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Effective one-component model of 
binary mixture: molecular arrest 
induced by the spatially correlated 
stochastic dynamics
M. Majka* & P. F. Góra

Spatially correlated noise (SCN), i.e. the thermal noise that affects neighbouring particles in a similar 
manner, is ubiquitous in soft matter systems. In this work, we apply the over-damped SCN-driven 
Langevin equations as an effective, one-component model of the dynamics in dense binary mixtures. 
We derive the thermodynamically consistent fluctuation-dissipation relation for SCN to show that it 
predicts the molecular arrest resembling the glass transition, i.e. the critical slow-down of dynamics 
in the disordered phases. We show that the mechanism of singular dissipation is embedded in the 
dissipation matrix, accompanying SCN. We are also able to identify the characteristic length of 
collective dissipation, which diverges at critical packing. This novel physical quantity conveniently 
describes the difference between the ergodic and non-ergodic dynamics. The model is fully analytically 
solvable, one-dimensional and admits arbitrary interactions between the particles. It qualitatively 
reproduces several different modes of arrested disorder encountered in binary mixtures, including e.g. 
the re-entrant arrest. The model can be effectively compared to the mode coupling theory.

While some phase transitions in soft matter systems, e.g. crystallization or demixing, are sufficiently explained by 
the minimizing of free energy1–3, the glass transition1,2 seems to stem from changes in the microscopic dynam-
ics. The works of Mori and Zwanzig have shown that the diffusion of particles in densely packed systems might 
involve both memory and strong collectivity4,5. While the temporal aspect is well recognized in research on 
anomalous diffusion6, the spatio-collective aspect has drawn attention mostly in the context of hydrodynam-
ics7–9. However, the collective effects are not restricted to continuous media. The collectivity in diffusion means 
that thermal fluctuations affecting the nearby particles take the form of Spatially Correlated Noise (SCN)10–12. 
The sources of SCN include e.g. hydrodynamic interactions8,9,13,14, stirring by active particles15,16, local density 
fluctuations17 and phase transitions. Recently, the current authors have also shown that SCN might arise as the 
dynamic counterpart of entropic interactions10,11 in binary mixtures (also named excluded volume or effective 
interactions3,18,19). In this work, we build upon these results and investigate the SCN-driven Langevin equations 
as the possible one-component model for the effective dynamics in binary mixtures. We will show that this model 
predicts the effects of arrested disorder, showing that SCN can be efficiently employed to model the complex 
behaviour of these systems.

Let us begin by recalling the general phenomenology of colloidal glasses, as their general properties apply to 
binary mixtures as well. Glasses are disordered systems with extremely slow molecular dynamics1,2. As the pack-
ing fraction of particles increases above the critical value for crystallization (0.494 for the mono-disperse hard 
spheres1), the system enters the supercooled state in which its viscosity grows by 3–4 orders of magnitude1,2,20–22. 
Eventually, at a packing fraction of 0.58–0.62, the system becomes a glass, the relaxation times become virtually 
infinite and equilibration is no longer possible23. The exact critical value for this transition depends on the type of 
the system, but also on the experimental protocol24,25. Thus, glasses are seen as an inherently out-of-equilibrium 
state of matter26. Remarkably, the polydispersity of particles significantly facilitates the process of vitrification2. 
Glasses are also characterized by dynamic heterogeneity, i.e. the coexistence of domains with significantly differ-
ent mobility1,2. This manifests in intermittent diffusion27,28, the correlated displacement of particles29–31, the pres-
ence of mobility clusters32 and cooperative rearrangement33. The dynamics within these domains is very strongly 
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spatially correlated, usually involving 10–20 neighbouring particles30,34,35, in contrast to only 6 in the liquid 
phase. There are numerous theories approaching the glass transition, but the main insights have been provided by 
mode coupling theory (MCT)1,36,37 and the theory of multi-point correlation functions38. The former is especially 
successful in predicting the two-step relaxation in the dynamic density correlation function36,39,40 from first prin-
ciples. However, exactly solvable models of the glass transition are very scarce13,14,41,42 and a few fundamental 
questions still lack a definite answer. One open issue is the existence and nature of the order parameter for this 
transition1. Another problem is the existence of a divergent length-scale accompanying the transition, i.e. while it 
is postulated by MCT37 and the affine transformation theory43, it has not been observed directly and its necessity 
is also contested44. Finally, the relation between the dynamic heterogeneity and the high viscosity is also not fully 
understood.

Binary mixtures introduce several further complications into this picture. These are systems composed of two 
different species of particles, usually suspended in a fluid. They exhibit a remarkable variety of thermodynamic 
phases. These include mixing and demixing effects18,45 in the double fluid phase, crystallization46 as well as a few 
types of the arrested disordered47: the single glass (formed by the large particles at a high volume fraction, with 
the smaller particles caged in-between), double glass (a cooperative form of arrest involving both large and small 
particles) and asymmetric glass (large particles are sparse and embedded in a glass of smaller particles). Binary 
mixtures are also well known for their reentrant transition, i.e. while the total packing fraction is kept constant, 
the partial replacement of the bigger particles by the smaller ones turns the vitrified system into a fluid and again 
into a glass as the total packing fraction is increased. Binary mixtures are also the minimal, controllable setting 
for the investigation of how polydispersity affects the glass transition. The glassy behaviour of binary mixtures is 
best documented for three- and two-dimensional systems47–50 and to a lesser extent in the one-dimensional case 
(both classical51 and quantum52).

While some theoretical insight into the arrest of binary mixtures has been obtained via MCT and simula-
tions48, our one-component SCN-based model aims at understanding the effective dynamics at the level of indi-
vidual particles. We will identify the collective physical quantities that govern this dynamics. In the effective 
description the larger particles are chosen as observed, while the smaller ones (and solvent, if present) are treated 
as the thermal bath. Thus, their interactions with the observed particles are replaced by the correlated thermal 
noise, dissipation and effective modification to the deterministic forces. What follows is that, in effective the-
ory, the arrest of bigger particles must emerge from the properties of the thermal noise and friction. Indeed, 
in this work we will show how this can happen. We derive a new variant of the fluctuation-dissipation relation 
(FDR) of the second kind (i.e. the interdependence between friction and noise correlation function53) for the 
SCN-driven, over-damped Langevin equations. SCN entails a collective form of friction, i.e. the friction matrix, 
which describes how the larger particles affect each other’s dissipation via a common complex medium. We will 
show that in the disordered phases this FDR predicts a huge rise in viscosity, by 3–4 orders of magnitude, when 
some critical combinations of density and noise correlation length are met. This mechanism is universal, i.e. 
we establish it for an arbitrary choice of interaction potentials and noise correlation function. The SCN-driven 
Langevin dynamics investigated in this paper are technically similar to the Stokesian dynamics, which describe 
the mono-disperse colloidal particles suspended in a continuous solvent7–9. While the FDR for this case is already 
known8, it does not predict arrest in the highly packed systems. Conversely, our model addresses the mixture of 
particles which are comparable in size, with a ratio of diameters possibly equal to e.g. 0.9–0.01. The effective ther-
mal bath composed of such particles is dominated by the excluded volume interactions hence it does not act like 
a purely continuous medium. Thus a different FDR is necessary to describe this regime.

Our model leads to several significant results. We devote most space to the analysis of the SCN-induced 
transition, embedded in the FDR, as it provides a novel perspective on the possible mechanism of the arrest in 
disordered systems. While MCT attributes the arrest to the memory effects and the correlated temporal evo-
lution in the system, our model suggests that the spatial aspect might be equally important. The fact that pure, 
non-correlated in time SCN can induce arrest has not been recognized before. We will show that the SCN-induced 
arrest reproduces the transition between ergodic and non-ergodic dynamics, resembling the transition from the 
supercooled fluid into the glassy phase. It also reveals, what we name, the collective dissipation length. This 
magnitude describes the typical length-scale within which the larger particles affect each others’ dissipation. We 
will show that it becomes divergent as the system enters the arrested state, even though e.g. the noise correla-
tion length remains finite. As this quantity is related to the dynamics, not to the structure, it introduces a novel 
perspective into the problem of the divergent length-scale accompanying the glass transition. The properties of 
SCN-induced arrest will be illustrated with two exemplary systems: soft particles and hard spheres. Further, we 
will also identify two additional, auxiliary arrest mechanisms embedded in our SCN-driven model. What fol-
lows, this model is able to reproduce the major part of the binary mixture phase-diagram. The comparison with 
experiment is only qualitative, as the current model is one-dimensional, but the analogues of the main disordered 
phases can be conveniently recognized, including the re-entrant transition. Eventually, the SCN-induced arrest 
is discussed in the context of glass research. This leads to the conclusion that our model is related to MCT, but it 
utilizes a significantly different set of approximations. The SCN-induced arrest is identified as a simplified vari-
ant of the ideal glass transition, described by MCT. While, from the modern perspective, this makes our model 
insufficient as a stand-alone theory of the physical glass transition, the explicit form of dynamics obtained in this 
work stands as a possibly useful tool in the modelling of the dense binary mixtures. Its role is similar to the role of 
Stokesian dynamics in mono-disperse colloids. On a general level, our results show that phase transitions can be 
efficiently embedded in the FDR, thus it is possible to describe a complex, multicomponent system with a simpler, 
less computationally expansive model, without losing its vital characteristics.

The paper is organized as follows: in the next two sections the theory is derived and the transition mechanism 
is analysed in a general way; further our results are illustrated with the behaviour of two systems: soft particles and 
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hard spheres. In the following section, the modes of binary mixture dynamics covered by our model are addressed 
and compared to experimental data. In the final sections, the relationship with MCT is discussed and, eventually, 
we place our model in the broader context of glass research. Appendices A–F contain the detailed calculations 
used throughout the derivations.

Fluctuation-Dissipation Relation (FDR) for SCN
As the first step, we will introduce the approximation of SCN-driven dynamics in the context of binary mixtures. 
We consider a set of N observed particles of mass M, at positions xi, in contact with the thermal bath of ′N  parti-
cles with mass ′M  at positions ′x i. The full, microscopic dynamics of this system reads:
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where U r( )0  is the direct microscopic interaction of the larger particles, v r( ) is the coupling force and v r( ) is the 
internal interaction of the thermal bath. We will use r as a placeholder for relative distance throughout the paper. 
Using the projection operator method, the dynamics of the observed particles can be formally reduced to a set of 
Generalized Langevin Equations4,5,8,11, which have no explicit dependence on ′x i, i.e.:
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here, β =− k TB
1 , where kB is the Boltzmann constant, T is temperature and 〈…〉 denotes the average. The formal 

definitions of F r( ), − ′G r t t( , ) and ξ t( )i  as functions of V r( ), v r( ) and other microscopic parameters can be found 
in many standard textbooks nowadays4,5,8,11. However, these exact expressions are rarely applied in practice as 
they require full microscopic information about the system, which is usually unavailable. Instead, these terms 
have a well-established general interpretation that can be employed to formulate the effective dynamics. ξ t( )i  acts 
as the thermal noise (i.e. a fluctuating external force), − ′G r t t( , ) is the collective dissipation memory kernel and 
the relation between ξ ξ〈 ′ 〉t t( ) ( )i j  and − − ′G x x t t( , )i j  provided in (2) is the FDR, indicating that ξ t( )i  is 
spatio-temporally correlated. F r( ) can be decomposed into a combination of microscopic and effective forces, i.e. 

= +F r F r F r( ) ( ) ( )eff0 , where = −∂F r U r( ) ( )r0 0  and = −∂F r U( )eff r eff . In equilibrium, Ueff can be calculated from 
the partition function18:
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which is also a formal definition of the effective potential. In general, Ueff might contain also the three- and greater 
body interactions3, but we will restrict our considerations to the pair potentials. We will denote 

= +U r U r U( ) ( ) eff0 , so = −∂F r U r( ) ( )r .
The dynamics in (2) have been a subject to various simplifying approximations. Most importantly, ξ t( )i  can be 

replaced by a correlated Gaussian noise, which turns (2) into stochastic differential equations. Further, Deutch 
and Oppenheim established an approximation that neglects the memory effects, while maintaining the collective 
dissipation8:

∑ ∑ ξ+ Γ − = − +̈Mx t x x t x t F x x t( ) ( , ) ( ) ( ) ( )
(4)
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This approximation is valid when the colloidal particles are much heavier than the thermal bath particles and 
at time scales larger than r v/ s, where vs is the speed of sound in the thermal bath and r  is the average distance 
between the colloidal particles8. Under these conditions, ξ t( )i  effectively behaves as SCN. Deutch and Oppenheim 
also showed that the FDR for Eq. (4) is slightly different from the standard one (see e.g. equation 4.13 in their 
work8). Eventually, they employed the theory of hydrodynamic interactions (i.e. the interaction of a particle with 
the velocity field of a fluid) to establish the explicit form of the FDR for a colloidal particle in a continuous 
medium.

However, the dynamics in (4) are not restricted to the hydrodynamic regime and to continuous media. In binary 
mixtures of particles with comparable sizes, the effective interactions, (3), may play a dominant role. In our previous 
works, we have shown that the microscopic coupling force between an observed particle and the thermal bath, 

= −∑ ∂ − ′′F x V x x( ) ( )c i j
N

x i ji
, is correlated like effective forces, i.e. 〈 〉 = ∑ − −′ ′F x F x F x x F x x( ) ( ) ( ) ( )c i c j n n

N
eff i n eff j n, . 

We also postulated that this correlation function could be adopted for SCN, as ξ t( )i  is supposed to approximate 
F x( )c i , thus:
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where σ is the noise amplitude and H r( ) is the dimensionless correlation function. This dependence links the 
microscopic picture to the effective description, i.e. the microscopic potentials define the effective forces, which, 
in turn, define the correlation function for SCN. A particular form of H r( ) depends on the system under scrutiny, 
but, as a rule of thumb, one can expect that the range of correlations in noise is similar to the range of effective 
interactions. For example, in hard-sphere mixtures (Asakura-Oosawa model19) it is equal to the diameter of the 
smaller spheres, in the mixtures of polymers (Gaussian particle model) it is determined by the gyration radius of 
the longer chain18, while in the ionic mixtures the range depends on the charges of particles and can exceed a few 
diameters of the larger particle18. On the other hand, when the smaller particles are densely packed their motion 
becomes spatially correlated and this structural correlation function can be also adapted as an approximation for 
ξ ξ〈 ′ 〉t t( ) ( )i j . Usually, it has an exponential profile with decay length ranging from 2–3 diameters of the smaller 

particle in the supercooled state up to 10 and higher at the transition point29,30. Nevertheless, in this work the 
derivation of the FDR is carried out for any choice of H r( ), thus our approach applies to a variety of systems. It 
should also be mentioned that for binary mixtures in a solvent, Γ r( ) can easily contain the Stokesian hydrody-
namic friction γ, e.g. as a diagonal contribution. We will later show that the presence of solvent is embedded in 
our model and the standard relation βσ γ=/22  holds. This is achieved by tuning the model to reduce to ordinary 
Brownian diffusion in the limit of the non-correlated noise.

The correlation function in (5) could be directly employed in the theory of Deutch and Oppenheim, but, as we 
aim to describe the arrest effect, we are interested in systems with a high packing fraction. Thus, in this work we 
focus our attention on the over-damped dynamics:
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Functions Γ r( ) form an ×N N  friction matrix Γ, such that Γ = Γ −x x( )ij i j . Similarly, from H r( ), one can form 
an ×N N  correlation matrix H, such that = −H x xH ( )ij i j . An important observation is that under, what we call, 
the constraint of thermodynamic consistency, the relation between Γ r( ) and H r( ) must become different from (2) 
and the FDR established by Deutch and Oppenheim. Thermodynamic consistency means that if we demand the 
Fokker-Planck equation for (6) to be satisfied by the Boltzmann distribution in the stationary (though possibly 
non-arrested) state, then we must redefine the FDR to achieve agreement. As we will show, the new FDR predicts 
the arrest effect in certain conditions. However, this strategy requires a comment. The need to modify the FDR 
comes from the fact that the over-damped dynamics is qualitatively different from the inertial one. Our approach is 
a workaround for a formal transition between the inertial and non-inertial limit, which is a highly non-trivial prob-
lem for correlated noises54. Another issue is that SCN can be represented as a linear combination of multiplicative 
noises, i.e. the sum of noise terms whose amplitude varies with xi

10,11. For multiplicative noise one must also specify 
the interpretation of the stochastic integral, i.e. how this integral mixes the past and future values of a stochastic 
process55. Interpretation modifies the drift terms in the Langevin equations, so its choice should be supported by a 
relevant physical reasoning. In particular, it was realized during the study of the diffusion in viscosity landscapes56,57 
(which also involves multiplicative noise and spatially variant dissipation) that the thermodynamic consistency can 
define the interpretation56. In other words, one can assume a certain FDR a priori and then adjust the noise inter-
pretation (usually in some non-standard manner, i.e. neither Ito nor Stratonovich) to meet the consistency condi-
tion. Thus, in general, the FDR and interpretation act interchangeably in this context. For the diffusion in viscosity 
landscapes, the additional drifts preserve the equilibrium between the regions of different viscosity56, thus their 
presence is physically justified. However, we will show that SCN has a peculiar property of not being sensitive to a 
change of interpretation. It behaves similarly to the additive noise55 and introduces no additional drifts. Thus, our 
strategy to determine the FDR from thermodynamic consistency is unambiguous for SCN.

We will now proceed with a sketch derivation of our FDR, with full details provided in the Appendixes A–C. 
As a preliminary step, let us assume that the system is one-dimensional, with size L and density ρ=N L/ . Using 
the function:
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where M is a certain cut-off frequency. This cut-off is introduced as it is expected that the length-scales much finer 
than the size of the thermal bath particles should not play a role in the system. It also allows us to use a 
finite-dimensional matrix representations for H and Γ, i.e.:
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ΓΛ ΛΓ Q Q Q QH (9)H
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where Q is the ×N M rectangular matrix composed of Qik, while ΛH and ΛΓ are the ×M M diagonal matrices 
with entries ρΛ = ĤH k k,  and ρΛ = ΓΓ

ˆ
k k, . Using the representation in (9), we can generate the vector of the SCN, 

ξ
→

, from the vector of the non-correlated Gaussian noise η→, i.e.:
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but since Qik depends on xi, this result is recovered only under the Ito interpretation, i.e. xi in a moment t must be 
independent from the stochastic process increment η→ t( ).

Another idea, which is necessary for our derivation, is stochastic orthogonality. Matrix Q is not orthogonal by 
itself, but in completely disordered systems, such that the distribution of xi is homogeneous and reads −
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equality. With the aid of stochastic orthogonality we can invert Γ, i.e. Γ = Λ−

Γ
−Q QT1 1 . However, it should be 

emphasized that stochastic orthogonality holds only in disordered systems. Thus, by utilizing this property in the 
calculations we automatically narrow our considerations to the disordered phases.

Inserting (10) in (6), multiplying by Γ−1 and specifying the Ito interpretation, we transform the initial set of 
Eq. (6) into:
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noise interpretation to the Ito interpretation. Since Qik is the function of xi, system (6) has been turned into the 
usual system of stochastic differential equations with multiplicative noise. We will now specify 

→
C , which is dis-

cussed in detail in Appendix B. For a multivariate stochastic differential equation of the type 
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type of interpretation (i.e. α = 0 for Ito, α = 1/2 for Stratonovich). Applying this to (12), we obtain the following 
result:
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which is due to the antisymmetric nature of the expression under the sum. This means that the initial interpreta-
tion of the noise in (6) is irrelevant, as any choice leads to no additional drift. Thus, SCN behaves as additive noise. 
In this respect, models with SCN (where correlations depend on the inter-particle distances) are fundamentally 
different from models with a spatially variant diffusion coefficient56. The noise interpretation cannot provide for 
thermodynamic consistency and it must be ensured by the appropriate FDR.

The next step is to write the stationary Fokker-Planck equation8,55 for (12):
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The crucial assumption now is that the system can equilibrate, i.e. that Ps is the Boltzmann distribution itself:

∑β
=






− −






−NP U x xexp

2
( )

(15)
s

i j

N

i j
1

,

where N is the normalization constant. When Ps is known, (14) becomes the equation that defines the unknown 
spectrum ΛΓ and thus the FDR for SCN. The equilibration is possible in supercooled colloids, below the random 
close packing limit1, though it is extremely slow. The above method of defining the FDR is fully consistent when 
H r( ) is the equilibrium noise correlation function.

Obtaining ΛΓ from (14) is a highly technical task, which we discuss in detail in the Appendix C. Throughout 
this derivation, the non-correlated part of the dynamics (corresponding to the Stokesian friction and Brownian 
motion) is separated from the influence of spatial correlations, to show that the classical dissipation relation 
βσ γ=/22  still holds. This also means that the presence of hydrodynamic friction (i.e. solvent) is embedded in 
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our model. Eventually, we obtain the main result of this paper, the FDR connecting matrices Γ and H, which, in 
the thermodynamic limit → +∞N , → +∞L  (while ρ=N L/ ), reads:

∫
γ
πρ
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βρ
Γ = Γ −

+ −

+ +
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here ρ=ˆ ˆh k H k a( ) ( )/ H, ˆ ˆH k U k( ), ( ) are the Fourier transforms of U r( ) and H r( ), respectively, and d is the particle 
diameter. aH is defined by the residual behaviour of H r( ) in the non-correlated limit, i.e. assuming that H r( ) 
depends on a certain noise correlation length λ, we have δ=λ ρ→ H r rlim ( ) ( )a

0
H . The formula (16) provides the 

elements of the friction-response matrix and defines the FDR that we are looking for.

The Mechanism of SCN-Induced Arrest
There are several important properties of (16) that we will now discuss. First of all, for =ĥ k( ) 1, which is the 
non-correlated case, (16) reduces to δΓ = −γ

ρ
x x( )ij

a
i j

H , i.e. only its diagonal part is non-zero, as expected and the 
friction is of purely hydrodynamic origin. Further, in Appendix D, we show that the mean behaviour of matrix Γ 
is dominated by its diagonal terms. Finally, and most importantly, for the finite-range correlations, (16) contains 
the mechanism of the singular dissipation. Let us introduce the joint temperature-packing parameter ψ βρ= . Let 
us also denote the integrand of (16) for the diagonal terms ( =i j) as:

ψ
πρ

ψ
ψ

=
+

+ +

ˆ ˆ
ˆ ˆI k a h k U k
h k U k

( , ) ( )[2 ( )]
1 ( ) ( ) (17)

H

so ∫γ ψΓ =
π

dkI k/ ( , )ii

m
d

0
. Γii develops the extremely high values provided that ψI k( , ) has a non-removable sin-

gularity for a certain π∈k m d[0, / ]. This happens when the denominator of ψI k( , ) satisfies:

ψ ψ= + + =ˆ ˆf k h k U k( , ) 1 ( ) ( ) 0 (18)

The behavior of ψf k( , ) with growing ψ is illustrated in the Fig. 1a–d. We demand that ≥ĥ k( ) 0 (which is nec-
essarily true as H must be the positive definite matrix) and ≤ĥ k( ) 1, i.e. the Fourier spectrum of H r( ) is limited by 
the spectrum of the delta-like correlations. Under these assumptions (18) has a solution, provided that <Û k( ) 0 for 
at least some π∈k m d[0, / ]. This is the necessary condition. For ψ  0 we have ψ >f k( , ) 0 regardless of Û k( ) and 

ψI k( , ) is non-negative (Fig. 1a,b). As ψ increases, one must encounter the critical value ψc, such that:

ψ ψ= ∂ =f k f k( , ) 0 ( , ) 0 (19)c k c0 00

Figure 1. (a–d) Root formation in ψf k( , ) (red solid line), i.e. the denominator of Fourier spectrum of friction 
function Γ r( ) (see formulas (16) and (17)), which is responsible for the SCN-induced arrest. Since the 
correlation function ĥ k( ) (dashed black line) is always a non-negative function and Û k( ) (dotted blue line) 
usually has a negative region, ψf k( , ) must be non-negative for small values of ψ (panels a and b). However, 
there exist a critical value ψc, such that ψ =f k( , ) 0c0  in exactly one point k0 (panel c). This is the source of the 
non-integrable singularity in (16), leading to the glass-like transition. For ψ ψ> c (panel d) the single root k0 
splits into two other roots, each now related to an integrable singularity. (e,f) The qualitative origin of the huge 
collective dissipation length τ in Γ r( ). The noise correlation length λ is the effective measure for the size of 
clusters formed by the the smaller particles. (e) For a loosely packed system these clusters mediate the influence 
of the i-th bigger particle only to its immediate surroundings. (f) For a densely packed system, the influence is 
mediated over the large distances via the cascade of interactions between the big particles and clusters.
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so k0 is the global minimum of ψf k( , )c  for π∈k m d[0, / ], i.e. we have ψ >f k( , ) 0c  everywhere except for k0 
(Fig. 1c). Therefore, as ψ ψ→ c, ψI k( , ) develops a maximum at k0, which becomes infinite and non-integrable for 
ψ ψ= c. Indeed, expanding ψI k( , ) about k0, one can show that ψ ψΓ ∝ − −( )ii c

1/2 (see Appendix D) in the direct 
vicinity of ψc. At this point Γii dominates in the dissipation, thus this divergence heralds the molecular arrest. As 
the disorder is also inherently assumed in this theory, we associate this singularity with glass-like transition. The 
coordinates of the critical point, i.e. k0 and ψc can be determined from (19). For ψ ψ> c (Fig. 1d) the solution of 

ψ =f k( , ) 0 bifurcates, i.e. there are two solutions ′k 0 and ″k 0 such that ′ < < ″k k k0 0 0. The singularities at these 
points are of the removable type, so (16) once again can be integrated to a finite value. However, for ∈ ′ ′k k k[ , ]0 0  
we encounter ψ <f k( , ) 0, which causes the Fourier spectrum of Γ to be partially negative. This means that Γ is 
no longer a positive-definite matrix i.e. its purely dissipative character is violated. Since we also know that once 
the system gets arrested for ψc, it should stay as such for ψ ψ> c, this means that (16) becomes unphysical in this 
regime. However, there exists another solution to (14) which was not discussed yet, i.e. for Λ = 1K k,  (constant 
spectrum) we also obtain Γ → +∞ii . Therefore, we claim that for ψ ψ> c the system spontaneously switches from 
the solution (16) to infinite viscosity. This discontinuity supports the arrested state for the higher packings.

Finally, we can also discuss the behaviour of the non-diagonal terms in the matrix Γ, which vary with distance. 
For all ≠i j they have the same functional form, so we will denote them in general as Γ = Γr r( ) ( )ij , also in con-
trast to Γ = Γ(0)ii . As ψ ψ→ c, the integral in (16) is dominated by the contribution from the vicinity of k0. Thus, 
one might expand the integrand around this value to obtain the analytical approximations for Γ r( ) (see Appendix 
D for details). This leads to the following results:

^ ^

^ ^
  τΓ Γ Γ =τ γ ψ

ψ ψ ψ

ψ

ψ ψ

−
| | +

− | | − | |′′

′′

r e k r( ) cos
(20)

ij ii

r

ii
h k U k

f k U k

f k

U k0
( )(2 ( ))

2( ) ( , ) ( )

( , )

2( ) ( )c c

0 0

0 0

0

0

First, one might notice that, globally, the scale of dissipation is governed by the diagonal terms Γii. Further, for 
ψ ψ< c (as soon as f″ ψ >k( , ) 00 ) the non-diagonal terms decay exponentially with range. This decay is controlled 
by τ, i.e. the characteristic length of collective dissipation, whose nature is of crucial meaning to the SCN-driven 
dynamics. While for ψ ψ< c this length is finite (which ensures the locality of dissipation), it diverges at ψ ψ= c. 
In this situation, the strongly oscillatory behaviour dominates (Γ Γr k r( ) cosij ii 0 ) and the dissipation becomes 
scale-free (τ → +∞). This means that the dissipation is highly non-local, i.e. every two, arbitrarily distant, parti-
cles affect each others’ dissipation in a significant manner. Remarkably, the transition into this highly cooperative 
state manifests in the dynamics, not structure, as the noise correlation length λ remains finite both below and 
above ψc. Thus, the SCN-induced arrest possesses a divergent length-scale that does not manifest in the system 
ordering.

The intuitive understanding of the divergence in τ is presented in the Fig. 1e,f. Let us assume that the thermal 
noise is correlated over a certain length λ. In the microscopic sense, this means that the smaller particles move 
together in the clusters of size λ. To certain extent, one can imagine these clusters as the solid, finite size objects, 
mediating the interactions between the larger particles. When a large particle collides with these clusters, the 
disturbance transfers to its immediate surroundings. However, at ψ ψ< c, the chance that another large particle is 
affected is low and so the disturbance dies out. Thus, τ has a finite range (see Fig. 1e). However, near ψc and above, 
the large particles are abundant enough so that the disturbance can easily transfer over the great distances via the 
sequence: particle → cluster → particle → cluster etc. This translates into the divergent behaviour of τ (Fig. 1f). As 
we will show in the next section, ψ and λ work interchangeably, i.e. higher λ requires lower ψc. This is understand-
able, as the larger clusters can affect particles over greater distances.

Finally, we can also address the mean square displacement (MSD) of the larger particles in the vicinity of the 
transition. This problem is analytically tractable if we assume that the interactions are relatively short-ranged and 
the particles are sparse enough, so effectively − F x x( ) 0i j  for all i and j. In this case, the equation of motion for 
xi reduces to:

∑

∑

σ η σ ω= Λ Λ =

= Λ Λ

=− −

−

Γ
−

=− −

−

Γ
−

 DD

DD

x Q t t

Q

( ) ( )

(21)

i
k M

M

ik k H k k i

i
k M

M

ik k H k

( 1)/2

( 1)/2

,
1

,

( 1)/2

( 1)/2
2

,
2

,

where we made use of the fact that the sum of Gaussian variables η t( )k  can be replaced by a single Gaussian varia-
ble ω t( ) with a properly rescaled variance. In the thermodynamic limit, this variance reads:

∫σ
πβγρ

ψ
ψ

=
+ +

+

π ˆ ˆ
ˆ ˆDD

a
dk h k U k

h k U k
2 (1 ( ) ( ))

( )(2 ( )) (22)
i

H

m
d2

0

2

2

which is independent of xi. Thus, we can instantly solve (21) and obtain MSD:

 ∫σ ω σ= + − =⟨ ⟩x t x ds s x t x t( ) (0) ( ) ( ( ) (0)) (23)i i i
t

i i i
0

2 2
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Such MSD shows that in our model the diffusion of larger particles is normal, up to the transition point ψc. 
This is consistent with the known characteristics of the supercooled state, below the glass transition, which was 
confirmed for e.g. polydisperse hard-sphere colloids23 and micellar solutions22. Thus, the SCN-induced arrest 
apparently corresponds to the transition between the supercooled and the glassy state. The diffusion coefficient 
σ DDi

2  decreases with growing ψ, due to the influence of ψf k( , ) on its integrand.

Examples of Application: Soft Particles and Hard Spheres
We can now conveniently illustrate the mechanism of SCN-induced arrest in the two types of systems, soft parti-
cles and hard spheres, to identify its universal characteristics. This allow us to eventually discuss the whole range 
of the binary mixture dynamics grasped by our model, in the following section. The first, and possibly the sim-
plest case, are the particles interacting via the Dirac-delta potential and affected by the exponentially correlated 
noise, i.e.:

λ
εδ= =





| | − 




−λ
| |

H r e U r r d
d

( ) ( )
(24)

r
d

where d is the particle diameter, λ is the (dimensionless) ratio between the particle size and the correlation length 
and ε is the interaction energy. We choose the exponential correlation function as it is observed in supercooled 
systems29,30, where λ is known to grow with density. Thus, this correlation function corresponds to a highly 
packed thermal bath, on the verge of vitrification. It also allows us to analyse how the system responds to a 
well-defined noise correlation length. This would not be possible for the power-law correlations, which originate 
from the hydrodynamic interactions8. The potential U r( ) represents the extremely soft particles, which interact 
only when their’surfaces’ touch and can also penetrate each other almost without any energetic penalty. While this 
potential is not a realistic one, it provides the clearest demonstration (also in the mathematical sense) of the tran-
sition induced by SCN. In other words, the dynamics diminish not due to the direct interactions of the particles 
(as they can rearrange almost freely), but because of their collective interactions with the thermal bath. In our 
model H r( ) satisfies δ=λ→ H r r dlim ( ) ( / )0 , in accordance with the initial assumption δ=λ ρ→ H r rlim ( ) ( )a

0
H . This 

allows us to determine aH. Eventually, the appropriate Fourier transforms read:

^ ^ε
λ

ρ= =
+

=U k d kd h k
kd

a d( ) 2 cos ( ) 1
1 ( ) (25)H2

Inserting these formulas into (16) and substituting =z kd, we obtain:

∫γ π

ψ

ψ

Γ
=

+

+ +

∼

∼
π λ

λ

+

+

dz
z

z
1 (2 2 cos )

1 2 cos (26)

ii
m z

z
0

1
1

1
1

2 2

2 2

where ψ βερ=
∼ d is the rescaled temperature-packing parameter. We choose ε β= −1 (interaction energy matches 

the thermal fluctuation scale), so ψ ρ=
∼ d becomes the actual volume fraction occupied by particles. The system 

is fully described by ψ∼, λ and the cut-off parameter m.
Figure 2a illustrates how the integrand of (26) evolves with the growing ψ∼, for λ = .0 5. One can clearly notice 

the build-up of the infinite maximum for ψ ψ< .
∼ ∼

 0 645c  and, later, the splitting of this maximum for ψ ψ>
∼ ∼

c. In 
Fig. 3a we present the influence of λ and m on ψ∼c. From (16), it follows that for the non-correlated system (λ = 0, 

=ĥ k( ) 1) there is no transition and the system obeys ordinary diffusion. However, Fig. 3a shows that for λ → +0  
the arrest persists until ψ =

∼ 1c  (the maximal packing). This shows that there is a discontinuity at λ = 0, i.e. even 
the infinitesimally small spatial correlations make the transition possible. Inspection of (16) shows that this con-
clusion holds for any H r( ) that tends to the delta behaviour with λ → 0. On the other hand, as λ increases, ψ∼c 
decreases and quickly saturates at 0.5. This means that below critical packing even the extremely long correlations 
cannot arrest the system via the FDR-embedded mechanism. However, this result indicates a change in the 
slow-down mechanism and we will scrutinize this issue in the next section. Once again, (16) shows that such 
limiting critical packing should exist for all H r( ) satisfying =λ→+∞H r constlim ( )  (thus =λ→+∞ ĥ klim ( ) 0 for 

≠k 0), though its exact value should depend on Û k( )0 . The final observation is that for the cut-off → +∞m  we 
obtain ψ → .

∼ 0 5c  for all λ > 0. This behaviour is specific to our soft potential. In the Fig. 2b the behaviour of Γii is 
presented, which clearly shows the divergence of viscosity in the vicinity of the critical point. The jump is at least 
three orders of magnitude. In the Fig. 2c the same data are also shown in the collapsed form on the log-log plot, 
as the function of ψ ψ ψ−

∼ ∼ ∼( )/c c. This allows us to compare the actual behavior of Γii with the approximated theo-
retical power-law ψ ψ−

∼ ∼ −( )c
1/2. The plot shows that the numerical data decay slower than this power-law and the 

convergence is not achieved until very close to the singularity.
Finally, in the Fig. 4a–c the non-diagonal dissipative terms Γ Γr( )/ij ii are plotted in the real space for =m 2 and 

λ = .0 1, 0.5 and 1.5. Indeed, these functions evolve with the growing ψ∼ as predicted by the formula (20). For the 
low packing fraction Γ Γr( )/ij ii has a decaying character and its effective range grows with λ. As ψ∼ increases, the 
oscillations become stronger and for ψ ψ∼ ∼

 c they completely dominate. The period of these critical oscillations 
proves practically independent from λ, but this is not universal and might be related to the type of H r( ) we use. In 
the Fig. 3b the characteristic length-scale τ of the collective dissipation is presented as a function of λ. This figure 
shows how the thermal noise correlations translate into correlations in dynamics. The behaviour is highly 
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non-trivial because ψ∼c in formula (20) is also the function of λ. Two regimes of τ can be distinguished: for ψ < .
∼ 0 5 

it grows sub-linearly with λ reaching τ → +∞ as λ → +∞. The ψ = .
∼ 0 5 is the limiting case in which τ becomes 

a linear function of the large λ. However, for ψ > .
∼ 0 5 the singularity in τ emerges, i.e. τ → +∞ as λ approaches 

the solution of ψ ψ λ=
∼ ∼( )c , where ψ λ∼( )c  is shown in Fig. 3a. This behaviour is a manifestation of the SCN-induced 

transition.
We discuss the hard-sphere (HS) interactions, now. This potential can be understood as an infinite energy 

barrier when two particles are closer than d and 0 otherwise. Such interaction has no well defined Fourier trans-
form. However, one can interpret the HS potential in a slightly different manner, i.e. as an interaction that makes 
the stationary distribution Ps (as given by (15)) equal to 0 if any pair of particles satisfies | − | <x x di j . Let us 
define the following function:

ε
β

θ= − | | −U r r d( ) ln[ ( )]
(27)HS

where θ x( ) is the Heavyside step function and ε > 0 is a dimensionless scaling constant that we will tune later. 
Inserting this U r( )HS  into Ps we obtain:

∏ θ∝ | − | − ∑ε
β

− −

>

P x x d e( )
(28)

s
n m

N

n m
U x x

,
2 ( )

n m

i j i j,

where U r( ) are the soft potentials (if any). This shows that U r( )HS  acts as the HS potential for any ε > 0. The main 
challenge now is to determine the Fourier transform of U r( )HS . In the following calculations we understand that 
θ θ θ| | − = − + + −r d r d r d( ) 1 ( ) ( ). The first step is to apply the integration by parts:

Figure 2. (a) The Fourier spectrum of friction coefficient Γ r( ) in the soft interaction case (i.e. the function 
ψ∼I z( , ), see Eqs. (17) and (26)), as the function of wave number z and the temperature-packing parameter ψ∼, for 

λ = .0 5 and =m 2. The symmetric, non-integrable singularity emerges as ψ∼ approaches the critical value 
ψ .
∼
 0 645c . Inset: ψ∼I z( , ) continued to ψ ψ>

∼ ∼
c shows a negative spectrum. (b) The dominant, diagonal friction 

coefficient γΓ /ii  as a function of ψ∼, showing a divergence at the critical point ψ ψ=
∼ ∼

c (see Fig. 3a). This 
divergence marks the transition into the arrested state and it is a consequence of the singularity illustrated in the 
(panel a). Different curves illustrate the dependence on the correlation parameter λ, =m 2. (c) The log-log plot 
of Γ λc/ii  as the function of ψ ψ ψ−

∼ ∼ ∼( )/c c, illustrating a power-law divergence. cλ is chosen to normalize the data, 
i.e. Γ=λc ii for ψ ψ ψ− = .

∼ ∼ ∼( )/ 0 005c c . The dotted line corresponds to the theoretical power-law approximation 
ψ ψΓ ∝ −
∼ ∼ −( )ii c

1/2.

Figure 3. (a) The critical temperature-packing parameter ψ∼c as a function of correlation parameter λ, for 
several values of the cut-off parameter m, in the soft-interactions case. ψ∼c marks the glass-like transition and it is 
determined from (19). (b) τ, the characteristic length of collective dissipation (given by (20)), as the function of 
λ, for =m 2 and several values of ψ∼. ψ = .

∼ 0 5 separates two regions: for ψ <
∼ 0 τ grows sub-linearly with λ, 

while for ψ > .
∼ 0 5 τ develops a singularity at a finite λ, satisfying the equation ψ ψ λ=

∼ ∼( )c  (see panel a).
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+∞ −

Û k dre r d
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Let us now suppose that there exists a function satisfying:

∫δ δ
θ

π
+ − − =

| | −
′ ′

−∞

+∞ ′ ˆr d r d r d dk e f k( ) ( ) ( )
2

( ) (30)
ik r

then = ε
β

ˆ ˆU k f k( ) ( )HS ik
. Indeed, this is true and in Appendix E we show that the solution reads:

ε
β

=Û k kd
k

( ) 4 sin
(31)HS

which is, in fact, equivalent to the Fourier transform of the rectangular signal. The final step is to tune ε. We know 
that in one dimension, in the presence of the infinitesimally small correlations, λ → +0  (so →ĥ k( ) 1), the system 
of hard spheres must jam for the packing fraction ψ ρ= =d 1. According to (18), this transition is possible, pro-
vided that ε satisfies:

ε
+ =

k d
k d

2 4 sin 0
(32)

0

0

where k d0  corresponds to the global minimum of the sinc function, i.e. − . 0 217k d
k d

sin 0

0
. Therefore ε . 2 3.

With these considerations at our disposal, we conclude that Γii for the purely hard-sphere system with expo-
nential correlations given by (24) reads:

∫γ π

ψε

ψε

Γ
=

+

+ +

∼

∼
π λ

λ

+

+

( )
dz1 2 4

1 4 (33)

ii
m z

z
z

z
z

z
0

1
1

sin

1
1

sin

2 2

2 2

where ψ ρ=
∼ d (packing fraction). Figure 5a presents the behaviour of the integrand in (33) with a growing pack-

ing fraction for λ = .0 5. As previously, one can observe the build-up of the singularity as the packing approaches 
ψ .
∼
 0 59c . Figure 6a shows the dependence of the critical packing ψ∼c on the correlation length. The HS system 

proves almost completely insensitive to the cut-off factor m. As soon as ≥m 2, all the curves collapse on the same 
plot, which is in stark contrast with the soft-potential case. This is because Û k( )HS  is a fast decaying function, with 
its global minimum relatively close to =k 0. However, in the long correlation case, ψ∼c saturates at 0.5, similarly to 
the soft interaction case. In Fig. 5b,c, Γii is plotted as the function of ψ∼. Again the convergence to the power-law 
behaviour ψ ψ−

∼ ∼ −( )c
1/2 is achieved only as ψ ψ→

∼ ∼
c. Finally, in the Fig. 7a–c the non-diagonal dissipative terms 

Γ Γr( )/ij ii are plotted. Their general character resembles the soft-interaction case and agrees with the predictions of 
(20). However, the hard-sphere case reveals an additional oscillatory structure for the low packing and short 
correlations (λ = .0 1). It is also in this regime that the dominant oscillations emerge only very close to the tran-
sition. For the longer-ranged correlations the evolution is more gradual. Figure 6b presents the behaviour of τ , 
which proves completely analogous to the soft-interaction case.

The general theoretical predictions regarding the transition into the SCN-induced arrest, in particular the 
behaviour of Γii and Γ r( )ij , are fully confirmed in both systems analysed. The poorest agreement is obtained for the 
power law exponent, which seems to be adequate only very close to ψ∼c. Although the systems of ultra soft particles 
and hard-spheres are very different, many similarities are shared. Our calculations pinpoint a few universal 

Figure 4. The spatial dependence of the non-diagonal friction coefficient Γ r( )ij  normalized to Γii for soft 
interactions. These coefficients inform how many neighbouring particles affect each others dissipation. The 
results are generated for =m 2 and λ = .0 1 (a), λ = .0 5 (b) and λ = .1 5 (c). The functions have a decaying 
character, with the effective range growing with λ, as predicted by (20). The oscillatory behaviour develops with 
the increasing ψ∼, dominating in the vicinity of the critical value for the glass-like transition.
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features of the transition such as: the minimal packing required for the transition, the persistence of the transition 
for λ → +0  and the oscillatory behaviour of Γ r( )ij  as ψ ψ→

∼ ∼
c. The differences between soft and hard particles are 

mainly quantitative, though the direct comparison is hindered as the behaviour of the soft particles varies consid-
erably with the cut-off m. However, at least for the higher values of m, the system of soft particles seems more 
prone to arrest. It manifests in the generally lower values of ψ∼c and λ necessary for the transition. This is also 
reflected in the shape of Γ r( )ij . While the type of the potential has a minor effect on this function close to the tran-
sition, it strongly affects the low-ψ∼ and low-λ regime. In this case, Γ r( )ij  for hard spheres is visibly concentrated 
around =r 0, so the friction in this regime is effectively Stokesian, while for soft particles Γ r( )ij  still has a consid-
erable range. This might be caused by the fact that two soft particles can penetrate each other without major 
energetic penalty, thus they can feel the length-scale of noise correlations λ, even if it is smaller than the particle 
size. This is not possible for hard spheres, so the collective effects in this system are less pronounced.

Regimes of SCN-Driven Dynamics vs. Different Modes of Arrest in Binary Mixtures
We will now review the above results from the perspective of binary mixture dynamics, with emphasis on the 
behaviour of the larger (observed) particles. Let us remind that λ reflects the phase-state of the thermal bath in 
our model. We expect that λ grows monotonically with increasing packing fraction of the thermal bath. More 
specifically, when λ is comparable with the diameter of the smaller particles, it corresponds to the liquid thermal 
bath (only nearest neighbours are correlated), while λ ranging over a few diameters of smaller particles means 
that the thermal bath is in the super-cooled or arrested state already. In general, in binary mixtures, the state of 
the thermal bath is not independent from the state of the bigger species, as it is the total packing fraction of the 
system (small + large particles) that matters. However, in our case, it is convenient to discuss various regimes, 
treating λ as an independent variable.

First of all, we may consider very low concentration of the smaller particles, which corresponds to the λ → +0  
limit. In this case, the FDR for SCN predicts arrest only for an extremely high packing fraction of the larger par-
ticles, ψ∼ 1. However, in fact, λ → +0  corresponds to a mono-dispersed colloid with ordinary Brownian 
dynamics. Such systems can undergo structural arrest directly due to the inter-particle forces −F x x( )i j . This 
mechanism is likely to overshadow the SCN-induced arrest, especially for the long-range forces, as it is likely to 
require a critical ψ∼SA lower than 1. Thus, the structural arrest is embedded in our model in the interaction terms, 
alongside the SCN-induced arrest.

Figure 5. (a) The Fourier spectrum of Γ r( ) in the hard-sphere case, i.e. the function ψ∼I z( , ) (see formula (33)), 
for λ = .0 5 and =m 2. The singularity emerges at the critical packing ψ .

∼
 0 59. (b) The dominant friction 

coefficient Γii for hard spheres as a function of the packing fraction ψ∼ for several values of λ and =m 2. (c) The 
same coefficient collapsed on the log-log plot and compared to the theoretical prediction ψ ψ−

∼ ∼ −( )c
1/2 (dotted 

line). cλ is chosen to normalize the data, i.e. Γ=λc ii for ψ ψ ψ− = .
∼ ∼ ∼( )/ 0 005c c .

Figure 6. Hard sphere case: (a) The dependence of critical packing fraction ψ∼c on the correlation length λ. ψ∼c 
proves virtually insensitive to the change in the cut-off factor m, unlike in the soft interaction case (compare 
Fig. 3). (b) τ, the characteristic length of the collective dissipation (given by (20)), as the function of λ, for 
several values of packing ψ∼. The results are analogous to the soft interaction case (see Fig. 3 for details).
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For intermediate concentrations of the smaller particles we expect a finite value of λ. For ψ ψ<
∼

c the system 
remains liquid. For ψ ψ≥

∼ ∼
c, the SCN-induced arrest is expected to emerge, which might be understood as a coop-

erative phase, sustained by the interactions between the both types of particles. The curves on the λ-ψ∼c plot 
(Figs. 3a and 6a) show the separation line between these two phases. The SCN-induced arrest might also compete 
with the structural arrest in this regime, especially for higher packing, though this depends on the structural 
details of a particular system.

Finally, for the high packing fraction of the smaller particles, λ becomes very large. This leads to another type 
of dynamics, which can be conveniently analysed as the λ → +∞ limit. In this case, the correlation matrix reads 

σ=Hij
2, i.e. all its elements are equal. Thus, we have virtually ξ ξ=t t( ) ( )i j  for every pair of i and j. Also, it means 

that δ∝ĥ k k( ) ( ), so, following (16), γΓ = . = ∞constij . If we switch from the absolute positions xi to the variable 
∆xi, relative to the mass centre of the system, the equations of motion reduce to γ ∑ ∆ = ∑ ∆ − ∆∞ x F x x( )j

N
j j i j . 

These dynamics have no stochastic driving, so particles relax their initial kinetic energy exponentially fast, before 
becoming asymptotically immobile. Thus, this state is also arrested, but the mechanism of this effect is different 
from the SCN-induced arrest: it involves finite dissipation. The transition between the mobile phase and this type 
of arrest is gradual, as the relative stochastic driving diminishes with growing λ.

In summary, there are up to four modes of dynamics for bigger particles, which occupy different regions of on 
the λ-ψc plot: the structural arrest (λ  0, ψ ψ. < <

∼ ∼0 5 c), the SCN-induced arrest (finite λ, ψ ψ≥ c), the mobile 
phase (finite λ, ψ ψ<

∼ ∼
c) and the infinite-λ arrest (λ → +∞, ψ ψ<

∼ ∼
c). The experimental phase diagram for binary 

mixtures also contains four main disordered phases, as mentioned in the introduction: single glass, double glass, 
asymmetric glass and double fluid47. These phases might correspond to the modes of dynamics identified in our 
model. In this interpretation, the mobile phase is the double fluid and the infinite-λ arrest is the asymmetric glass. 
Further, the double glass phase corresponds to the SCN-induced arrest as it is a cooperative phase. The single 
glass might correspond either to the SCN-induced arrest too, or to the structural arrest. This is likely to depend 
on the parameters of a particular system. The four phases embedded in the SCN-driven dynamics are also con-
sistent with the re-entrant transition, i.e. the melting of the binary mixture as the bigger particles are replaced by 
the smaller ones, with the total packing fraction for both types kept constant47. Looking at Figs. 3a and 6a, one can 
notice that decreasing ψ∼ moves the system downwards on the λ-ψ∼c plot. Thus, melting should occur as this trans-
formation crosses the ψ λ∼( )c  line. The compensating increase in the number of smaller particles corresponds to the 
growing λ and moves the system to the right on the λ-ψ∼c plot. The shape of the ψ λ∼( )c  curve is such that this trans-
formation can either move the system back to the SCN-induced arrest or towards the infinite-λ arrest. In both 
cases, this would result in the re-entrant transition.

Concluding this section, despite being a relatively simple model, the SCN-driven Langevin dynamics qualita-
tively cover a few major phenomena encountered in binary mixtures. However, this phase behaviour might also 
include e.g. gel phases47, crystallization46,49 and demixing effects18, which are not addressed here. A more in-depth 
discussion would require a three dimensional model, employing a more specific noise correlation function, i.e. 
one that explicitly provides the physical dependence between λ and the microscopic parameters of the thermal 
bath. This will be pursued elsewhere, as this article is focused on the most general properties of the SCN-based 
model.

Relation to the Mode Coupling Theory
The SCN-induced arrest resembles the ideal glass transition described by MCT. This is not surprising, as both the-
ories stem from a common concept. In the usual derivation of MCT, there appears a certain intermediate equa-
tion (see Eq. (25) in Reichman and Charbonneau36) that explicitly involves the fluctuating force and the friction 
memory kernel. This is, in fact, the Generalized Langevin Equation. From this moment, abandoning the standard 
MCT route in favour of the stochastic approach and adopting the assumptions of SCN, one arrives at the starting 
point of this paper, which is (6). This means that both theories can be compared in greater detail.

The main similarity is that both theories predict a sharp transition, with power-law divergence in the viscosity. 
In MCT, the critical exponent reads 1.765, as estimated by Leutheusser42, while our model estimates 0.5. Another 
similarity is that both theories predict a divergent correlation length at the critical point. The main result of MCT 
is the evolution equation for the dynamic density correlation function, defined as:

Figure 7. The non-diagonal friction coefficient Γ Γr( )/ij ii in the hard-sphere case for =m 10 and λ = .0 1 (a), 
λ = .0 5 (b) and λ = .1 5 (c). In all cases the oscillatory character emerges as ψ ψ→

∼ ∼
c. For short correlations 

(λ = .0 1) the additional oscillatory structure manifests in the lower packing regime.
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∑ π
=







−






−CC ( )t N i k
L

x x t( ) exp 2 (0) ( )
(34)

k
i j

i j
1

,

MCT is known to predict the two-step relaxation of CC t( )k , where the β-relaxation corresponds to the 
short-to-intermediate time and the long-time behaviour is called the α-relaxation. Vitrification manifests in the 
extension of α-relaxation to extremely long times, saturating at a constant value, which marks the transition from 
ergodic to non-ergodic dynamics36.

Within our theory, we can also predict how CC t( )k  evolves. First, we need to introduce the variable:

∑
π π

=




−


y

N
kx
L

kx
L

1 cos 2 sin 2
(35)k

i

N
i i

Under this transformation, the system of Langevin Eq. (6) translates into (see Appendix F):

γ ρ
π

σ ηΛ = − − ΛΓ Γ 

ˆa y U y L
k2 (36)k k k k H k k, ,

1/2

In Appendix F we show how yk and CC t( )k  are related to each other, hence, the above equation also leads to the 
evolution of CC t( )k :

γ
ρ

+
Λ

=Γ
Γ



ˆ
CC CCa t U t( ) ( ) 0

(37)
k

k

k
k

,

This result can be now compared with the standard equation provided by MCT36,42:

∫α τ τ τ α+ − + =C̈C CC CCt d k t t( ) ( , ) ( ) ( ) 0 (38)k
t

k k1
0

2

where, usually  τ τ− ∝ −CCk t t( , ) ( )k
2  and α = consti . Juxtaposing (37) and (38) one can instantly notice that 

both describe the motion of a damped oscillator. However our theory is over-damped (no C̈C t( )k  term) and makes 
use of the ‘trivial’ memory kernel, ρ δ τ− ΛΓÛ t( )/k k, .

Quick inspection of (37) shows that our dynamics cannot describe the two-step relaxation, yet it still predicts 
the ergodic and non-ergodic phase. (37) is satisfied by  ^ρ∝ − ΛΓt U t( ) exp ( / )k k k, , which either decays exponen-
tially fast to 0 or, for Λ → +∞Γ k, , behaves as = .CC t const( )k , which reproduces the saturation in the arrested state. 
Thus, apparently, our theory distils the simplified two-phase behaviour from MCT. The lack of the β-relaxation in 
the SCN-based model is no surprise, as the memory effects are neglected therein. This corresponds to the looking 
at the longer time-scale. However the presence of the non-ergodic phase suggests an intriguing conclusion: in the 
ideal glass transition the α-relaxation (and so the arrest effect) is mostly governed by the spatial correlations. 
Although the memory effects and temporal correlations also affect this regime to a certain extent, the spatial 
aspect is apparently the backbone of the transition.

This is a novel insight, as MCT usually treats the spatial inhomogeneity implicitly, putting more emphasis 
on the temporal evolution. One exception is e.g. the work of Reichman and Miyazaki17, who constructed the 
non-equilibrium (though based on the linear Onsager relations) density field formulation of MCT. Interestingly, 
in their Langevin equation for the evolution of the density, the fluctuation-dissipation relation explicitly leads 
to SCN. This is the manifestation of the local dependence between the density and the amplitude of noise, i.e. it 
introduces the fluctuating viscosity landscape. In our approach we achieve a similar effect, but by the means of 
the spatially variant inter-diffusivities. Thus, our viscosity landscape is dynamic and evolves with the change in 
the positions of particles. Yet, the theory of Reichman and Miyazaki eventually leads to the MCT-type equation 
in the generic form of (38), with only a slightly modified memory kernel. While being more realistic, this form 
still obscures the role of SCN.

Summarizing this comparison, the similarities between MCT and the SCN-induced arrest are remarkable. 
Thus, we conclude that the transition embedded in our model is, in fact, a simplified variant of the ideal glass 
transition described by MCT. As such, our model provides a certain approximation for the dynamics in the 
supercooled state, but is not able to describe the glassy dynamics itself, in a similar manner as classic MCT fails to 
do so. However, our model can be studied analytically to a much greater degree than MCT, providing a complete 
insight into the mechanism of the SCN-induced arrest. Although stemming from the similar considerations, 
the SCN-based model employs a different set of assumptions and approximations, arriving at results that seem 
complementary to the classic MCT.

Discussion in the Context of Glass Research
From the preceding comparison it is clear that our theory is closely related to MCT. However, MCT is well-known 
for its deficiencies1,58, as the ideal glass transition, which MCT predicts, is not observed in experiments. One 
reason for this is that the glass transition seems to involve an intrinsically non-equilibrium component26. Certain 
modern extensions aim at incorporating this aspect into MCT59,60. Our theory, as presented in this work, is fully 
consistent only in the equilibrium conditions, i.e. as we derive the FDR with the help of the Boltzmann distribu-
tion, one should also calculate the noise correlation matrix H using the same distribution. However, the Langevin 
dynamics is not restricted to the equilibrium regime, i.e. one can start such dynamics also from the 
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non-equilibrium initial conditions. In this case, it describes the equilibration process. Such results approximate 
the actual evolution of the system in an uncontrollable manner, but they must converge to the exact behaviour in 
the vicinity of equilibrium. The accuracy of our model in the non-equilibrium regime could be improved in two 
ways. A simpler option is to employ a non-equilibrium correlation function H r t( , ) in the current version of our 
FDR and assume its adiabatically slow evolution. This would result in a time-dependent Γ. The other approach is 
to derive our theory, but using a non-equilibrium distribution instead of Boltzmann Ps, if it can be postulated in a 
particular case. However, both require a certain additional input from non-equilibrium considerations, which is 
beyond the scope of this paper.

Another important branch of the contemporary glass research is focused on the higher, three- and four-point 
correlation functions, which are well known to capture the dynamic characteristics of glasses1,38. The direct com-
parison of our theory with these results would require us to calculate the correlators of particle displacements. 
However, this could be done, provided that the explicit trajectories x t( )i  are known. This is a formidable task since 
the spatially variant Γ −x x( )i j  makes the equations highly non-linear, even if the interactions are simple, e.g. 
harmonic. In the same context, it is also true that the assumption of the Gaussian SCN is insufficient, as it intro-
duces only the two-point correlations at the microscopic level. Conversely, it has been already shown with the 
exact MCT involving the multi-point correlations61 that the non-Gaussian fluctuations also contribute to the 
system behaviour, though this theory is challenging to apply. However, this suggest that our results could be 
improved by utilizing the non-Gaussian SCN (e.g. the heavy-tailed stochastic processes). Nevertheless, there is a 
correspondence between the multi-point correlation functions and the collective dissipation length. The former 
allows us to find how many neighbouring particles are involved in the collective rearrangements (i.e. the cooper-
ation number33), which in the three-dimensional systems is 10–20. The collective dissipation length τ provides 
a similar estimate, indicating a rapid rise in the number of neighbours involved in the dissipation as the density 
grows.

From the experimental perspective, the dependence of our theory on the noise correlation function H r( ) and 
λ is inconvenient, as these magnitudes are difficult to measure. When a colloidal binary mixtures is suitable for 
the confocal microscopy, λ can be obtained from the direct tracking of particles, though it requires that the system 
is already well-within the regime of the slowed-down dynamics30,34. A more direct measurements of the corre-
lated noise acting on the larger particles could be accomplished with the use of e.g. optical tweezers62,63, though 
we are not aware of any such results. However, knowing the direct forces acting on a particle, one could estimate 
the correlation of the effective forces, which can serve as a proxy for H r( ).

The ψ∼c which we predict for different λ and exponential correlations fits well into the known experimental and 
theoretical boundaries. The critical packing for vitrification is often related to the limit of random close packing 
and varies with dimensionality64, type of particles, but also with the experimental or simulation protocol65. In 
particular, one should distinguish between Brownian glasses and glasses under the shear stress66. The reported 
values for mono-disperse colloids typically read 0.56–0.64 for the three dimensions20,21, 0.79–0.84 for two31,67,68 
and approximately 1.0 for one. The model presented here is one-dimensional and Figs. 3a and 6a show that ψ∼  1c  
corresponds to the very short λ. The preliminary results for the higher-dimensional variant of our theory also 
indicate that ψ∼c in two and three dimensions can be reproduced for physically reasonable λ.

Experiments also provide an empirical dependence ~ ~ ~ψ ψ ψ∝ . −exp(1 15 /( ))c  for viscosity2,21. Our model does 
not reproduce this shape, i.e. we predict the slower increase for most ψ∼, which becomes steep only in the vicinity 
of ψ∼c. However, this empirical dependence comes from the shear viscosimetry, which involves external forces, not 
included in our model. The viscosity should also depend on how fast the control parameter is changed24,25, which 
is not reflected in our results. However, we use constant λ, while in the molecular systems it is likely to change 
with ψ. Thus, the differences might be partially remedied by the ψ-dependent noise correlation length.

This also points to an important characteristic of our model, i.e. the effect of arrest is practically separated 
from the evolution of λ and H r( ). These magnitudes enter our FDR in self-contained manner, acting as the param-
eters for the mechanism of arrest. This is also reflected by the difference between λ and the characteristic length 
of collective dissipation τ. The latter comes from FDR and might become divergent independently from λ, which 
remains finite. While λ is expected to increase with ψ, the collective dissipation apparently does not depend on 
the microscopic details of this process. Thus SCN acts as an intermediate cause for the transition. This introduces 
a new perspective on the current advances in the determination of the characteristic length-scale for glass 
transition69.

Although the SCN-induced arrest is only a simplified variant of the ideal glass transition and as such, it fails 
to describe some major aspects of the actual physical phenomenon, it brings in several novel ideas that might 
become useful in glass-related research. The fact that pure SCN can solely arrest the dynamics of a disordered 
system is a new and remarkable observation. It suggests another path to build glass transition theories, i.e. to start 
from the SCN-like approximations as a basis and include the temporal evolution and non-equilibrium effects 
as higher-order corrections. Whether this leads to a better analytical insight into the glass transition should be 
investigated in the future. The concept of the divergent collective dissipation length is also of special interest, as 
the profound change in dynamics without a corresponding change in structure is an important characteristics of 
the glass transition. A physical quantity capable of capturing this type of behaviour, analogous to one derived for 
SCN, would be of particular interest in the glass mechanics. Finally, in the grand perspective, our model shows 
how thermodynamic state of a system can be reflected in the effective dynamics via the properties of noise and 
dissipation. The FDR with embedded phase transitions is a valuable tool in the simulations of complex, multicom-
ponent systems as it is computationally cheaper than full-scale molecular dynamics simulations. For this reason 
it can be employed as a component of some higher-level modelling. In the future, extending this approach to 
include other thermodynamic transitions, e.g. crystallization, would be a desirable achievement.
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Conclusions
In this work we have identified SCN as the factor capable of inducing and controlling the critical slow-down of 
dynamics in disordered molecular systems at finite temperatures. The mechanism of this molecular arrest is ana-
lytically explained, i.e. the spectrum of the friction-response matrix is shown to act as the order parameter and 
the collective dissipation length is shown to diverge at the transition point. The theory is also identified as the sim-
plified variant of MCT. The model might be seen as an effective, one component description of a binary mixture, 
reproducing a majority of disordered phases encountered in such systems. Our results contribute to the under-
standing of the role played by the spatial correlations in the physics of molecular arrest. They also suggest several 
further questions regarding the influence of such factors as: dimensionality, exact correlation functions, different 
types of interactions and non-equilibrium effects, which should be the matter of the future investigations.

Appendices
A Stochastic orthogonality. We will justify the equality =Q Q 1T

M in greater detail. A single element of 
this matrix product reads:

∑ ∑
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where we have used the trigonometric identities. Assuming that xi has the homogeneous distribution = −p x L( )i
1, 

one can calculate that the variance of s sinik
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Similar result is obtained for = πc cosik
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2 i , i.e.:
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This shows that the variances of sik and cik are finite. What follows, the variables:

∑ ∑= =≠ ≠S
N

s C
N

c1 1
(A4)

k
i

N

ik k
i

N

ik0 0

must come from the Gaussian distributions with the mean 0 and the variance equal −N(2 ) 1 (for large N), as guar-
anteed by the central limit theorem. Therefore, the variable:

= +′ − ′ + ′Q Q C S[ ] (A5)T
kk k k k k

is the sum of two Gaussian variables. This means that ′Q Q[ ]T
kk  is also a Gaussian variable, with 0 mean and vari-

ance −N 1. This variance reduces to 0 as → +∞N . Thus, in the very large system we have:

δ=
→+∞

′ ′Q Qlim [ ] (A6)N

T
kk kk

i.e. except for = ′k k , the trigonometric functions statistically compensate to 0.

B SCN and different interpretations of stochastic integrals. First, we will identify the correction 
terms for the general choice of interpretation. This is a generalization of the considerations from the ref. 56 (espe-
cially Eq. 2.13 therein) to the multidimensional case. We consider a stochastic differential equation of the form:

∑ η= → + →
x f x g x t( ) ( ) ( )

(B1)i i
k

ik k

and its short-time integrated version:

∫ ∫∑ η∆ = = → ∆ + →+∆ +∆
x t dsx f x t t dsg x s s( ) ( ( )) ( ( )) ( )
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t t
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The integral over the stochastic part can be specified as:

∫ ∫η α α η= → = → + ∆ + − →
α

δ+∆ +
I dsg x x s g x t t x t ds s( ( )) ( ) ( ( ) (1 ) ( )) ( ) (B3)t

t t

ik k ik t

t t

k

where the choice of α corresponds to some interpretation (e.g. α = 0 for Ito, α = 1/2 for Stratonovich, but other 
values are also allowed). Following the steps taken in the ref. 56, one can calculate:

∑α〈∆ 〉 = → ∆ + → ∂ →x f x t t g x t g x t( ( )) ( ( )) ( ( ))
(B4)

i i
j k

kj x ik
,

j

The α-dependent term is the additional drift related to the noise interpretation, i.e.:
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We can now calculate 
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C  for Eq. (12):
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This means that for SCN every interpretation is equivalent as they produce no additional drift.

C Derivation of ΛΓ from the Fokker-Planck equation. In this appendix we will determine the dissipa-
tion function Γ r( ) using the stationary Fokker-Planck (14) with the assumption that Ps is the Boltzmann distribu-
tion. In the first step, we will separate the contributions from the correlated and non-correlated dynamics. We 
expect that as a certain correlation length λ falls to zero, δ→

ρ
H r r( ) ( )aH . Thus, H can be decomposed as:

= Λ = + Λ∆Q Q Q a QH 1( ) (C1)H
T

H M H
T

where a 1H M corresponds to the Dirac-delta correlations in the λ → 0 limit and Λ∆H describes the finite-range 
correlations. Similarly, we can represent Γ and its inverse:
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where Λ∆Γ and = ΛQ QK K
T carry the information on how the finite-range correlations influence Γ and Γ−1, γ is 

the usual hydrodynamic friction and Γa  will be later related to aH. The Eq. (12) now reads:
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Let us define the auxiliary diffusion matrix D, such that:
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and ΛD is the spectrum of D. With the aid of D we can now rewrite down the stationary Fokker-Planck equation 
as:
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In the limit of the non-correlated noise we expect both Λ →∆ 0H  and Λ → 0K , so (C.6) reduces to the case of 
the ordinary diffusion. In this case, remembering that β∂ =P F Px s j sj

, the Eq. (C.6) is satisfied if βσ γ =Γa a/(2 ) 1H
2 . 

This means that the classical dissipation relation βσ γ =/(2 ) 12  holds and = Γa aH , i.e. we should use the same 
representation for the diagonal part of Γ and H.

After employing all these identities, the first sum in (C.6) becomes identically equal to 0. We can take now the 
derivative over xj in the remaining part of (C.6) to obtain:

∑ ∑
γ

σ
γ

βσ
γ

= − ∂













+ ∂ +













a

P a F FK D D0 1
2 2

)
(C7)i

N

x
H

s
j

N

H ij j x ij ij j2

2 2

i j
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We will now represent all the terms under sum with the aid of the Qik functions:

∑ ∑
π

ρ− =
−

=
=− −

−

=− −

−

−
ˆ ˆF x x

L
F

k x x
L

F Q Q( ) 1 sin
2 ( )

(C8)
i j

k M

M

k
i j

k M

M

k ik j k
( 1)/2

( 1)/2

( 1)/2

( 1)/2

,

∑ ∑
π

= Λ = Λ
−

=− −

−

=− −

−
Q Q

N
k x x

L
K 1 cos

2 ( )

(C9)
ij

k M

M L

K k ik jk
k M

M L

K k
i j

( 1)/2

( 1)/

,
( 1)/2

( 1)/

,

∑ ∑
π

= Λ = Λ
−

=− −

−

=− −

−
Q Q

N
k x x

L
D 1 cos

2 ( )

(C10)
ij

k M

M L

D k ik jk
k M

M L

D k
i j

( 1)/2

( 1)/

,
( 1)/2

( 1)/

,

where we frequently use the cancellation of the antisymmetric terms under the summation over k. We can further 
use these expansions to calculate:

∑ ∑ ∑ρ= Λ
′=− −

−

′ ′ − ′
ˆF F Q Q Q QK

(C11)j

N

ij j
k k M

M

j l

N

k K k ik jk jk l k
, ( 1)/2

( 1)/2

,
, ,

By the stochastic orthogonality, δ∑ ′ ′Q Qj
N

jk jk kk , this further reads:

∑ ∑ ∑

∑ ∑

ρ

ρ π

Λ

= Λ
−

=− −

−

−

=− −

−



ˆ

ˆ

F F Q Q

N
F k x x

L

K

sin 2 ( )

(C12)

j

N

ij j
k M

M

l

N

k K k ik l k

l

N

k M

M

k K k
i l

( 1)/2

( 1)/2

, ,

( 1)/2

( 1)/2

,

In exactly the same way we calculate:

∑ ∑ ∑

∑ ∑

ρ

ρ π

= Λ

= Λ
−

′=− −

−

′ − ′

=− −

−

ˆ

ˆ

F F Q Q Q Q

N
F k x x

L

D

sin 2 ( )

(C13)

j

N

ij j
k k M

M

j l

N

D k k ik jk jk l k

l

N

k M

M

D k k
i l

, ( 1)/2

( 1)/2

,
, ,

( 1)/2

( 1)/2

,

Eventually, the last term reads:

∑ ∑ π π
∂ = Λ

−

=− −

−

N
k

L
k x x

L
D 1 2 sin

2 ( )

(C14)j

N

x ij
k M

M

D k
i j

( 1)/2

( 1)/2

,j

Inserting these results into (C.7), we obtain:

∑ ∑ ∑γ

π

σ
γρ

π βσ
γ

= − ∂
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×





Λ + Λ + Λ













=− −

−

ˆ ˆ
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a L
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2 (C15)

i

N

x
s

H j

N

k M

M
i j

H K k k D k D k k

( 1)/2

( 1)/2

,

2

,

2

,

i

Finally, one can realize that since = −∂F r U r( ) ( )r , then = πˆ ˆF Uk
k

L k
2 . Using this representation and the dissipa-

tion relation =βσ
γ

1
2

2
 we can factor out all the common terms, so (C.16) becomes:

∑ ∑ π π

γ

βρ

= ∂






−

×
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 +





Λ
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ˆ ˆ
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k x x
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1

(C16)

i j

N

x
k M

M
i j s

H

H k K k k D k

, ( 1)/2

( 1)/2

2

, ,

i

Inserting the definition of ΛD (C.5) and rearranging, we obtain the quadratic equation for a single mode ΛK k, :

βρ βρ

= Λ + Φ − Λ Λ + Λ Λ

Φ = +
∆

ˆ ˆ
a

U U

0 ( 2 )
/(1 ) (C17)

H k H k H k K k H k K k

k k k

, , , , ,
2

Before we solve this equation, let us assume that Λ ≤∆ a/ 1H k H, , i.e. the Fourier spectrum of the correlation 
function is limited by the spectrum of the delta-like correlations. From the fact that Λ = Λ −∆ aH k H k H, ,  and 
Λ ≤ aH k H,  it follows that Λ <∆ 0H k, . This means that (C.17) has two solutions as its determinant is non-negative:
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Λ =
− Φ − Λ ±

Λ
= Φ − Λ − Λ Λ∆

± a
a

( 2 ) det
2

det ( 2 ) 4
(C18)

K k
H k H k k

H k
k H k H k H k H k,

( ) ,

,
,

2
, ,

However, we will reduce the number of solutions by demanding that in the non-correlated case (Λ →∆ aH k H, ) it 
is true that Λ →± 0K k,

( ) . In order to impose this restriction, we can rewrite detk in the following way:

= Φ − − Φ − Λ − Λ

= Φ −





−



 Φ −

+
Φ −





Λ 





∆ ∆

∆

a a a

a
a

det ( 2) 4 ( 2) 4

( 2) 1 4
2

4
( 2) (C19)

k H k H k H k H H k

H k
k k

H k

H

2 2
, ,

2 2
2

,

As |Λ | ≤∆ a/ 1H H , we can use it as an expansion parameter for detk , thus:



a a

a

( 2 )
2

2
2

1 2
2

2
( 2) (C20)

K k
H k H k

H k
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,
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, ,

2
,

Λ
− Φ − Λ

Λ
±

|Φ − |
Λ

×





−



 Φ −

+
Φ −





Λ 




±

∆

In the limit Λ → aH k H, , this reduces to Λ = − Φ − ± |Φ − |± ( ( 2) 2 )/2K k k k,
( ) . This shows that the condition 

Λ = 0K k,  is satisfied only interval-wise for either solution, i.e. by Λ +
K k,
( )  for Φ > 2k  and by Λ −

K k,
( )  for Φ < 2k . Thus, we 

construct the appropriate solution from these two functions on the complementary intervals. After reducing all 
the cancelling terms in the each interval, the eventual result proves to be a continuous function:

Λ = −
Λ

Λ Φ −
∆

( 2) (C21)
K k

H k

H k k
,

,

,

Let us inserted this formula in (C.3) and (C.2) and use the definition of Φk, then we obtain:

γ
βρ

βρ
Λ =

Λ +

Λ + +
Γ Γ

ˆ
ˆa

U
a U
(2 )

(1 ) (C22)
k

H k k

H k H k
,

,

,

∑ ∑ πΓ = Λ = Λ




−




=− −

−

Γ
=− −

−

ΓQ Q
N
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L

x x1 cos 2 ( )
(C23)

ij
k M

M

k ik jk
k M

M

k i j
( 1)/2

( 1)/2

,
( 1)/2

( 1)/2

,

We can now use the identity =Γa aH and define ρ=ˆ ˆh H a/k k H. As a final step, the thermodynamic limit is applied, 
i.e. → +∞N , → +∞L  (while ρ=N L/ ) and ∫∑ →

π π

π
=− −

−
−

dkk M
M L

m d

m d
( 1)/2

( 1)/2
2 /

/  as →π kk
L

2 . d is the particle diame-
ter, which is introduced here to make the continuous cut-off parameter m dimensionless. Eventually we obtain 
the main result of this paper, formula (16).

D Mean behaviour of Γ, the Γ ∝ (ψc − ψ)−1/2 dependence and the approximation of Γij. We can 
calculate the mean value of each Γij in a homogeneous system, where the probability of finding a particle reads 

= −p x L( )i
1. Let us denote ∫〈 〉 = ∏ = −

f x dx p x f x( ) ( ) ( )n x i
N

L

L
i i n1 /2

/2 . Since δ〈 − 〉 =k x x kcos ( ) ( )i j x , we obtain:

^ ^

^ ^

γ
πρ

βρ

βρ
Γ Γ Γ= = Γ =

+

+ +
≠⟨ ⟩ ⟨ ⟩ a h U

h U
(0)

2
(0)[2 (0)]

1 (0) (0) (D1)
ii x ii i j x

H

When H r( ) is normalized in such a manner that =ĥ(0) 1, Γ〈 〉≠i j x reduces to γ
πρ
a

2
H , i.e. the constant prefactor of Γ(0). 

Thus, the ratio Γ Γ〈 〉 〈 〉≠ /i j x ii x is proportional to 1/Γii. Since the diagonal terms Γii can grow in an unbounded man-
ner, thus the averaged-out matrix Γ〈 〉 can be easily dominated by its diagonal terms.

In the vicinity of critical packing ψ ψ c, the integral (16) expressing any Γij is dominated by the contribution 
from the singularity at k0. Therefore, we can approximate the integrand by its value at this point. Expanding 

ψf k( , ) given by (18) around k0, up to the second order, we get:

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

+ ″
−

= + − + ″
−

= + − | | + ″
−



ˆ

f k f k f k k k

f k f k f k f k k k

f k U k f k k k

( , ) ( , ) ( , ) ( )
2

( , ) ( , ) ( , ) ( , ) ( )
2

( , ) ( ) ( ) ( , ) ( )
2 (D2)

c c

c c

0 0
0

2

0 0 0 0
0

2

0 0 0
0

2

One must also remember that ψ =f k( , ) 0c0 , by definition. The above expansion approximates the denominator 
of the integrand. We can also treat the nominator as constant, thus:
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2
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0

This shows that the dominant behaviour in ψ is of the ψ ψ∝ − −( )c
1/2 type. We can also identify that 

Γ Γ= k rcosij ii 0 , since Γ = Γ(0)ii . However, this approximation of the spatial dependencies in Γ r( ) works only very 
close to ψc.

If we can effectively treat the cut-off as very large, i.e. → +∞πm
d

, a more accurate approach is possible. We 
assume now that the integrand is dominated by the singularity at k0, but the oscillations are still important, i.e. we 
approximate:

∫γ π
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Γ +

− | | + ″−∞
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ˆ
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( )(2 ( ))cos
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c
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0 0

0 0
( )

2
0

2

As we change the integration variables to = −q k k0, we expand = −kr k r qr k r qrcos cos cos sin sin0 0 . The 
latter term disappears under the integral due to its antisymmetric character. Therefore, we are left with:

∫γ π
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( 0, )

2( ) ( 0)

The formula (20) follows from this result.

E Derivation for the HS case. In order to solve the Eq. (30) we can act on its both sides with ∫−∞

+∞ dreikr to 
obtain:

∫ δ
π

− = ′





+ ′ −
+ ′
+ ′






′
−∞

+∞
i kd dk k k k k d

k k
f k2 sin ( ) sin( )

( )
( )

(E1)

We postulate now that λ′ = ′f̂ k k d( ) sin  and it is enough to find λ. Thus we want to solve the problem:

∫λ λ
π

− = − − ′
+ ′ ′

+ ′−∞

+∞
i kd kd dk k k d k d

k k
2 sin sin sin( ) sin

( ) (E2)

The integral can be calculated exactly if we switch to the exponential representation and apply the residue theo-
rem to the pole on the real axis, i.e.:

∫ ∫π π
′

+ ′ ′
+ ′

= − ′
+ −

+ ′

= − − +

= −

−∞

+∞
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4
( ) 0

1
2
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(E3)

i k k d i k k d

ikd ikd

( 2 ) ( 2 )

Substituting this result into (E.2) we obtain:

λ λ
− = − +i kd kd kd2 sin sin

2
sin (E4)

and eventually λ = i4 . This shows that our postulated solution is correct and it can be utilized to determine 
Û k( )HS .

F The relation to MCT. As a first step, we want to change the variables from xi to yk, as defined by (35). In 
Appendix B we have already shown that SCN is insensitive to the change of noise interpretation, thus we can then 
instantly switch to the Stratonovich interpretation to make the calculations straightforward. In order to change 
variables, let us multiply (6) by QT from the left:

γ σ ηΛ → =
→

+ Λ →
Γ Γ

a Q x F (F1)T
H
1/2

yk is the function of xi, which is the function of time. Thus the M-dimensional vector of yk satisfies:
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π→ = − →
 y k

L
Q x2

(F2)
T

We can also explicitly identify the element of 
→

Q FT , using the Fourier expansion (C.8) for −F x x( )i j  and the sto-
chastic orthogonality:
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,

,

because, in fact = ∑ −y Qk i
N

i k, . Inserting these results in (F.1) leads to the Eq. (36).
In order to establish the relation with MCT and CC t( )k , one can realize that:
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Therefore, using these identities to expand (34), we obtain:
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The equation for CC t( )k  follows instantly:

= +

+ −
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Finally, replacing 
y t( )k  with (36), assuming that the averages containing the noise terms ηk disappear and remem-

bering that = −
ˆ ˆU Uk k and Λ = ΛΓ Γ −k k, , , we obtain (37).
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