possibility is the incomplete removal of the background 
signature during baseline correction.

Training the neural network classifier (NN500_Out). A neural network (NN500_Out) classifier was trained 
on spectral components that were extracted by Cluster-aided-MCR-ALS analysis (ST

Trusted-500_Out: training-set). 
Subsequently, the class labels of hyperspectral Raman dataset (test-set: Pristine, 500_In, and 500_Out LIB sam-
ples) were predicted. Figure S21 shows the predicted concentration images for pristine, 500_Out, and 500_IN 

Figure 7. Results from three type of analytics is compared for 500_IN LIB sample; human, unsupervised, and 
supervised intelligence.
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samples. With 500_Out LIB neural network model, results comparing the human, unsupervised, and supervised 
intelligence are shown in Fig. 8.

In order to understand how significant the clustering-aided MCR-ALS verses, conventional MCR-ALS analy-
sis is, the results are illustrated in Fig. S22. Cluster-aided-MCR-ALS allowed the convoluted information content 
to be extracted according to the hypothesis that the original data can be reconstructed from a limited number 
of significant factors that are trustworthy and reproducible, irrespective of the number of components selected 
for extraction from the raw data6. The hierarchical clustering threshold removed the outliers, i.e., non-trusted 
spectral signature. Silhouette-clustering was performed while gradually increasing the number of components 
from 1 to Nc = 8 for pristine LIB Raman dataset. The Silhouette-clustering illustrate as the number of components 
changes the different number of segmentation emerges (Fig. S22(a))18. On the contrary, Silhouette-clustering 
of all four clusters (C, LMO, Background, and LMO-II extracted by Cluster-aided-MCR-ALS) results into two 
distinct segmentation (Fig. S22(b)); (i) trusted spectral signature, (ii) the background. The existence of the two 
distinct segmentation indicates that there is only a singleton spectral signature and validate the fact that the 
extracted components are trustworthy.

From the preceding sections, we have seen the advantage of the AF, which was designed explicitly for the LIB 
analysis. The analytical framework is not idiosyncratic, and it can be applied to any spectral dataset from other 
instrumentation as well. Cluster-assisted MCR-ALS analysis helped to resolve the genuinely reliable spectral sig-
natures (ZTrusted) and concentration components (CTrusted) in the hyperspectral Raman datasets. Clustering and 
labeling the RCIs in Raman dataset has not only provided the visual confirmation for validation of the MCR-ALS 
results, besides it has safeguarded throwing any vital information by choosing the CC (threshold) with bet-
ter objectivity. Spectral signatures (ZTrusted) were more fruitful than concentration profile (CTrusted). Firstly, the 

Figure 8. Results from three type of analytics is compared for 500_Out LIB sample; human, unsupervised, and 
supervised intelligence.
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reference of extracted spectrums can be searched in the spectral database15. Secondly, the number of extracted 
spectral signatures were few in numbers, smaller in size, as a consequence, training the neural network on 
cluster-assisted MCR-ALS labelled data was computationally inexpensive, faster and extendable on to the enor-
mous dataset, makes it viable for inline analysis in real-time (Quantitate analysis of LIB electrodes is discussed in 
SI)3. End-to-end AF pipeline from baseline-removal till NN analysis took 45 minutes. Finally, the prediction of 
labels was instantly within 2 seconds, and the accuracy of the network was >94%, irrespective of using any trained 
NN (NNPristine/NN500_In/NN500_Out). It shows the effectiveness of the trained network in predicting the class labels 
for real-time Raman analysis with almost no human assistance.

capacity degradation analysis of LiB electrodes. Although, the identification of the main compo-
nents (Carbon and LMO) become very intuitive using cluster-aided-MCR-ALS, irrespective of all the Raman 
dataset (Pristine, 500_In, and 500_Out). Nevertheless, the trace amount of components other than (C and 
LiMO2) were not consistent across all the three Raman dataset; it is because all three LIB samples contain dif-
ferent amount of degradation21. Figure S23 shows the LMO and carbon spectrum, respectively, extracted using 
cluster-aided-MCR-ALS analysis from pristine, 500_In, and 500_Out LIB samples. The state of charge can be 
qualitatively analyzed by comparing the LiMO2 signature19–22. The LIB electrode has only three transition metal 
ions, so there is a possibility of three A1g and three Eg modes (Table T5 in SI). For pristine LIB sample, LMO spec-
tra have a broad symmetric peak. The peak deconvolution shows the spectra are composed of four main peaks at 
458, 524, 594, 635 cm−1 can be assigned to Ni (Eg), Co (A1g), Mn (Eg), and Mn (A1g), respectively (SI Table T6). The 
ration of Co (A1g) and Mn (Eg) (retention coefficient) provide the state of health of battery; i.e., capacity retention. 
After 500 cycles, the retention coefficient reduces dramatically, and Mn (Eg) peak gets more intense as the cycling 
of LIB progresses (Fig. S24). ICP results show that the stoichiometric ratio in the LIB cell was Ni: Mn: Co (5.03: 
3.0: 1.97). The Raman bands are due to the motion of oxygen atoms only, M-O stretching, and O-M-O bending 
modes. Raman active modes of LiMO2 can be described as follows:

= + + +T A E A E2 2 (1)u u g g2 2 1

The Raman bands for 500_IN and 500_out samples are listed in Tables T7 and T8 in SI. Given the fact, Mn 
is electronically inactive, and it only takes part in electronic charge transfer with Ni cations. The cation mixing 
between nickel cobalt and lithium ions is feasible because ionic radii of Li+, Ni2+, and Co2+ are very close to each 
other 0.76, 0.69, and 0.65A, respectively. Cation mixing is responsible for the loss of capacity and reduces lithium 
diffusion19,20. In the present study, Raman active modes were found to be broader before charge/discharge cycling 
and become narrower after the LIB cycling. The chances of cation mixing in the early stage of charge/discharge are 
higher and drastically reduces as the charge/discharge cycle progresses because of the parasite reactions. As can 
be seen in Fig. S24, the pristine LIB sample has a broader Raman peak compared to the 500_In and 500_Out LIB 
samples, notably, the Raman peak for 500_Out LIB sample has much narrow Raman peak than 500_In LIB sam-
ple, and it indicates that the interior and exterior electrode have experienced different amount of side reactions.

In order to cross-validate the cluster-assisted MCR-ALS results, pristine, 500_In, and 500_out LIB Raman 
datasets (baseline and despiked dataset without normalization) were also processed using NMF-SO-ARD. The 
results show that the LMO signature extracted by NMF-SO-ARD has close resemblance with cluster-assisted 
MCR-ALS signature (Fig. S25). The cluster-assisted MCR-ALS and NMF-SO-ARD results complement each 
other. It is recommended that the ration of Co (A1g) and Mn (Eg) (retention coefficient) can provide the state of 
health of battery; i.e., capacity retention. Aiming the quantitative analysis of LIB electrodes, the elemental compo-
sition was evaluated for LMO and carbon. Each pixel (Fig. S26) contains the concentration of LMO and carbon. 
The number of pixels with an appropriate threshold is used as a metric for LMO and carbon quantification and 
was found to be within the range prescribed by the manufacturer of LIB electrodes.

conclusion
We demonstrated that the analysis of hyperspectral Raman LIB electrodes was autonomous with almost no 
human assistance. Modified-PCA cleansed the cosmic noise efficiently, consequently, avoid the erroneous quan-
titative analysis. NMF-SO-ARD algorithm was well suited for automatically identifying the maximum number 
of components to be fitted for the LIB hyperspectral Raman dataset. For MCR-ALS analysis, the refolding of the 
concentration signatures into image brought the visual confirmation and safeguarded throwing any vital informa-
tion; i.e., more intuitive. Unsupervised analytics “Cluster aided MCR-ALS” has helped to extract additional com-
ponents that were not identified by univariate analysis. For inline real-time analytics, the results must be instant 
and that it was made possible by bridging the gap between the unsupervised and supervised analytics. Cluster 
aided MCR-ALS analysis helped to label the reliable signatures; as a result, the trained NN helped to predict the 
class labels with accuracy higher than 94.0%. For the LIB electrodes, the interoperability of the NN model was 
found to be consistent for its major constituents, such as C and LMO. The degradation of the LIB electrode can be 
quantified by monitoring the retention coefficient; the ratio between Co (A1g) and Mn (Eg). The present analytical 
framework is not idiosyncratic and could be utilized for molecular variations containing spectroscopic dataset.
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