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Machine learning: assessing 
neurovascular signals in the 
prefrontal cortex with non-
invasive bimodal electro-optical 
neuroimaging in opiate addiction
Hada fong-ha ieong  1,4*, Fu Gao2 & Zhen Yuan1,3*

chronic and recurrent opiate use injuries brain tissue and cause serious pathophysiological changes in 
hemodynamic and subsequent inflammatory responses. Prefrontal cortex (PFC) has been implicated 
in drug addiction. However, the mechanism underlying systems-level neuroadaptations in PFC during 
abstinence has not been fully characterized. The objective of our study was to determine what neural 
oscillatory activity contributes to the chronic effect of opiate exposure and whether the activity 
could be coupled to neurovascular information in the PFC. We employed resting-state functional 
connectivity to explore alterations in 8 patients with heroin dependency who stayed abstinent (>3 
months; HD) compared with 11 control subjects. A non-invasive neuroimaging strategy was applied 
to combine electrophysiological signals through electroencephalography (EEG) with hemodynamic 
signals through functional near-infrared spectroscopy (fNIRS). The electrophysiological signals 
indicate neural synchrony and the oscillatory activity, and the hemodynamic signals indicate blood 
oxygenation in small vessels in the PFC. A supervised machine learning method was used to obtain 
associations between EEG and fNIRS modalities to improve precision and localization. HD patients 
demonstrated desynchronized lower alpha rhythms and decreased connectivity in PFC networks. 
Asymmetric excitability and cerebrovascular injury were also observed. This pilot study suggests that 
cerebrovascular injury in PFC may result from chronic opiate intake.

Opiate addiction, the most severe and chronic stage of opioid use disorder (OUD), is characterized as a chron-
ically behavioral relapsing, and currently being proposed, a subsequently cerebrovascular1–3 disorder. Here, the 
use of opiates, such as heroin, morphine, or opium, leads to a clinically significant impairment in controlling 
intake4 and maintaining glutamate homeostasis5. Although there are existing theories6,7 to explain the under-
pinnings of the transition from cessation to relapse, it is believed that the neuropharmacological consequences 
of allostatic neuronal or hormonal adaptations result in craving, compulsive drug use, and other disadvanta-
geous behaviors associated with addiction8. Prefrontal cortex (PFC), known for its involvement in regulating 
limbic reward regions and higher-order executive function, is an important target for drug addiction research, 
in large part due to its strong link to compulsive drug use9 and the negative-affective states associated with pro-
tracted abstinence8. Convincing evidence has showed reduced blood flow and thus deactivation in the PFC of 
drug addicts9. Hemodynamic changes and its subsequent inflammatory responses in the brain tissue injured 
by chronic and recurrent drug insult may comprise essential pathophysiological processes resulting in cerebral 
ischemia. Indeed, the neurovascular mechanisms underlying the prefrontal excitatory and inhibitory neuroadap-
tations during abstinence were not characterized across drug classes. Despite diverse treatment options for OUD, 
including medication (e.g. buprenorphine, methadone, naloxone/naltrexone)4, inpatient treatment, outpatient 
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harm-reduction program, and counseling that offers cognitive-behavioral therapy, motivational enhancement 
therapy, or 12-step therapy, the relapse rate is extremely high (91%)10. Furthermore, there is no biomarker to pre-
dict relapse. At the microscopic scale, brain electrical activity greatly relies on neurovascular interactions between 
neurons, astrocytes and blood vessels. At the macroscopic scale, brain state-dependent network could reflect 
behaviors and cognition. Hence, one strategy for achieving potential markers that can possibly monitor a patient’s 
PFC network activity is the use of resting-state functional electro-vascular neuroimaging at the mesoscopic scale 
(i.e., intermediate level that explores a large population of cells and vessels).

Resting-state functional connectivity (rsFC) has received substantial attention clinically11, in large part 
because of its raising promise linking canonical microcircuit consisting excitatory glutamatergic projection neu-
rons and inhibitory GABAergic interneurons12,13, genetics14,15 and predicting behavioral achievement and sub-
sequent activation of complementary brain areas when performing task in humans16–19. Thus, rsFC is thought to 
serve as a systems-level marker to provide indicative information regarding to the diagnoses for different neu-
ropsychiatric disorders11. Characterizing a mesoscopic-scale PFC network in opiate addiction during protracted 
abstinence through rsFC may provide insights for deeper understanding of the neurophysiological aspect of brain 
activity during recovery. Furthermore, if improved neuroimaging strategies can be developed and implemented 
in selective categories of individuals with OUD to prevent relapse, this may ultimately lead to long-term recovery.

Here, we report the results of a pilot study of rsFC analysis in the PFC of abstinent heroin-using patients 
who had a life-time history of opiate use. The objective of our study was to determine what the neural oscilla-
tory activity contributes to the profound effect of heroin exposure on abstinence and whether these oscillations 
are associated with blood oxygenation. We used a bimodal non-invasive neuroimaging strategy that combined 
electroencephalography (EEG) to provide information about neural synchrony and oscillatory activity with 
functional near-infrared spectroscopy (fNIRS) to provide complementary information about the cerebral blood 
oxygenation in small vessels in the PFC. This bimodality has several features designed to optimize homogeneity. 
First, synchronization likelihood (SL) was used to capture the spatio-temporal neural synchrony and the oscilla-
tory activity interactions among whole-brain electrodes to characterize interdependencies between times series 
as measured by EEG. Second, concentration changes in two chromophores of oxygenated hemoglobin (HbO) 
and deoxygenated hemoglobin (Hb) in PFC as measured by fNIRS were obtained to examine regional cerebral 
blood oxygenation (rCBO) and map functional brain networks. A regional increase in HbO concentration and 
a decrease in Hb concentration indicate a typical rCBO. Neuroimaging studies provide compelling intravascular 
evidence that regional brain activity induces a regional arteriolar vasodilation and consequently an increase in 
regional cerebral blood volume and cerebral blood flow (CBF)– known as the neurovascular coupling mech-
anism20 (for a recent review see21). At the capillary level, the increase in CBF and oxygen delivery exceeds the 
increase in local oxygen consumption, and therefore, CBO rises locally22, indirectly indicating brain activation. 
Third, a supervised machine learning method was used to obtain correlations between EEG and fNIRS modalities 
by extracting plausible components in order to provide a relatively precise detection and localization between 
the electrophysiological and hemodynamic signals. Finally, we limited enrollment of heroin-dependent patients 
at their protracted abstinence stage in the addiction cycle because their findings may more likely demonstrate a 
pronounced effect of heroin and, perhaps, a sign of recovery.

Results
Study participants. A total of 13 heroin-dependent patients (HD) who had been exposed to heroin for 
over 20 years and managed to stay abstinent for at least three months were enrolled from an in-patient drug 
rehabilitation treatment center in Macao SAR. Patients were enrolled over the course of two years. Five patients 
withdrew from the study before completion and were not included in the analysis. Eight patients completed the 
study (Fig. 1A). A total of 11 healthy subjects were enrolled from the local community as a control group (CG). 
The CG matched the recruited HD patients on age, education level, and IQ (Table 1).

In the day following enrollment, simultaneous whole-head EEG and PFC-localized fNIRS recordings were 
administered for 11 minutes when subjects were at rest, with eye-closed, and alert (Fig. 1B and Materials and 
Methods). No subjects discontinued participation during the resting-state recordings due to discomfort. No EEG 
electrodes or fNIRS channels were excluded due to poor contact on the scalp.

Resting-state desynchronization in lower alpha rhythm in frontal and occipitoparietal corti-
ces. In neurophysiological data, SL is arguably the most popularly used index to estimate generalized synchro-
nization, which is a concept referring to a situation where the states of a dynamical (sub)system are a function 
of those of another (sub)system. Hence, SL measures the extent to which each pair of electrodes share mutual 
information that is frequency independent and it can detect linear and nonlinear dynamical interdependencies 
between two signals23 as measured by EEG. The result of computing SL for each electrode of a particular fre-
quency band was a 64 × 64 matrix. Figure 2A shows the SL matrices for the frequency bands, classified into delta, 
theta, lower alpha, upper alpha, beta, and gamma, across HD patients and controls. The mean SL in the HD group 
decreased (p < 0.009) in the low frequencies, including delta, theta, and lower alpha (Fig. 2B). No between-group 
differences were identified for upper alpha, beta, and gamma frequency bands (all p > 0.19).

HD patients show desynchronization in the lower alpha frequency band in the frontal, occipital, and in part, 
parietal systems (Fig. 2C,D). Cluster-based Permutation Tests (CBPT) showed that the statistical effect found in 
comparing HD and CG groups was greater than the effects found when SL values were randomly assigned to both 
groups, indicating that the statistical effect was significant, and that the SL connectivity measure was sensitive to 
lower-alpha frequency content. Because the results were consistent with previous literature in which disturbed 
PFC was found in substance use disorders (SUDs) subjects9, the lower alpha oscillations in the PFC as a brain 
region were then selected as a feature for further multimodal fusion analysis (Fig. 1B).
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Decreased HbO-based resting-state functional connectivity and degree strength in PFC network.  
To explore the vascular response evoked by brain activity and construct the topological resting-state PFC network 
(Fig. 1B), changes in hemodynamic signals obtained and calculated from the 14 fNIRS channels covering the PFC 
were measured to construct the individual functional connectivity. Pearson correlation coefficients, r, among 
all channels were calculated by averaging the correlation matrices for each group across subjects. Figure 3A 
shows the group-level connectivity maps obtained from the concentration changes in HbO (see Supplementary 

Figure 1. Study design. (A) Flow diagram for the study. (B) Workflow of study design. Details in Materials and 
Methods.
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Table S2) and Hb (see Supplementary Table S3) in the PFC of HD patients and controls. Blood metabolism in the 
PFC in HD patients shows less activity compared to that of controls (see Supplementary Fig. S1).

To examine the systems-level PFC network organization of the controls in comparison to the HD patients, the 
foremost 5% of HbO connections24 (correlation coefficient threshold, rT, >0.78; mean = 0.55) calculated in the 

Variable

Heroin-dependent 
Group (HD) (n = 8)

Control Group 
(CG) (n = 11)

pmean s.d. mean s.d.

Age (years) 47.6 6.1 45.2 5.52 0.40

Education (years) 5.9 2.8 7.45 2.57 0.24

IQ 82.9 11.4 80.0 10.3 0.58

Gender (M:F) 5:3 7:4 —

Duration of heroin use (years) 29.0 9.7 N/A N/A N/A

Duration of heroin abstinence (years) 2.39 3.4 N/A N/A N/A

Average heroin dosage (g/day) 0.6 0.4 N/A N/A N/A

Methadone treatment dosage (mg) 30.0 26.9 N/ A N/A N/A

Table 1. Baseline characteristics of participants. The p values are reported for a two-sample t test (for age, 
years of education and IQ; two-tailed) comparing abstinent heroin-dependent subjects (HDs) with the controls 
(CGs). IQ was assessed with the Wechsler Adult Intelligence Scale version 4. Abbreviation: Standard deviation 
(s.d.).

Figure 2. SL as a global and local connectivity by EEG. (A) The SL matrices, using grand-averaged values across 
the HD patients and the control participants are showed for each frequency band. Alpha bands are classified 
into two: lower alpha (8–10 Hz) and upper alpha (10–13 Hz). The number of EEG electrodes is 64, resulting 
in the 64 × 64 square matrix whose elements serve the average strength of SL values across the whole subjects 
between a pair of EEG electrodes. (B) Global functional connectivity indexed by mean SLs of HD patients 
was reduced (p = 0.015, permutation test) in delta-, theta-, and lower-alpha-bands. (C) 2D visualization of the 
connectivity in lower alpha based on the synchronization for a 64 EEG electrode cap. The dot (black) represents 
a node (i.e. EEG electrode). The segment (green) represents an edge (i.e. connectivity when the threshold is 
above 0.8). (D) Clustered connections from Cluster-based Permutation Tests (CBPT) between groups for the 
SL index of lower alpha band as a local connectivity. The nodes consisted of the PFC and occipitoparietal cortex 
comprised reduced synchronization in lower-alpha band of HD patients (p < 0.05, uncorrected for multiplicity).
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control group were used to generate network topological properties. The organization network of HD patients 
demonstrated overall reduced connections in PFC topography (Fig. 3B) where nodes represent the channels 
and edges represent connectivity between nodes. The connectivity strength, σ, which is the average connectivity 
of a node in each network in the PFC system, was then quantified. Group-level analysis showed that the degree 
strengths were remarkably (p < 0.0001) lower in the HD patients compared to the controls (Fig. 3C). For sim-
plicity, the change in HbO concentration was then selected as a feature for further multimodal fusion analysis 
(Fig. 1B).

Figure 3. Blood oxygenation and metabolism as PFC connectivity by fNIRS. (A) Connectivity matrices of the 
HD patients and the control participants. The number of fNIRS channels is 14, resulting in the 14 × 14 square 
matrix whose elements represent the average correlation coefficients across the whole subjects between a pair 
of fNIRS channels. (B) Brain network patterns of the HDs and CGs. Only the topmost 5% with correlation 
values greater than 0.78 are shown in the figures. The nodes (green: FP; blue, dlPFC; channels) are numbered 
by channel, and the weighted edges (gray) are displayed. Color bars indicate the correlation coefficient values. 
(C) Degree strength with the group average of the correlation coefficients in PFC of the HD patients (green) and 
control subjects (blue). Error bars indicate the standard error of the mean across the HDs and CGs. Compared 
with the controls, the HD patients show significantly greater connectivity strength in all the channels covering 
the PFC in terms of HbO.
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Strong correlation between lower alpha oscillations and blood oxygenation across PFC. The 
effort of combining neurophysiological signals from EEG and fNIRS modalities is known as multimodal fusion. 
Multimodal source power comodulation (mSPoC) analysis25 is a supervised machine learning method26 that 
employs the source power comodulation function27 for multiple classes and originates from the common spa-
tial pattern algorithm28. This analysis was performed as a machine learning feature fusion method to examine 
whether the spectral power dynamics of the projected lower alpha signal (i.e., the EEG source) maximally cova-
ries with the time-course of the projected HbO signal (i.e., the corresponding fNIRS source) in the PFC. The 
corresponding mSPoC correlations were computed, and the coupling coefficients are showed in Fig. 4A. Four 
regions of interest (ROIs) in the PFC were chosen (Fig. 4B) based on Montreal Neurological Institute (MNI) coor-
dinates (see Supplementary Table S1) of the electrodes and channels (Fig. 4C). For example, electrodes F3, AF7, 
F5, and AF3 and channels 1, 2, and 3 corresponding to the left dorsolateral PFC (dlPFC) subregion were selected 
to perform multimodal fusion. To evaluate the fusion performance, the datasets extracted from the electrodes 
and channels covering each of the ROIs, in addition to those covering the entire PFC, were fused separately. The 
multimodal fusion of all the electrodes and channels covering the PFC, regardless of the ROIs, was outperformed 
in both HD and control groups (the strongest correction; rHD = 0.83, s.e.m. = 0.04; rCG = 0.83, s.e.m. = 0.05). Both 
HD and CG datasets show a strong relationship between lower alpha oscillations and change in HbO concentra-
tion across PFC, and thus visualization was performed later.

Asymmetric interhemispheric excitability evidenced by hemodynamic patterns in PFC. The 
neurophysiological importance of alpha oscillations stems from their effect on neural excitability29. Figure 5 
displays the activation patterns of the estimated components coupled with the EEG and fNIRS modalities by 
mSPoC. EEG data were bandpass-filtered to amplify oscillations in the lower alpha frequency band. HD patients 
show the greatest sensor-space activation pattern of lower alpha mSPoC component in the right frontopolar 
(FP) of PFC (AF4 electrode, MNI: x = 31, y = 61, z = 26; AFz electrode, MNI: x = 2, y = 64, z = 27; Fig. 5A) and 
deactivation in the left dlPFC (AF3 electrode; MNI: x = −26, y = 64, z = 23); whereas the controls show the great-
est in the PFC, the occipitoparietal cortex, and in part, the right dlPFC (FC4 electrode, MNI: x = 50, y = 13, 
z = 51). The 2-second lower alpha oscillation dynamics from an HD patient and a control subject are provided 
in Supplementary Video 1. Optical density data were converted to amplify vascular responses in change in HbO 
concentration (i.e., blood oxygenation). Similar to the results in nodal network analysis, HD patients demonstrate 
decreased activation pattern of the corresponding mSPoC component in PFC (Fig. 5B).

Lower alpha band power modulations of EEG were fused with the change in HbO concentration simul-
taneously measured by fNIRS. Figure 5C shows the visualization of the estimate of the source-space pattern 
of the EEG component based on the sensor-space pattern. HD patients show interhemispheric asymmetry in 
PFC-localized EEG pattern in lower alpha: activation in the right FP of PFC and deactivation in the brain region 
between the left FP and dlPFC.

Figure 4. Correlation between feature extracted from EEG electrodes and fNIRS channels covered the PFC by 
multimodal source power comodulation analysis (mSPoC). (A) Correlations of lower alpha rhythm and HbO 
of resting-state features obtained by mSPoC. (B) Component pairs of EEG electrodes and their corresponding 
fNIRS channels. (C) Configuration of EEG electrodes and fNIRS channels.
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Discussion
Functional neuroimaging has provided important contributions regarding the neuroplastic adaptations that 
result from chronic drug use. There are also growing separate bodies of resting-state studies demonstrating that 
both electrophysiology and hemodynamics can further enhance our knowledge of cognitive processing30,31 and 
improve clinical diagnostics32–35. Despite their raising promises to identify and predict various neuropsychiatric 
disease trajectories, opiate addiction has been understudied by rsFC literature. Furthermore, the fundamental 
mechanism that underlies the electro-vascular coupling on systems-level adaptation to chronic opiates dur-
ing protracted withdrawal, which takes from months to years, are poorly understood. We found that chronic 
heroin-using patients after prolonged withdrawal showed desynchronization in the lower alpha frequency band, 
abnormal blood metabolism and decreased connectivity strength in the PFC. Enhanced electro-vascular response 
was found in the right PFC but reduced in the left, supporting the notion that neural oscillatory activity con-
tributes to the chronic effect of heroin and is associated with prefrontal discontinuous neurovascular integrity. 
Although it is challenging to draw conclusions that the desynchronized lower rhythms and the decreased connec-
tivity in PFC network is the result of a pathological cause (i.e., chronic heroin use) or of a therapeutic mean (i.e., 

Figure 5. Resting-state activation pattern of the coupled EEG and fNIRS component. (A) Whole-brain sensor-
space activation pattern of the EEG mSPoC component in lower alpha oscillations between groups. Color bar 
indicates the amplitude (i.e., band power) of the lower alpha frequency band in µV. (B) HbO-based fNIRS 
activation pattern of the corresponding mSPoC component in the PFC. These components were identified 
based on resting-state comodulation of amplitude dynamics in the EEG and the time course of HbO dynamics 
in the fNIRS. Color bar indicates the change in concentration of HbO (i.e., [HbOf]) in µM. (C) Estimate of the 
source-space pattern of the EEG component based on the sensor-space pattern after EEG-fNIRS fusion. Color 
bar indicates the optimized feature value of estimated components from the extract EEG and fNIRS source data.
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remaining abstinent) from this pilot study, these findings have generated hypotheses that can be tested through 
future functional work in addiction models or with large clinical cohorts.

We hypothesize that the functional topological architecture of resting-state brain networks is profoundly dis-
rupted in HD patients even after prolonged cessation from heroin. We believe this occurs especially in the lower 
alpha oscillations as well as in blood oxygenation variations, resulting from changes in blood flow or metabolic 
rate, in the PFC. This may suggest that life-time opiate addiction, in addition to the existing clinical definition, is 
also a cerebrovascular disorder1–3 that is linked to disturbed glutamate homeostasis5. In this study, the decreased 
prefrontal rCBO, and thus CBF, was associated with enhanced lower alpha oscillations in HD patients.

Neurovascular abnormality is induced by neurochemical imbalance (i.e., glutamate/GABA) in the cerebral 
cortex in brain disorders36. At the macroscopic scale, the human brain, in general, and the cortex, in particular, 
are organized in a hierarchical manner by brain cell assembly to constitute complex networks consisting of brain 
regions that manifest functional connectivity, and thus enabling cognition16,18, perception37, and behavior19. The 
fundamental processing unit throughout the cortex is the canonical microcircuit consisting of glutamatergic (i.e., 
excitatory) projection neurons, that support 85% of energy consumed by the brain38, and GABAergic (i.e., inhibi-
tory) interneurons under functional modulation by projections to thalamus, basal forebrain and brainstem13,39,40. 
At the microscopic scale, a neurovascular unit is made of the neuron, the astrocyte glia, and the vascular smooth 
muscle41. In a normal brain, both astrocytes and neurons respond to increased extracellular glutamate to transmit 
vasoactive signals to conduct vasodilation or vasoconstriction for the distribution of CBF42,43. On the other hand, 
a condition, such as a local functional ischemia is likely impaired due to dysregulation of glutamate transmission 
between the glutamatergic synapse and the metabotropic glutamate receptors (mGluRs) on astrocytes, resulting 
in abnormal blood flow after muscle contraction. Functional connectivity analysis of our hemodynamic data 
revealed abnormal blood metabolism and weakened connectivity strength in the PFC in chronic HD patients. 
This macroscopic interpretation may reflect neurovascular abnormality associated with functional ischemia in 
PFC in opiate-using patients. Indeed, our hemodynamic data are in line with prior neuroimaging studies3,44–46 
consistently reporting that decreased rCBF in the frontal cortex was found in opiate-dependent subjects, and 
suggesting that opiate addiction was associated with increased risk of cerebrovascular ischemia. These patho-
logical findings may be due to recurrent opiate-induced episodes of hypoxias1,47,48. Future studies with advanced 
neuroimaging techniques, such as resting-state magnetic resonance imaging (MRI)12, or single-photon emission 
computed tomography49, computed tomography angiography50, may enhance and confirm the diagnosis of func-
tional ischemia in blood vessels of the cortex associated with opiate addiction.

Oscillatory desynchronization is induced by disorganizing information (neuronal or hormonal) flow, which 
is thought to result from dysfunction in the glutamine-GABA balance between brain regions51. We found global 
desynchronization of EEG networks in a large spectrum of low frequency bands comprising delta, theta, and 
lower alpha bands in HD patients. CBPT analysis also revealed local desynchronization in the lower alpha fre-
quency band in the patient group. One reason could be that long-distanced interactions incline to involve syn-
chrony in low frequencies52,53, putting less constraints on the timing precision due to long phases of enhanced and 
reduced excitability54. Although this mechanism is unknown, disturbed neural oscillations at these low frequen-
cies are thought to relate to disable coordinated activity during normal functioning55.

Further, alpha rhythms, the most prominent over occipitoparietal cortex, especially during eye-closed and 
relaxed alert states56, is generated in thalamus57,58, in which its projection to the cortex drives and modulates corti-
cal activity, such as control of cognition and social behavior59. This thalamocortical alpha synchrony results from 
reciprocal interactions between glutamatergic and GABAergic neurons whereby the synchronization is sustained 
by gap junctions among GABAergic interneurons60,61. This mechanism is modulated, in part, by glutamatergic 
afferents acting via mGluRs61,62. Thus, this explanation reconciles our quest that dysregulation of glutamatergic 
transmission may be, in large part, on astrocytes63, and that glutamine astrocytes activation may play an impor-
tant role in long-term withdrawal in OUD64,65. It opens a door for future neuroplastic studies to navigate the 
astroglial proinflammatory response as well as the role of GABAergic interneurons in the corticolimbic circuitry66 
by chronic opiate insult and its anti-inflammatory response by abstinence. Furthermore, disturbed alpha synchro-
nization has also been showed in bipolar disorder59, attention deficit hyperactivity disorder67, schizophrenia68, 
Alzheimer’s disease69, and Fragile X syndrome70 (for a review in neural synchrony in brain disorders, see Uhlhaas 
et al.71). Hence, the heroin-induced local desynchronization in the lower alpha rhythm from our EEG data sup-
ports the notion that brain oscillations can serve as biomarkers in neuropsychiatric disorders, in our case opiate 
addiction. It also suggests that local synchronization in the upper alpha rhythm in PFC may contribute a sign 
of recovery after prolonged cessation from heroin. The EEG-fNIRS bimodality can be advantageous for brain 
state-dependent electrotherapy72, as well as predict responses to emotional cues73 and behavior performance74 
in OUD rehabilitation. This computational approach is based on the assumption that homeostasis of the brain 
microenvironment is maintained through blood vessels, neurons, and astrocytes by the excitation-inhibition 
balance in the microcircuits. Notably, during abstinence, our fusion data, in line with previous cellular neuro-
adaptation literature in chronic opiate during tolerance and withdrawal suggesting that hemostatic adaptation 
in glutamate-GABA balance is developed through neural and neuron-glia network in opiate addiction2, may be 
a result of disturbed glutamate hemostasis, leading to the enhanced lower-alpha amplitude in the right FP and 
depressed in the left FP of PFC in HD patients. Further, in a given brain region, the power of alpha oscillations 
increases as the overall neuronal activity decreases75. Hence, the asymmetric excitability in PFC in HD patients 
revealed the profound effect of chronic heroin and recapitulated the glutamate hemostasis hypothesis. Some 
structural neuroimaging studies also showed asymmetry in PFC in abstinent heroin addicts in which reduced 
grey-matter density was found in the right PFC76. Although the study of relationship between structural and func-
tional changes in brain network is still ongoing77, one multimodal neuroimaging study found that diminished 
gray-matter volume was positively associated with low perfusion in frontal area in heroin-dependent subjects78. 
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Future studies in this direction will provide important insights to achieve structural and functional connectivity 
in large-scale networks77, as well as their relevance to cognition and behavior.

Although we provide a mesoscopic-scale functional PFC network in heroin addiction during protracted absti-
nence, neurovascular coupling in humans is still poorly understood41, and the use of rsFC in SUDs11 and the 
EEG-fNIRS machine learning approach79 are still at their infant stage. Findings presented in this work must be 
treated with caution until results are confirmed in a larger sample using advanced techniques. Though, fNIRS 
has some exclusive properties that may be leveraged over other neuroimaging techniques, such as fMRI, because 
fNIRS offers biochemically specificity by measuring concentrations of HbO and Hb and can be beneficial when 
localizing brain activity, especially in situations in which drug-dependent patients who may have difficulty to lie 
patiently in a magnet scanner. The optical method opens a door for clinical studies working with patients with 
attention deficits. Monitoring CBO over several hours or weeks in patients’ forehead at walkable pace perhaps is a 
prerequisite for the detection of glutamine balance and thus relapse in patients with drug addiction during stress 
attacks/exposure80 which may lead to the reinforcement of the negative-affective states8. Hence, the ability to 
detect glutamine balance in the PFC could eventually lead to an application for portable and cost-effective optical 
neuroimaging in clinical psychiatry to predict relapse on a possible recovering journey.

Materials and Methods
Study design. This study focuses on heroin-dependent patients (HD) who had exposed to heroin for over 20 
years and who managed to stay abstinent for at least three months. They were compared with the healthy subjects 
in control group (CG) enrolled with demography matching the recruited HD patients with age, education level, 
and IQ (Fig. 1A).

This is an exploratory study to assess the resting-state neural synchrony, electrical oscillations, the cerebrovas-
cular effect, and the functional connectivity of HD patients after protracted abstinence. This study is based on the 
assumption that neuronal activity is generated by electrical field and greatly relies on the neurovascular coupling 
mechanism. Hence, through modern machine learning method, the study is to design to examine neurophysio-
logical information in the PFC in opiate addiction during abstinence through electrophysiological and neurovas-
cular neuroimaging techniques. The work flows of EEG and fNIRS data processing analyses are showed in Fig. 1B.

Study subjects. HD patients were eligible if they were diagnosed of OUD by a physician, had a history 
of at-least-20-years of recurrent heroin use, stayed abstinent for at least 3 months by the time of the study and 
were righted-handed between 39 and 57 years old. Control subjects were enrolled with demographic factors (i.e., 
age, education level, and IQ) matching the recruited HD patients (Fig. 1A). Prior to inclusion in the study, all 
enrolled subjects were required to complete a preclinical interview and collect a urine sample for urinalysis. The 
Structured Clinical Interview for DSM-IV (SCID) was administrated in the interview to verify opioid depend-
ence and mental-state suitability for the study. Subjects with history of any neurological illness, head trauma, 
brain injury, or psychiatric disorders other than OUDs and Tabaco use disorder, and 72-hour of psychoactive 
substance use before any experimental measurements were excluded. The protocol was approved by the Medical 
Ethics Committee of the University of Macau. The experiments were performed in accordance with the relevant 
guidelines and regulations in the latest version of the Declaration of Helsinki. Written informed consents were 
provide to all subjects. Subjects were introduced and instructed to sit comfortably on a chair in a quiet and dim 
room located at the Bioimaging Core of the Faculty of Health Sciences where the study was conducted. EEG and 
fNIRS signals in the eye-closed resting state were simultaneously and continuously recorded for 11 minutes. The 
first 2-minute measurements81,82 were eliminated to generate relatively steady signals and rule out potential effects 
of instability for analysis. In part of Fig. 1B shows the configuration of the EEG electrodes and fNIRS channels. 
A three-dimensional (3-D) digitizer (Polhemus Inc., Vermont) was used to complete the spatial registration of 
the electrode and channel locations, and thus, the MNI coordinates were obtained (see Supplementary Table S1).

Electrophysiological measurements. The electrical activity of manifold neurons up to large neuronal 
assemblies can be directly measured non-invasively with extracellular electrophysiological recordings, such as 
MEG83 or EEG59, which are primarily generated by post-synaptic potentials and thus often susceptible to changes 
in neurotransmission secondary to neural dysfunction or neuropharmacological manipulations. The EEG record-
ings were conducted on the Biosemi ActiveTwo system (Biosemi, Amsterdam, The Netherlands; sampling rate: 
2048 Hz) from 64 electrodes on the International 10–20 system with a nose reference based. The horizontal and 
vertical electrooculogram (EOGs) were additionally acquired to oversee eye movements. Electrode impedance 
was less than 10 kΩ.

EEG data were preprocessed using EEGLAB (https://sccn.ucsd.edu/eeglab). Ocular artifacts acquired by 
EOGs channels were corrected in the recorded EEG data84. The EEG data were segmented into 2-second epochs, 
of which with voltage exceeded ± 150 µV were excluded59. Frequency bands of interest were filtered and classified 
by delta (1.5–4 Hz), theta (4–8 Hz), lower alpha (8–10 Hz), upper alpha (10–13 Hz), beta (14–30 Hz), and gamma 
(30–50 Hz). Classification of alpha oscillations in lower and upper alpha frequency bands offers a narrowed range 
of interest. EEG data were then down-sampled from 2048 to 256 Hz. For each subject, the first 10 artifact-free 
baseline-corrected epochs (5120 samples; 20 seconds) were selected for further processing and analysis. The 
detailed preprocessing method is documented in Kim et al.59.

Because neuronal oscillations have been associated practically with many aspects of cognitive function56,85,86, 
two important and distinct temporal variables from the EEG: neural synchrony and oscillations were the subjects 
of investigation in the study.
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Hemodynamic measurements. Neurovascular activity, often known as hemodynamic activity, can be 
indirectly measured without exogenous contrast agents non-invasively by functional MRI87 or functional intrinsic 
optional imaging, such as fNIRS22. The fNIRS recordings were conducted on the NIRS Continuous Wave (CW) 
system (CW6 fNIRS system; TechEn Inc, Milford, MA; sampling rate: 50 Hz; bandpass range: 0.1–200 Hz), with 
four sources and eight detectors to generate fourteen channels on the scalp, covering the PFC. Each set of a source 
and detectors covered one particular PFC subregions, resulting in four ROIs: the right dlPFC, the left FP, the right 
FP, and the left dlPFC (see Supplementary Table S1 for details). The source-detector distance was 3 cm, measuring 
the neural activity of the cortex with an estimated 2.5 cm penetration depth88. The fNIRS monitors hemodynamic 
responses evoked by brain activity by using two CW lights at wavelengths of 690 nm and 830 nm - the character-
istic absorption patterns in the near-infrared light, to obtain quantitative data of HbO and Hb.

fNIRS data were preprocessed using Homer2 (www.homer-fnirs.org/documentation). The preprocessed 
procedures were as follow: (1) Conversion from optical density to the changes in HbO or Hb concentration at 
different time points based on the modified Beer-Lambert Law89; (2) Bandpass filtering (0.01 < fr < 0.1 Hz); (3) 
Detrending; and (4) Motion correction using the spline interpolation method. There are two main types of noise 
due to poor contact between the optodes and scalp: motion artifacts and a low signal-to-noise ratio (SNR). And 
thus, quality control is necessary before functional connectivity analysis. To reduce the motion-induced artifacts, 
the spline interpolation method detected the artifacts by calculating the moving standard deviation within sliding 
time windows in a 2-seoncd window length. Any data with average signal intensity over five standard deviations 
of the HbO and Hb concentrations over time are considered low SNRs and thus should be excluded. The detailed 
preprocessing method is documented in Niu et al.90. No channel was excluded due to poor contact. Changes in 
HbO and Hb concentrations were extracted from each channel across all subjects to visually verify if there were 
changes of these molecules to reflect brain functional activity (i.e., an increase in [HbO] and a decrease in [Hb] 
indicate typical CBO, and thus brain activation).

Functional connectivity analyses. Functional connectivity is a statistical dependence between the time 
series of measured neurophysiological signals91,92. Two points in a brain are considered functionally connected 
if they have synchronized or coherent dynamics. The translation of different measures in the neurophysiological 
signals depends on the modality of recordings being used. In this study, we used the measure of SL in electro-
physiological signal on the EEG recording and the measures of change in both HbO and Hb concentrations in 
neurovascular signal on the fNIRS recording.

To analyze the rsFC electrophysiological signal, the temporal information from the EEG, such as synchrony, 
was measured by SL. It is a generalized synchronization approach that can detect linear and nonlinear inter-
dependences between two signals in a given number of electrodes23, especially sensitive to the long-distanced 
synchronization of structured oscillatory activities of across whole-brain areas. SL in each frequency band as 
a measure of rsFC across time and electrode and then the functional connectivity were computed using the 
HERMES toolbox (http://hermes.ctb.upm.es/). SL values of each subject were then averaged across each pair 
nodes. Permutation test was performed to determine the between-group difference at rest. Mean SL was analyzed 
to determine which frequency band was significant between groups, and its band power would be selected for fur-
ther machine learning method. Connection-wise SL was analyzed by performing CBPT for multiple comparisons 
not only to identify the between-group significance where the SL value in HD group was significant compared to 
the controls, but also to offer a powerful and intuitive nonparametric framework for statistical analysis of power 
spectra in what brain region. Methodological details can be found in Nico et al.93. The electrodes corresponding 
to the significant brain region (i.e., source) calculated by CBPT would be selected for machine learning method.

To analyze the rsFC neurovascular effect, the information regarding to the changes in HbO and Hb concen-
trations from the fNIRS were evaluated. Whole-brain correlation analysis was performed because it allowed us to 
easily observe the change of the two chromophores in a matrix and, more importantly, to compute a functional 
connectivity map between any two channel pairs in the PFC system, where the channels represented nodes, and 
where the functional connections with correlation coefficient, r, greater than a predefined threshold were consid-
ered edges. The result of computing r for each channel of a chromophore was a 14 × 14 matrix. All correlation val-
ues were converted to z-scores using the Fisher z-transformation94 prior to any statistical analysis. For simplicity, 
the concentration change in HbO was primarily analyzed and selected for further processing in the subsequent 
quantitative nodal network analysis as a feature for machine learning method because it is thought to be the most 
responsive indicator of differences in CBF and the most sensitive parameter of change in rCBO95. Consisting with 
our previous work, the threshold value was determined by the foremost 5% of the connections before generating 
a network topological map. For visualization, BrainNet Viewer toolbox (https://www.nitrc.org/projects/bnv) was 
applied. For nodal network analysis, the degree strength of each channel was quantified by averaging connectivity 
of a channel in the PFC system. Methodological details can be found in our previous work24,96.

Machine learning: multi-modal data analysis for PFC imaging. One of the most modern mul-
timodal neuroimaging setups is to combine the measurement of electrophysiology with the measurement of 
hemodynamics97. Machine learning method is used to obtain correlations between EEG and fNIRS modalities by 
extracting physiologically plausible components25. It is believed that the data obtained through this multimodality 
which otherwise offers exceptional spatial and temporal imaging resolution allows for combination of comple-
mentary information, thereby a desirable diagnosis, and a deeper understanding of how electrophysiological and 
neurovascular aspects of brain activity are related.

To increase precision and detect minuscule signals from both of the electrophysiological and hemodynamic 
measurements, the mSPoC analysis25 was performed. The amplitude (i.e., band power) and the frequency of the 
temporal oscillation selected from the EEG-based connectivity analysis, were extracted as an EEG feature. In 
order to perform the bi-modal EEG-fNIRS fusion, the number of samples from fNIRS data must equal to the 
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number of epoch from EEG data because the modulations of a source extracted from fNIRS is related to the 
modulations of the power of a source from EEG. The preprocessed fNIRS data were then down-sampled from 50 
to 5 Hz. For each subject, the first 10 HbO-based samples (i.e., [HbOf]) were extracted as a fNIRS feature (in part, 
Fig. 1B). Both datasets were preprocessed to extract features using a sliding window of 2 seconds. The mSPoC 
method was proposed to examine the comodulation between resting-state-induced power dynamics of the 
selected oscillatory rhythm and changes in HbO concentration. Through this supervised machine learning strat-
egy, it finds the direction (i.e., spatial filters) of the two class (i.e., EEG and fNIRS) in a high-dimensional space 
such that the spectral power dynamics of the projected electrophysiological signal (i.e., EEG-source) maximiz-
ing covaried with the time-course of the project hemodynamic signal (i.e., a corresponding fNIRS-source). The 
time-invariant coupling coefficients of each source with the different sensors (i.e., the common spatial patterns) 
of EEG and fNIRS data were then calculated. The detailed fusion method is documented in Dähne et al.25,97,98. The 
brain area generating the EEG mSPoC component was localized in the PFC subregions and across PFC region 
as a whole. The EEG mSPoC component which has the greatest coupling coefficient value was then selected to 
fuse with the corresponding fNIRS component. In addition to mSPoC analysis, sensor-space cortical source esti-
mation was separately performed for both EEG and fNIRS datasets by using the eConnectome toolbox (http://
econnectome.umn.edu/) and the NIRS-SPM toolbox (http://bispl.weebly.com/nirs-spm.html#/), respectively, to 
visually scan through activation locations. The activation pattern of the fused EEG and fNIRS component esti-
mated by mSPoC method was then visualized by using BrainNet Viewer (https://www.nitrc.org/projects/bnv).

Statistical analysis. Statistical analyses were performed using SPSS (IBM SPSS Statistics, version 22, 
Armonk, NY). Group differences in demographic and ROI data were investigated using two-sample t test and 
Bonferroni correction. Statistical permutation test was performed throughout the study for connectivity analysis 
and machine learning method to determine group difference between two means in which the null distribution 
of test statistic was obtained by a number of random rearrangements for each study group (i.e., permutations)59,93. 
It worked as follows. First, a t-test was performed at p < 0.05 significance level (uncorrected for multiplicity) to 
give an initial approximation to the study of statistical differences between the HD and control groups. Second, 
each subject was randomly reassigned to either a patient or a control group, thereby forming a division that was 
no longer faithful to the original real partition of the data sets. The procedure was repeated 1,000 times. The 
t-values were recalculated, and the null distribution of test statistics for the group difference was obtained. Finally, 
the proportion of sampled permutations where the t-values were larger than the observed test statistics was com-
puted as the p-value of the observed group difference. Similarly in mSPoC analysis, permutation was performed 
to randomize the initial set of EEG-signal spatial filters until a suitable convergence criterion was met in order to 
optimize the fusion objective25. A level of significance was set p < 0.05 (uncorrected), and subject’s age, gender, 
IQ were defined as covariates to minimize potential biases to the results. Due to the small sample size of the study, 
we used the current alternative strategy for convention99,100, in which the matched sample size was appropriately 
adapted to the cost concerns of the study. All p values were two-tailed (α = 0.05). MATLAB (MathWorks, Inc., 
Natick, MA, USA) was used for all computations.
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