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Machine Learning Approaches 
to Radiogenomics of Breast 
cancer using Low-Dose perfusion 
computed tomography: predicting 
prognostic Biomarkers and 
Molecular Subtypes
eun Kyung park1,6, Kwang-sig Lee2,6, Bo Kyoung Seo  1*, Kyu Ran cho3, Ok Hee Woo4, 
Gil Soo Son5, Hye Yoon Lee5 & Young Woo chang  5

Radiogenomics investigates the relationship between imaging phenotypes and genetic expression. 
Breast cancer is a heterogeneous disease that manifests complex genetic changes and various 
prognosis and treatment response. We investigate the value of machine learning approaches to 
radiogenomics using low-dose perfusion computed tomography (ct) to predict prognostic biomarkers 
and molecular subtypes of invasive breast cancer. This prospective study enrolled a total of 723 cases 
involving 241 patients with invasive breast cancer. The 18 CT parameters of cancers were analyzed using 
5 machine learning models to predict lymph node status, tumor grade, tumor size, hormone receptors, 
HER2, Ki67, and the molecular subtypes. The random forest model was the best model in terms of 
accuracy and the area under the receiver-operating characteristic curve (AUC). On average, the random 
forest model had 13% higher accuracy and 0.17 higher AUC than the logistic regression. The most 
important ct parameters in the random forest model for prediction were peak enhancement intensity 
(Hounsfield units), time to peak (seconds), blood volume permeability (mL/100 g), and perfusion of 
tumor (mL/min per 100 mL). Machine learning approaches to radiogenomics using low-dose perfusion 
breast ct is a useful noninvasive tool for predicting prognostic biomarkers and molecular subtypes of 
invasive breast cancer.

Radiogenomics investigates the relationship between imaging phenotypes and underlying genes, their expression 
patterns, and mutations. The basic principle of radiogenomics is that imaging phenotypes are the result of pro-
cesses occurring at the genetic and molecular levels1. Breast cancer is a heterogeneous disease that represents the 
accumulation of complex genetic alterations, and can have diverse prognosis and treatment responses. The goals 
of radiogenomics in breast cancer are to develop noninvasive imaging surrogate biomarkers and to predict the 
risks and outcomes of patient stratification for precise treatment. The radiogenomic approach to breast cancer 
has been recently developed mainly using dynamic contrast-enhanced magnetic resonance imaging (MRI) or 
mammography2–7. The associations of MRI or mammography with breast cancer gene sets, molecular subtypes, 

1Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, 
Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea. 2AI Center, Korea University Anam Hospital, Korea 
University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. 3Department of 
Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, 
Seoul, 02841, Republic of Korea. 4Department of Radiology, Korea University Guro Hospital, Korea University College 
of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea. 5Division of Breast and Endocrine Surgery, 
Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, 
Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea. 6These aurhors contributed equally: Eun Kyung Park 
and Kwang-sig Lee. *email: seoboky@korea.ac.kr

open

https://doi.org/10.1038/s41598-019-54371-z
http://orcid.org/0000-0002-9512-5361
http://orcid.org/0000-0001-5396-7467
mailto:seoboky@korea.ac.kr


2Scientific RepoRtS |         (2019) 9:17847  | https://doi.org/10.1038/s41598-019-54371-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

or recurrence scores have been investigated. A recent radiogenomic study using breast MRI and RNA sequencing 
by Yeh et al.4 demonstrated that tumor size characteristics are associated with proliferation and replication genetic 
pathways and better prognostic imaging features such as smaller size, increased sphericity, and that sharper mar-
gins are associated with immune pathway activation. Radiogenomic studies using mammography have shown the 
associations between breast parenchymal density with UGT2B gene variations and between radiographic texture 
analysis and BRCA gene mutations6,7.

The use of computed tomography (CT) to image the breast is limited because of the risk of high radiation 
exposure and poor image quality. However, CT has many advantages in oncology imaging. CT can be used to 
evaluate tumor angiogenesis using contrast agents and to assess lymph node or distant metastasis to lung, bone, 
or liver as well as breast itself. We recently developed a breast perfusion CT protocol using a low dose of 1.30–
1.40 mSv, which was performed with the patient in the prone position, and reported the feasibility of quantifying 
tumor vascularity using this method8. Our preliminary results showed correlations between CT perfusion param-
eters and prognostic biomarkers and molecular subtypes, and between CT parameters and MRI enhancement 
characteristics. Low-dose breast perfusion CT requires a short scan time of only 3 minutes, produces satisfactory 
image quality, and can, therefore, be applied to patients who cannot undergo MRI because of implantable metallic 
devices, allergy to gadolinium, marked obesity, severe kyphoscoliosis, or claustrophobia.

We wanted to verify the application of low-dose perfusion CT to breast cancer radiogenomics by using a 
robust statistical method in a prospective study of breast cancer patients. Machine learning is a statistical tool 
that can allow computers to perform tasks by learning from examples without being explicitly programmed9. As 
data from electronic medical record become available, machine learning extracts knowledge from this data pool 
and produces output that can be used for individual outcome prediction analysis and clinical decision making. A 
few studies have applied a machine learning approach to radiogenomics and predictive analysis10,11. A machine 
learning approach allows for effective generalization of imaging data and patient stratification.

The purpose of our study was to investigate the clinical value of a machine learning approach to radiogenom-
ics using low-dose perfusion breast CT for predicting prognostic biomarkers and molecular subtypes in invasive 
breast cancer. Although only 4 CT perfusion parameters with the maximum slope algorithm were extracted in 
the preliminary study8, the current study evaluated 18 quantitative CT parameters according to the maximum 
slope, deconvolution, and Patlak algorithms. The Patlak algorithm assumes the double-compartment method in 
which the intravascular and extravascular spaces are separate compartments12,13. The concentration of contrast 
agent within an organ at any time will have intravascular and extravascular components. This model quantifies 
the movement of the contrast agent from intravascular to extravascular space. The intravascular component is 
determined by the blood volume of the organ and the blood concentration of the contrast agent used at that 
time. The extravascular component is determined by the capillary permeability and the amount of contrast agent 
having passed through the organ. To create a CT feature-specific model, we used standard logistic regression and 
5 machine learning models. We tried to identify the best machine learning model and which CT parameters are 
important for predicting prognostic biomarkers and molecular subtypes.

Methods
ethics statement. This prospective study was approved by the Institutional Review Board of Korea 
University Ansan Hospital (2016AS0071 and 2017AS0037) and written informed consent was obtained from all 
patients. All methods were performed in accordance with the relevant guidelines and regulations.

patients. Perfusion CT was performed in 246 consecutive women who were scheduled to undergo treatment 
for invasive breast cancer from November 2016 to March 2019. All patients received a core needle biopsy and 
were not subjected to vacuum-assisted or excisional biopsies. Five of the 246 patients were excluded because of 
recent breast surgery within 2 years (n = 3), only ductal carcinoma in situ on final pathological examination after 
surgery (n = 1), and poor identification of a tumor in perfusion images because of small size (n = 1). Finally, a 
total of 241 breast cancer patients (age range, 25─84 years; mean, 51 years) were enrolled in this study.

ct acquisition. Perfusion breast CT scans were performed according to the previous preliminary study8. 
One of 2 radiologists (B.K.S. and P.E.K.), who had 20 or 8 years’ experience in breast imaging, performed targeted 
ultrasound to localize the cancer before CT examination. After the cancer was identified on ultrasound, a dot skin 
marker (X-spot®; Beekley Medical, Bristol, CT, USA) was attached at the cancer site. If the patient had multiple 
cancers, the largest cancer was marked.

We used a spectral CT scanner (IQon Spectral CT; Philips Health Systems, Cleveland, OH, USA). For CT 
scanning in the prone position, an additional table pad with a rectangular hole to position the breast was placed 
on a standard CT table8. CT was performed at 80 kV tube voltage, 25 mAs or 30 mAs tube current, 64 × 0.625 mm 
collimation, 0.5 s rotation time, 512 × 512 matrix, and 5 mm slice thickness. 138 patients had a CT scan at 25 mAs 
and 103 patients at 30 mAs. The perfusion scan range was 40 mm along the z-axis, including skin markings on 
the cancers. Precontrast images were obtained to determine the scan range. After the perfusion range was deter-
mined, the skin markers were removed and 60 mL of contrast agent (Xenetix 350; Guerbet, Aulnay-sous-Bois, 
France) was administered at 4 mL/s. Scanning was performed 18 times at 3-second intervals followed by 4 times 
at 30-second intervals after the contrast administration. The CT dose index at 80 kVp and 25 mAs or 30 mAs 
using a 32 cm body phantom was 0.7 mGy or 0.9 mGy. The CT effective dose for each patient ranged from 1.01 
to 1.40 mSv.

ct analysis. The CT data were sent to a dedicated workstation (Extended Brilliance Workspace; Philips 
Health Systems). All 18 perfusion parameters (independent variables) were obtained using the 2 software 
programs (Table 1). The time-attenuation curves and perfusion color maps of the cancer were computed 
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automatically using a commercial software (Functional CT (FUNCTION); Philips Health Systems) and a proto-
type (Advanced Perfusion and Permeability Application (APPA); Philips Health Systems). (Fig. 1).

Ten parameters were obtained using the APPA program (Fig. 1A); peak enhancement intensity (PEI; 
Hounsfield units, HU), perfusion on deconvolution model (PD; mL/min per 100 mL), perfusion on maximum 
slope model (PM; mL/min per 100 mL), blood volume (BV; mL/100 g), mean transit time (MTT; seconds), time 
to peak (TTP; seconds), permeability (Permeability; mL/min per 100 g), blood volume permeability (BV perme-
ability; mL/100 g), standardization of perfusion on deconvolution model (Standard PD; mL/min per 100 mL), 
and standardization of perfusion on maximum slope model (Standard PM; mL/min per 100 mL). Standardization 
meant calculated perfusion values based on cardiac output, body weight, volume and density of the contrast 
agent, and conversion factors (contrast agent density unit to HU).

Eight parameters were obtained using FUNCTION program. 4 parameters were measured at the tumor 
hot spots (Fig. 1B), and 4 were measured over the whole tumor (Fig. 1C); perfusion (Perfusion-Function; mL/
min per 100 mL), PEI (PEI-Function; HU), TTP (TTP-Function; seconds), BV (BV-Function; mL/100 g), per-
fusion of whole breast cancer (Perfusion-Function-Whole; mL/min per 100 mL), PEI of whole breast cancer 
(PEI-Function-Whole; HU), TTP of whole breast cancer (TTP-Function-Whole; seconds), and BV of whole 
breast cancer (BV-Function-Whole; mL/100 g).

A perfusion map of breast cancer was obtained by (1) manually selecting the images between the beginning 
and end of enhancement in the descending aorta area, (2) obtaining the reference artery input curve by placing 
a region of interest (ROI) in the aorta, and (3) placing a ROI in the tumor hot spot or the whole tumor range. 
Perfusion parameters for each patient were measured 3 times at intervals of 3 months by the radiologist (E.K.P.). 
The tumor size was measured on CT scans using the maximum diameter of the enhancing tumor, and the size 
was then classified into 2 groups for statistical analysis: ≤20 mm or >20 mm. The tumor size ranged from 6.0 mm 
to 82.0 mm (mean, 23.8 ± 13.4 mm).

Histopathological evaluation. We reviewed the histopathological reports for evaluation of prognostic 
biomarkers and molecular subtypes (dependent variables) of breast cancer. Lymph node status, tumor grade, 
estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and 
Ki67 were dichotomized for statistical analysis. Lymph node status was divided into positive or negative metas-
tasis. Tumor grade was dichotomized as low (grade 1 and 2) and high (grade 3)14,15. The immunohistochemical 
results of ER, PR, HER2, and Ki67 were classified as positive or negative. The Allred scoring system was used 
for ER and PR status, and a score of >2 was considered positive. Positive HER2 overexpression was considered 

CT perfusion parameters Features

PEI (Hounsfield Units)* Peak enhancement intensity by APPA: The peak enhancement due to injected contrast 
agent

PD (mL/min per 100 mL)* Perfusion on deconvolution model by APPA: Blood flow through the vasculature in a 
defined tissue or mass volume on deconvolution model

PM (mL/min per100 mL)* Perfusion on maximum slope model by APPA: Blood flow through the vasculature in a 
defined tissue or mass volume on maximum slope model

BV (mL/100 g)* Blood volume by APPA: The total blood volume over the region during the period of the 
scan and it is determined by the area under the time-attenuation curve

MTT (seconds)* Mean transit time by APPA: Average transit time of contrast agent in a given tissue

TTP (seconds)* Time to peak by APPA: The time it takes for the peak enhancement to be reached

Permeability (mL/min per 100 g)* Permeability by APPA: The flow of molecules through the capillary membranes in a 
certain volume of tissue

BV permeability (mL/100 g)* Blood volume permeability by APPA: The blood volume passed through the contrast 
agent from the intravascular space into the extravascular space

Standard PD (mL/min per 100 mL)*

Standardization of perfusion on deconvolution model by APPA: Calculated perfusion 
value based on four inputs including cardiac output, body weight of the patient, volume 
and density of the injected contrast agent, and conversion factor (contrast agent density 
unit to HU [HU/(mg/mL)] on deconvolution model

Standard PM (mL/min per 100 mL)*

Standardization of perfusion on maximum slope model by APPA: Calculated perfusion 
value based on four inputs including cardiac output, body weight of the patient, volume 
and density of the injected contrast agent, and conversion factor (contrast agent density 
unit to HU [HU/(mg/mL)] on maximum slope model

Perfusion-Function (mL/min per 100 mL)* Perfusion by FUNCTION

PEI-Function (Hounsfield Units)* Peak enhancement intensity by FUNCTION

TTP-Function (seconds)* Time to peak by FUNCTION

BV-Function (mL/100 g)* Blood volume by FUNCTION

Perfusion-Function-Whole (mL/min per 100 mL) Perfusion of whole tumor by FUNCTION

PEI-Function-Whole (Hounsfield Units) Peak enhancement intensity of whole tumor by FUNCTION

TTP-Function-Whole (seconds) Time to peak of whole tumor by FUNCTION

BV-Function-Whole (mL/100 g) Blood volume of whole tumor by FUNCTION

Table 1. List of evaluated perfusion CT parameters. *Perfusion parameters measured by ROI placed for 
breast cancer covering the hot spot of the tumor. CT computed tomography, APPA advanced perfusion and 
permeabiliy application software, FUNCTION Functional CT software.
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Figure 1. Evaluated 18 hemodynamic parameters on low-dose breast perfusion CT. (A) Ten parameters were 
obtained at the hot spot of the tumor using the Advanced Perfusion and Permeability Application software; 
peak enhancement intensity (PEI), perfusion on deconvolution model (PD), perfusion on maximum slope 
model (PM), blood volume (BV), mean transit time (MTT), time to peak (TTP), permeability (Permeability), 
blood volume permeability (BV permeability), standardization of perfusion on deconvolution model (Standard 
PD), and standardization of perfusion on maximum slope model (Standard PM). (B) Four parameters were 
obtained at the hot spot of the tumor using the Functional CT software; perfusion (Perfusion-Function), PEI 
(PEI-Function), TTP (TTP-Function), and BV (BV-Function). (C) Four parameters were obtained at the whole 
tumor range using the Functional CT software; perfusion of whole breast cancer (Perfusion-Function-Whole), 
PEI of whole breast cancer (PEI-Function-Whole), TTP of whole breast cancer (TTP-Function-Whole), and BV 
of whole breast cancer (BV-Function-Whole).
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in 3+ immunohistochemical staining or 2+ immunohistochemical staining and HER2 gene amplification in 
silver-stained in situ hybridization. The Ki67 index was considered positive when the expression was >20%.

The molecular subtypes of breast cancer divided into 4 categories: luminal A (ER or PR+, HER2−, and 
Ki67−); luminal B (ER or PR+, HER2−, and Ki67+, or ER or PR+, HER2+, and Ki67+); HER2 overexpression 
(ER−, PR−, and HER2+); or triple negative cancer (ER−, PR−, and HER2−).

Statistical analysis. The primary goal of this study was to evaluate whether popular machine learning 
models, that is, decision tree, naïve Bayes, random forest, support vector machine (SVM) and artificial neural 
network (ANN) based on CT perfusion features, can predict prognostic biomarkers and molecular subtypes of 
breast cancer. A decision tree comprised (a) internal nodes (each denoting a test of an attribute or independent 
variable), (b) branches (each denoting an outcome of the test), and (c) terminal nodes (each representing a class 
label or dependent variable). A naïve Bayesian classifier is a predictor based on Bayes’ theorem. A random forest 
creates many training sets, trains many decision trees, and makes a prediction with a majority vote (bootstrap 
aggregation). An SVM makes a prediction by maximizing a margin among hyperplanes separating data. The 
ANN of this study included 1 input layer, 2 hidden layers, and 1 output layer with 9774 neurons as data units 
in the input layer, 15 in each hidden layer, and 4 (or 2) in the output layer, i.e., 4 for the molecular subtypes and 
2 for the dichotomized status of a prognostic biomarker for breast cancer. Here, the number of neurons in the 
input layer, 9774, was derived from the multiplication of 18 and 543, the numbers of attributes and cases in the 
training set, respectively. Neurons in the input or previous hidden layer were combined with weights in the next 
hidden or output layer (feedforward algorithm). The weights in the output layer and its previous hidden layers 
were then adjusted according to how much they contributed to the loss of the ANN, i.e., a gap between the actual 
and predicted class labels (backpropagation algorithm). Initially, the weights were set as small random numbers 
around 0, and the feedforward and backpropagation algorithms were iterated until certain criteria were met for 
the accurate prediction of a class label16.

The model input variables included 18 quantitative CT parameters (Table 1). The model output variables were 
prognostic biomarkers and molecular subtypes of breast cancer. The data on 723 cases were divided into training 
and test sets at a 75:25 ratio. The models were built based on the training set of 543 cases, and the trained models 
were then validated based on the test set of 180 cases. Two often used criteria were introduced for validating 
the trained models and finding the best prediction model; accuracy, which represents the ratio of correct pre-
dictions among 180 cases in the test set, and the area under the receiver-operating characteristic curve (AUC), 
which represents the plot of the true positive rate (or sensitivity) vs. the false positive rate (or 1 – specificity). A 
single 75:25 split of the training and test sets would reduce the validity and generalizability of the results. For 

Dependent variable Count Percentage (%)

Lymph node

  Negative 414 57

  Positive 309 43

Tumor grade

  Low 459 63

  High 264 37

Tumor size

  ≤20 360 50

  >20 363 50

ER

  Negative 237 33

  Positive 486 67

PR

  Negative 270 37

  Positive 453 63

HER2

  Negative 570 79

  Positive 153 21

Ki67

  Negative 339 47

  Positive 384 53

Molecular subtype

  Luminal A 294 41

  Luminal B 207 29

  HER2 overexpression 126 17

  Triple negative 96 13

Table 2. Descriptive statistics for prognostic biomarkers and molecular subtypes. ER estrogen receptor, PR 
progesterone receptor, HER2 human epidermal growth factor receptor 2.
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this reason, the random split and the statistical analysis were repeated 50 times and their average accuracy and 
AUC were calculated for each of six statistical methods, i.e., logistic regression and 5 machine learning models 
above17. Here, an additional step with a validation set is considered to be essential when hyper-parameter tuning 
is essential as in the case of deep learning models with many layers. In this case, (1) the validation set is held back 
from the training set besides the test set; (2) the validation set is used for tuning hyper-parameters of a certain 
model (e.g., the learning rate in a deep learning model); and (3) the test set is used for selecting the best model 
based on performance measures such as accuracy and the AUC. However, this additional step with the validation 
set can be skipped when hyper-parameter tuning is not essential, as in this study. Therefore, a validation set was 
not used here. Finally, the importance ranking of CT parameters for predicting the prognostic biomarkers and 
the molecular subtypes were derived from the variable importance measure of the best prediction model, which 
gave an accuracy (or mean impurity) gap between the complete model and a model excluding a certain variable. 
Python 3.52 was used for the analysis in April 2019.

Results
Descriptive statistics of prognostic biomarkers, molecular subtypes, and CT perfusion parameters.  
Table 2 shows the descriptive statistics for the prognostic biomarkers and molecular subtypes of invasive breast 
cancer. The statistics for the positive prognostic biomarkers were 43%, 67%, 63%, 21%, and 53% for lymph node, 
ER, PR, HER2, and Ki67, respectively. Similarly, the percentages of cases with molecular subtypes, luminal A, 
luminal B, HER2 overexpression, and triple negative cancers were 41%, 29%, 17%, and 13%, respectively. Table 3 
indicates the descriptive statistics for the 18 CT perfusion parameters expressed as average, minimum, maximum, 
and 25%, 50%, and 75% values.

Diagnostic performance of the logistic regression and machine learning models for predict-
ing prognostic biomarkers and molecular subtypes. Table 4 shows the diagnostic performance of the 
logistic regression and 5 machine learning models in terms of accuracy and AUC values, averaged over the 50 
random splits and statistical analyses described above. Indeed, Fig. S1 shows the AUCs from one of the 50 analy-
ses. In terms of accuracy and the AUC, the random forest model was the best model for predicting prognostic bio-
markers and molecular subtypes of breast cancer. The accuracy was higher for the random forest model than for 
the logistic regression model by 13% on average: 78% vs. 62% for lymph node status, 80% vs. 67% for tumor grade, 
77% vs. 64% for tumor size, 82% vs. 70% for ER status, 78% vs. 66% for PR status, 83% vs. 78% for HER2 status, 
77% vs. 65% for Ki67 status, and 66% vs. 48% for molecular subtypes. The random forest model was a better per-
former than the logistic regression model, as shown by the average 0.17 difference in AUC: 0.86 vs. 0.66 for lymph 
node status, 0.88 vs. 0.71 for tumor grade, 0.85 vs. 0.69 for tumor size, 0.88 vs. 0.73 for ER status, 0.85 vs. 0.68 for 
PR status, 0.88 vs. 0.69 for HER2 status, 0.85 vs. 0.70 for Ki67 status, and 0.82 vs. 0.69 for molecular subtypes.

Variable importance of ct parameters in predicting prognostic biomarkers and molecular sub-
types. According to the importance of CT variables from the 50 random forest model, PEI, TTP, BV perme-
ability, Perfusion-Function, and Perfusion-Function-Whole were the most important parameters for predicting 
prognostic biomarkers and molecular subtypes of breast cancer (Table 5). These results were based on the number 

Independent variable* Mean SD Min 25% 50% 75% Max

PEI (Hounsfield Units) 112.15 34.03 20.00 94.10 112.60 130.80 251.60

PD (mL/min per 100 mL) 108.14 36.11 31.20 81.85 102.00 128.60 356.80

PM (mL/min per100 mL) 219.05 89.99 79.30 159.15 200.90 257.40 950.10

BV (mL/100 g) 20.57 6.81 4.80 15.90 19.80 23.75 51.30

MTT (seconds) 14.90 5.97 7.80 12.60 14.70 16.60 156.20

TTP (seconds) 48.10 8.42 26.40 41.60 47.60 54.35 67.10

Permeability (mL/min per 100 g) 14.80 8.83 0.10 10.50 13.80 17.30 118.40

BV permeability (mL/100 g) 13.29 17.44 0.00 5.40 10.50 17.25 371.50

Standard PD (mL/min per 100 mL) 10.19 3.21 3.12 7.80 9.90 12.08 24.54

Standard PM (mL/min per 100 mL) 20.67 8.00 6.51 14.68 19.55 24.85 63.61

Perfusion-Function (mL/min per 100 mL)* 31.81 31.30 2.22 9.23 22.15 45.36 255.45

PEI-Function (Hounsfield Units) 71.87 28.08 12.08 53.74 68.91 84.58 192.24

TTP-Function (seconds) 55.97 49.32 3.05 18.34 30.56 92.75 366.69

BV-Function (mL/100 g) 42.83 36.64 0.58 24.28 33.39 48.62 268.54

Perfusion-Function-Whole (mL/min per 100 mL) 12.97 17.01 0.76 3.26 5.59 15.15 134.82

PEI-Function-Whole (Hounsfield Units) 44.40 19.46 4.25 31.67 42.82 53.60 193.63

TTP-Function-Whole (seconds) 89.29 54.22 6.11 27.51 95.81 135.56 168.19

BV-Function-Whole (mL/100 g) 28.75 26.71 0.16 15.63 22.81 32.59 256.66

Table 3. Descriptive statistics for CT perfusion parameters. *The meanings of independent variables are 
described in Table 1. CT computed tomography, SD standard deviation, Min minimum value, 25% 25 percentile 
value of the distribution, 50% 50 percentile value of the distribution, 75% 75 percentile value of the distribution, 
Max maximum value.
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of times a certain CT parameter ranked within the top 5 for the predictions (top 5 criteria). These CT param-
eters were also the most important parameters based on the number of times a certain CT parameter ranked 
within the top 10 for the predictions (top 10 criteria). PEI-Function, PM, Permeability, TTP-Function-Whole, 
and BV-Function-Whole satisfied the top 10 criteria.

The importance rankings of PEI were 4th, 3rd, 1st, 5th, 3rd, and 5th for lymph node status, tumor grade, tumor 
size, HER2 status, Ki67 status, and molecular subtypes, respectively. TTP ranked 1st, 2nd, 2nd, 2nd, and 2nd among 
the most important predictors for tumor grade, PR status, HER2 status, Ki67 status, and molecular subtypes, 
respectively. BV permeability ranked 4th, 1st, 3rd, 4th, 1st, and 1st among the most important predictors for tumor 
grade, ER status, PR status, HER2 status, Ki67 status, and molecular subtypes, respectively. The measures of 
Perfusion-Function-Whole were 1st, 2nd, 5th, 5th, 5th, and 1st for lymph node, tumor grade, tumor size, ER, PR, and 
HER2, respectively. The measures for Perfusion-Function were 2nd, 4th, 4th, 5th, and 3rd for predicting tumor size, 
ER status, PR status, Ki67 status, and molecular subtypes, respectively.

The multinomial logistic regression results yielded useful information about the direction and magnitude of 
the effects of the top 5 CT parameters on the prognostic biomarkers and molecular subtypes (Table S1). For exam-
ple, a 10-second increase in TTP would increase the odds of ER being positive (vs. negative) by 78%. A 10-second 
decrease in TTP would lead to a 137% increase in the odds of HER2 overexpression cancer (vs. luminal A type 
cancer). Similarly, a 10-second decrease in TTP would result in a 97% increase in the odds of triple negative can-
cer (vs. luminal A type cancer). An increase of 10 mL/min per 100 mL in Perfusion-Function would increase the 
odds of HER2 overexpression cancer (vs. luminal A type cancer) by 25%. Indeed, the results of univariate analysis 
were consistent with their multivariate counterparts in general (Supplementary Table S2). A difference in the 

Lymph node Tumor grade Tumor size ER PR HER2 Ki67 Molecular subtype

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

Logistic 
regression 62% 0.66 67% 0.71 64% 0.69 70% 0.73 66% 0.68 78% 0.69 65% 0.70 48% 0.69

Decision tree 66% 0.65 71% 0.69 65% 0.65 72% 0.69 69% 0.67 77% 0.67 66% 0.66 50% 0.63

Naïve Bayes 53% 0.58 63% 0.70 58% 0.63 68% 0.71 65% 0.65 72% 0.69 59% 0.69 49% 0.70

Random forest 78% 0.86 80% 0.88 77% 0.85 82% 0.88 78% 0.85 83% 0.88 77% 0.85 66% 0.82

SVM 57% 0.34 63% 0.35 48% 0.42 67% 0.44 64% 0.39 79% 0.47 53% 0.35 41% 0.65

ANN 64% 0.68 68% 0.73 65% 0.71 75% 0.77 69% 0.72 76% 0.73 66% 0.71 35% 0.72

Table 4. Average performance of logistic regression and machine learning models for predicting prognostic 
biomarkers and molecular subtypes. ER estrogen receptor, PR progesterone receptor, HER2 human epidermal 
growth factor receptor 2, AUC the area under the receiver-operating-characteristic curve, SVM support vector 
machine, ANN artificial neural network.

Independent variable*
Lymph 
node

Tumor 
grade

Tumor 
size ER PR HER2 Ki67

Molecular 
subtype

PEI (Hounsfield Units) 0.0589† 0.0685† 0.0860† 0.0498 0.0520 0.0681† 0.0664† 0.0614†

PD (mL/min per 100 mL) 0.0564 0.0505 0.0508 0.0433 0.0430 0.0408 0.0552 0.0478

PM (mL/min per100 mL) 0.0583† 0.0444 0.0507 0.0445 0.0497 0.0460 0.0433 0.0484

BV (mL/100 g) 0.0433 0.0479 0.0455 0.0391 0.0448 0.0436 0.0478 0.0479

MTT (seconds) 0.0413 0.0458 0.0487 0.0413 0.0488 0.0480 0.0399 0.0430

TTP (seconds) 0.0420 0.0771† 0.0566 0.0689 0.0743† 0.0743† 0.0686† 0.0665†

Permeability (mL/min per 100 g) 0.0491 0.0462 0.0482 0.0731† 0.0835† 0.0526 0.0505 0.0651†

BV permeability (mL/100 g) 0.0428 0.0668† 0.0462 0.0830† 0.0675† 0.0718† 0.1054† 0.0823†

Standard PD (mL/min per 100 mL) 0.0530 0.0547 0.0450 0.0463 0.0483 0.0460 0.0457 0.0454

Standard PM (mL/min per 100 mL) 0.0474 0.0483 0.0459 0.0413 0.0532 0.0439 0.0406 0.0464

Perfusion-Function (mL/min per 100 mL) 0.0500 0.0576 0.0752† 0.0727† 0.0666† 0.0493 0.0625† 0.0657†

PEI-Function (Hounsfield Units) 0.0607† 0.0612 0.0556 0.0550 0.0485 0.0619 0.0631† 0.0575

TTP-Function (seconds) 0.0435 0.0377 0.0491 0.0642 0.0653 0.0460 0.0506 0.0555

BV-Function (mL/100 g) 0.0556 0.0537 0.0745† 0.0391 0.0393 0.0418 0.0598 0.0526

Perfusion-Function-Whole (mL/min per 100 mL) 0.0757† 0.0728† 0.0586† 0.0686† 0.0657† 0.0848† 0.0487 0.0574

PEI-Function-Whole (Hounsfield Units) 0.0638† 0.0451 0.0652† 0.0436 0.0519 0.0721† 0.0581 0.0471

TTP-Function-Whole (seconds) 0.0556 0.0645† 0.0457 0.0808† 0.0561 0.0564 0.0381 0.0550

BV-Function-Whole (mL/100 g) 0.0469 0.0571 0.0525 0.0455 0.0416 0.0527 0.0556 0.0550

Table 5. Variable importance of CT parameters from the random forest in predicting prognostic biomarkers 
and molecular subtypes. *The meanings of independent variables are described in Table 1. †Top 5 important 
variables with the highest variable importance scores in predicting a prognostic biomarker or molecular 
subtype. CT computed tomography, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal 
growth factor receptor 2.
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mean of a CT parameter was positive (or negative) in cases when the odds ratio was greater (or smaller) than 1 
with respect to a prognostic biomarker/molecular subtype. For instance, a 10-second decrease in the TTP would 
result in a 97% increase in the odds of triple negative cancer (vs. luminal type A cancer). Likewise, the TTP mean 
was significantly smaller for triple negative cancer (44.45) than for luminal type A cancer (51.14). These results 
would supplement the random forest, the best model for predicting the prognostic biomarkers and the molecular 
subtypes in terms of accuracy and the AUC.

Discussion
Until recently, radiogenomic investigations of breast cancer have been carried out using MRI or mammography. 
This prospective study has shown the possibility of using CT for radiogenomic investigations of different breast 
cancer subtypes. Our CT protocol provides a quantitative variety of perfusion parameters associated with tumor 
angiogenesis, with fairly low radiation doses while maintaining high image quality. In addition, the feasibility 
of this innovative and convenient CT technology was evaluated using a powerful statistical method, a machine 
learning approach. Our results show that quantitative perfusion CT parameters are associated with the prognos-
tic biomarkers and molecular subtypes of breast cancer, and that the random forest model was the best machine 
learning model in terms of accuracy and AUC for predicting the prognosis using CT parameters. The random 
forest model had better accuracy and AUC than the logistic regression model. The accuracy of the random for-
est model was on average 13% higher than that of the logistic regression model, and the mean AUC difference 
between the random forest and logistic regression models was 0.17. In addition, we identified the 5 most impor-
tant CT variables for prediction: PEI, TTP, BV permeability, Perfusion-Function, and Perfusion-Function-Whole.

Our study shows 3 key advances in radiogenomics of breast cancer. First, we have provided an innovative 
breast CT protocol that measures tumor vascularity using a very low radiation dose. In our previous preliminary 
study of low-dose perfusion CT, we used 80 kVp tube voltage and 30 mA tube current, and the CT effective dose 
of the protocol ranged from 1.30 to 1.40 mSv8. We have continued to strive to reduce the radiation exposure 
while maintaining the quality of the images, and we performed CT scans with tube currents down to 25 mAs. 
Of a total of 241 patients, 138 underwent the CT scan at 25 mAs and the remaining 103 underwent the CT scan 
at 30 mAs. The CT protocol using a 25mAs tube current reduced the effective radiation dose to 1.01 mSv. In the 
United States, the average annual effective dose of natural background radiation is about 3 mSv18. The average 
effective dose of 2-view film-screen mammography is 0.56 mSv and that of digital mammography is 0.44 mSv19. 
Therefore, this low-dose perfusion CT protocol is clinically applicable in terms of radiation exposure. If a flexible 
scan range customized for breast cancer size is available, the effective dose should be reduced to less than 1 mSv 
for small breast cancers. Reducing the frequency of the acquisition to create time-attenuation curves and devel-
oping radiation-reducing algorithms and reconstruction programs may reduce the radiation dose even further.

Second, we have demonstrated the clinical value of quantitative hemodynamic parameters in perfusion CT 
for predicting biomarkers and molecular subtypes of breast cancer using machine learning models. We evaluated 
the performance of 5 machine learning models and standard logistic regression for prediction using the measure-
ment of accuracy and AUC values. The best model in this study was the random forest model. The accuracy and 
AUC values were consistently higher for the random forest model than the standard logistic regression model. In 
particular, for predicting the molecular subtypes, luminal A, luminal B, HER2 overexpression, or triple negative 
cancer, the random forest model had superb results, as shown by the comparisons of the random forest vs. logistic 
regression models: 66% vs. 48% for accuracy and 0.82 vs. 0.69 for AUC.

The random forest model is known for its robust performance and strong generalization power from bagging 
(or bootstrap aggregation)20. As noted in the Statistical Analysis section above, a random forest model creates 
many training sets, trains many decision trees, and makes a prediction with a majority vote (bagging). The ran-
dom forest of this study comprised 1000 decision trees. Intuitively, a majority vote made by 1000 doctors would be 
more reliable than a vote made by 1 doctor. In a similar vein, a majority vote made by 1000 decision trees would 
be more reliable than a vote made by a single machine learning method. To our knowledge, no research has inves-
tigated the value of machine learning approaches to radiogenomics using breast CT scanning, breast perfusion 
imaging, or breast imaging parameters reflecting tumor vascularity to predict biomarkers and molecular subtypes 
of breast cancer. The results of this study confirm the robust performance and strong generalization power of the 
random forest model using bagging for the clinical purpose of disease diagnosis and prognosis.

Third, our machine learning approach identified important CT hemodynamic parameters in relation to the 
treatment and prognostic indicators of breast cancer. In the previous preliminary study of low-dose perfusion 
CT8, 4 CT parameters were obtained with 1 perfusion algorithm (maximum slope) of the FUNCTION analysis 
software. In the current study, we extracted 18 CT parameters with 3 perfusion algorithms (maximum slope, 
deconvolution, and Patlak). We sought to identify which CT parameters are more important for predicting bio-
markers and molecular subtypes using a machine learning approach. According to the importance of CT varia-
bles in the random forest model, PEI, TTP, BV permeability, Perfusion-Function, and Perfusion-Function-Whole 
were the 5 most important CT parameters for prediction overall. The following CT parameters were valuable for 
predicting particular prognostic biomarkers or the molecular subtypes: BV permeability, TTP-Function-Whole, 
Permeability, Perfusion-Function, and Perfusion-Function-Whole for ER status; Perfusion-Function-Whole, 
TTP, PEI-Function-Whole, BV permeability, and PEI for HER2 status; BV permeability, TTP, PEI, PEI-Function, 
and Perfusion-Function for Ki67 status; and BV permeability, TTP, Perfusion-Function, Permeability, and PEI 
for the molecular subtypes.

Tumor angiogenesis plays a vital role in the growth and metastasis of tumors21. In breast cancer, angiogen-
esis is associated with tumor hypoxia and is an independent predictor of overall disease-free survival22,23. New 
tumor vessels in malignant tumors generally contain immature microvessels24,25, which increase permeability, 
and arteriovenous shunts and hyperpermeable vessels, which increase the blood flow within the tumor. Therefore, 
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aggressive tumors can demonstrate a faster time to reach a peak enhancement. Our multinomial logistic regres-
sion results showed that a decrease in TTP would lead to a rise in the odds of breast cancer with positive lymph 
node metastasis, higher tumor grade, larger tumor size, hormone receptor negativity, HER2 positivity, or higher 
Ki67 level. A decrease in TTP would result in a rise in the odds of HER2 overexpressing cancer compared to 
luminal type cancer. Our results also demonstrate the importance of TTP as a noninvasive image parameter for 
predicting prognostic biomarkers and molecular subtypes of breast cancer. TTP ranked within the top 5 for the 
predictions of tumor grade, PR status, HER2 status, Ki67 status, and the molecular subtypes.

Blood flow through the vasculature is also related to the velocity within the tumor. In this study, CT 
parameters that indicated blood flow were PD, PM, Standard PD, Standard PM, Perfusion-Function, and 
Perfusion-Function-Whole. These are obtained from various perfusion algorithms (maximum slope or deconvo-
lution), various analyzing software (FUNCTION or APPA), various tumor regions (hot spots or whole tumor), 
and the use of standardization based on cardiac output, body weight, volume and density of the contrast agent, 
and conversion factors. Perfusion-Function and Perfusion-Function-Whole ranked within the top 5 in predicting 
biomarkers and molecular subtypes of breast cancer. The multinomial logistic regression results demonstrated 
that a growth in Perfusion-Function (i.e., blood flow at the hot spot of tumor) would lead to a rise in the odds of 
cancers with the worse prognostic factors such as positive lymph node metastasis, larger tumor size, hormone 
receptor negativity, HER2 positivity, or higher Ki67 level, and that a growth in Perfusion-Function would result 
in a rise in the odds of HER2 overexpressing cancer or triple negative cancer compared to luminal type cancer. 
These results were consistent with the previous preliminary study8.

Immature microvessels in tumors are fragile and hyperpermeable. Vascular permeability indicates the capac-
ity of the blood vessel walls to allow for the flow of molecules or cells in and out of the vessel. In cancer, the vascu-
lar wall is important because it acts a barrier to drugs, nutrients, and immune cells. Disorganized and leaky vessel 
networks cause tumor cell extravasation, blood flow disturbance, and inflammatory cell infiltration, and vascular 
permeability is associated with tumor progression and can affect drug delivery. In perfusion CT, the permeability 
is evaluated using the Patlak algorithm13. In this study, after administration of the contrast agent, CT was per-
formed 18 times at 3-second intervals followed by 4 times at 30-second intervals. Four scans were taken at 84, 114, 
144, and 174 seconds to obtain information about permeability. We measured 2 parameters related to permea-
bility using the Patlak algorithm; Permeability and BV permeability. Permeability indicates the flow of molecules 
through the capillary membranes in a certain volume of tissue (mL/min per 100 g). BV permeability indicates BV 
and the movement of the contrast agent from the intravascular space into the extravascular space (mL/100 g). The 
Patlak algorithm assumes the double-compartment method in which the intravascular and extravascular spaces 
are separate compartments. This algorithm quantifies the movement of the contrast agent from the intravascular 
space into the extravascular space and is described in the following equation:

= + ⋅y b a x,

∫
= +

⋅C t
Cb t

rbv Pm
Cb t dt

Cb t
( )
( )

( )

( )
,

t

(0)

( )

where b is the blood volume, a is the permeability, C(t) is the tissue time-attenuation curve, Cb(t) is the input 
artery time-attenuation curve, rbv is the tissue BV, and Pm is the permeability coefficient. Two required param-
eters, y and x, are calculated using linear regression, which finds the line that best fits the measured data. In the 
algorithm application, this calculation is performed for each voxel in the scanned volume. Based on our results, 
BV permeability was a more important CT parameter for predicting biomarkers and molecular subtypes than 
permeability. In addition, the logistic regression results showed that an increase in BV permeability values would 
lead to a rise in the odds of cancers with the worse prognostic factors such as higher tumor grade, hormone recep-
tor negativity, or higher Ki67. However, the relationship between permeability and prognostic biomarkers was 
not consistent in logistic regression analysis and further studies are needed to determine the clinical relevance of 
the two permeability-related parameters.

This study had several limitations. First, this study was performed using one spectral CT device from one insti-
tution. However, the preliminary study of low-dose breast perfusion CT has already shown the feasibility to quan-
tify tumor vascularity and significant correlations of CT parameters with prognostic biomarkers and molecular 
subtypes in 70 patients with invasive breast cancers8. In this prospective study, we measured CT parameters three 
times at 3-month intervals for each patient and generated a large data set with 723 cases from 241 invasive breast 
cancer patients. Second, we evaluated fewer imaging parameters than did the general studies related to radiomics 
or radiogenomics because we only extracted perfusion-related imaging phenotypes for the assessment of tumor 
angiogenesis. We extracted 18 imaging features given that perfusion CT scans can only measure perfusion-related 
variables. However, we calculated perfusion CT parameters using all existing applicable perfusion CT algorithms 
in this study, the maximum slope, deconvolution, and Patlak. Therefore, our study has obtained the most perfu-
sion parameters in perfusion CT studies including breast as well as other organs. Moreover, this study introduced 
innovative machine learning methods to demonstrate that low-dose perfusion breast CT is a useful noninva-
sive tool for predicting prognostic biomarkers and molecular subtypes of invasive breast cancer. Third, we used 
hand-drawn ROIs in the evaluation of perfusion parameters in the tumor hotspots. Future development of auto-
matic selection and calculation software are helpful for overcoming subjectivity. Fourth, this study was designed 
to make predictions based on a predetermined set of predictors, namely 18 CT parameters. Conducting various 
experiments based on random sets of predictors and comparing their performance measures would be a good 
topic for further research.

https://doi.org/10.1038/s41598-019-54371-z


1 0Scientific RepoRtS |         (2019) 9:17847  | https://doi.org/10.1038/s41598-019-54371-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

conclusion
This study demonstrates that a machine learning approach to radiogenomics using low-dose perfusion CT is a 
useful noninvasive tool for predicting prognostic biomarkers and molecular subtypes of invasive breast cancer. 
The machine learning random forest model was the best model for predictions with an average accuracy improve-
ment of 13% and an average AUC improvement of 0.17 compared to logistic regression. The combination of 
innovative and convenient CT technology and a robust statistical model is a promising tool for radiogenomics of 
breast cancer and can help with risk stratification and precise treatment.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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