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DeepSynth: three-dimensional 
nuclear segmentation of biological 
images using neural networks 
trained with synthetic data
Kenneth W. Dunn1*, chichen fu2, David Joon Ho2, Soonam Lee  2, Shuo Han2, paul Salama3* 
& edward J. Delp2*

the scale of biological microscopy has increased dramatically over the past ten years, with the 
development of new modalities supporting collection of high-resolution fluorescence image volumes 
spanning hundreds of microns if not millimeters. the size and complexity of these volumes is such that 
quantitative analysis requires automated methods of image processing to identify and characterize 
individual cells. For many workflows, this process starts with segmentation of nuclei that, due to their 
ubiquity, ease-of-labeling and relatively simple structure, make them appealing targets for automated 
detection of individual cells. However, in the context of large, three-dimensional image volumes, 
nuclei present many challenges to automated segmentation, such that conventional approaches are 
seldom effective and/or robust. Techniques based upon deep-learning have shown great promise, 
but enthusiasm for applying these techniques is tempered by the need to generate training data, an 
arduous task, particularly in three dimensions. Here we present results of a new technique of nuclear 
segmentation using neural networks trained on synthetic data. comparisons with results obtained 
using commonly-used image processing packages demonstrate that DeepSynth provides the superior 
results associated with deep-learning techniques without the need for manual annotation.

Over the past 30 years fluorescence microscopy has grown from an approach that was largely descriptive into a 
truly quantitative technique. Initially founded upon the development of sensitive digital detectors, and then fue-
led by the development of powerful new microscope designs and fluorescent proteins, quantitative fluorescence 
microscopy has become a primary tool in biomedical research.

In general, the first step in quantification of fluorescence images is delineation of regions-of-interest, e.g., 
individual cells or regions within a cell. For studies involving relatively few measurements, this can be easily 
accomplished by manually outlining regions-of-interest, whose fluorescence can then be measured using availa-
ble software. However, this approach quickly becomes impractical as the number of measurements increases and/
or the regions must be defined in three dimensions. Thus, in most cases, the process of defining regions of interest 
involves automated image segmentation, a process in which the regions-of-interest are extracted from the images 
automatically using image analysis/processing techniques.

Automated segmentation of fluorescence images is challenging. Characteristics that are obvious to the human 
eye are frequently difficult to distill into quantitative features that can be used by a computer to discriminate 
regions. Standard edge-detection algorithms can be used to discriminate the lateral boundaries of cultured cells 
grown at low density, but these simple approaches fail to discriminate cells at high density, such as in biological 
tissues. One common workaround to this problem is to segment nuclei in images collected from tissues, and 
then characterize each cell from the fluorescence in the surrounding region1–3. A variety of novel morphological 
approaches have been developed to segment nuclei in two-dimensional images collected from cultured cells4, in 
three-dimensional (3D) images collected from cultured cells5 and in 3D images collected from biological tissues 
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such as mouse pancreatic islets6, rat hippocampus7, nematode brain8, mouse embryo9,10, tumor spheroids9,11, cer-
vical tumor12 and human breast13 and in time-series 3D images of developing zebrafish embryos14.

However, images collected in biological microscopy vary wildly with respect to resolution, signal-to-noise 
ratios, contrast and background. Consequently, image segmentation solutions are seldom robust; approaches 
optimized for one set of images frequently perform poorly for others. One exciting solution that is essentially 
designed to adapt to the unique qualities of different images, is based upon deep learning15,16, a process in which 
the characteristic features of objects are derived from the data itself. The user provides a set of training data that 
includes objects that have been outlined by the user, from which a convolutional neural network derives a set of 
common features that are then used to discriminate objects in the experimental data.

Deep-learning, which is emerging as a powerful new tool in quantitative biological microscopy17–19, has shown 
great promise as an approach for robust segmentation of biological imaging data19–25. However, a potential barrier 
to widespread adoption of deep-learning for nuclear segmentation is the laborious process of generating training 
data, which for nuclear segmentation consists of manually outlining the borders of hundreds to thousands of 
nuclei. The process is especially onerous in 3D, in which the poor axial resolution of optical microscopy makes 
the top and bottom boundaries difficult to reproducibly delineate.

One approach to reducing the burden of generating training data is to replace hand-annotated images with 
synthetic images that capture the salient features of the experimental data, but whose boundaries, by definition, 
are known in advance. This approach has been successfully applied for segmentation of nuclei in two-dimensional 
images20,21. Here we demonstrate DeepSynth, an approach that extends this strategy to 3D. Based upon an 
approach that we previously described in which neural networks are trained on 3D synthetic data26,27, DeepSynth 
is a fully automated tool for 3D segmentation that provides the robust performance of a deep-learning-based 
approach without the need for manually-annotated training data. Here we present quantitative comparisons of 
performance across a range of different fluorescence image volumes, demonstrating that DeepSynth provides 
accuracy that generally exceeds that provided by available software, while eliminating the need to optimize seg-
mentation parameters for each volume.

Methods
Microscope image collection. Images of paraformaldehyde-fixed rat kidney tissue shown in Figs. 1 and 2 
were collected with a 40X NA 1.3 oil immersion objective, using an Olympus FV1000 confocal microscope system 
(Olympus America, Inc., Center Valley, PA, USA) adapted for two-photon microscopy. Rat kidney tissues were 
fixed, cleared and imaged using confocal microscopy (anti-vimentin immunofluorescence, and Lens culinaris 
agglutinin) and multiphoton microscopy (Hoechst33342-labeled nuclei) as previously described28. An Olympus 
Fluoview 1000 MPE confocal/multiphoton microscope system mounted on an Olympus IX-81 inverted stand 
(Olympus America, Inc., Center Valley, PA, USA), equipped with an Olympus 60X oil immersion objective was 
used to collect images of rat kidney shown in Figs. 3 and 4. For these figures, paraformaldehyde-fixed tissue was 
labeled with phalloidin and Hoechst 33342, cleared and mounted in Scale mounting medium29 and imaged by 
confocal microscopy using an Olympus 25X, NA1.05 water immersion objective. The same microscope system 
was used to collect immunofluorescence images of paraformaldehyde-fixed rat liver tissue (phalloidin, anti-Mrp2 
immunofluorescence and Hoechst 33342-labeled nuclei) shown in Supplementary Fig. 2 and Figs. 5 and 6. Images 
of paraformaldehyde-fixed mouse intestine shown in Fig. 7 were labeled with DAPI and imaged using confocal 
microscopy with a Leica SP8 confocal/multiphoton microscope using a 20X NA 0.75 multi-immersion objective. 
Tissues were cleared using a modified version of previously described procedures30.

DeepSynth image segmentation. Deepsynth31 achieves 3D segmentation and identification of nuclei 
using machine-learning techniques, in particular deep learning. DeepSynth uses a modified version of U-Net32, 
a 3D convolutional neural network (CNN), for the 3D segmentation of nuclei. The architecture of the DeepSynth 
CNN (shown in Supplementary Fig. 1) consists of two paths: a down-sampling path and up-sampling path with 
five layers each, respectively. Each layer consists of two 3D convolutions, batch normalization, and a leaky rectified  
linear unit activation (Leaky ReLU). The filter size of each 3D convolution is 3 × 3 × 3 with a 1 × 1 × 1 voxel 
padding such that the output of each convolution step will retain the original volume size. 3D max pooling with a 
stride of 2 is utilized between the layers in the down-sampling path whereas a 3D transpose convolution is used in 
the up-sampling path. The objective of this two stage process of down-sampling (achieved through max-pooling) 
and up-sampling is to enable DeepSynth to extract and learn features that can be used in the segmentation and 
identification steps. Concatenation is used to transfer information between the down-sampling path and corre-
sponding up-sampling path. At the end of the down-sampling and up-sampling path, a 3D convolution, batch 
normalization, and 3D sigmoid activation function are used to classify whether each voxel belongs to the fore-
ground (i.e. nuclei) or background (i.e. no nuclei). The output is a 3D binary-valued volume where each voxel 
indicates where DeepSynth has detected the location of the nuclei.

For “better” learning we use a training loss/cost function for our CNN that is a linear combination of Dice loss 
(LDICE)33 and binary cross-entropy loss (LBCE)34:

µ µ= +L T S L T S L T S( , ) ( , ) ( , )seg Dice BCE1 2

where T is the set of ground-truth data, S is a probability map of the 3D binary volumetric segmentation, and µ1 
and µ2 are the weight coefficients for LDICE and LBCE, respectively. The combination of two loss functions improves 
segmentation performance since LDICE constrains the shape of the segmented nuclei while LBCE effectively pre-
dicts the binary classification (nuclei/no nuclei) of each voxel. As a post-processing step, a 2D watershed35 is used 
sequentially in each of the three orthogonal planes to separate overlapping nuclei in a quasi 3D manner.
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The DeepSynth CNN is trained on synthetic data, thus eliminating the need for manually annotated 3D image 
volumes26. We first generate 200 synthetic binary valued 3D volumes by inserting 3D ellipsoid structures, having 
random rotations and translations. These synthetic binary volumes are used in place of manually annotated vol-
umes where each of the ellipsoid structure represents a single nucleus in the volume. Each volume is constructed 
such that no two nuclei overlap by more than 5 voxels. The size of each ellipsoid structure is randomly chosen 
within a preset range corresponding to the characteristics of nuclei in the original 3D volume.

Figure 1. Three-dimensional image collected from cleared kidney sample. (a) 3D rendering of an image 
volume collected from rat kidney tissue following clearing. Red – anti-vimentin immunofluorescence, Green 
– fluorescein-labeled Lens culinaris agglutinin, Blue – Hoechst 33342-labeled nuclei. A movie of the volume 
rendering is shown in Supplementary Video 1. (b) Single plane image from a subvolume of the image of 
nuclei that was used to derive the synthetic image volume. (c) Single plane image from the synthetic image 
volume obtained from volume shown in panel B. (d) Binary segmentation of the focal plane shown in panel 
c. (e) Screen capture of scatterplot from VTEA, in which the mean fluorescence intensity of fluorescein-Lens 
culinaris is plotted against the mean fluorescence intensity of an anti-vimentin antibody (x and y, respectively). 
Box indicates gate used to distinguish podocytes in panel f. (f) Screen-capture of image window from VTEA, 
showing segmented nuclei (blue) and gated podocytes (pink). Image volume shown in panel a is 256 microns 
across and 144 microns deep. Panels b, c and d represent an image field that is 32 microns across.
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After we generate each synthetic 3D binary volume, we use it with sub-volumes extracted from the original 
image volumes to train a spatially constrained CycleGAN36 (SpCycleGAN) and obtain a generative model that 
is used to synthesize a synthetic microscopy volume from the synthetic binary volume26,27,31. Thus, we now have 
200 pairs of synthetic binary volumes (i.e., “the 3D annotations”) and their corresponding synthetic microscopy 
volumes (i.e, “the original volumes”). We then divide each generated volume into 8 subvolumes, resulting in 
1600 pairs of synthetic binary volumes and corresponding synthetic microscopy volumes that are used to train 
DeepSynth. DeepSynth was implemented in PyTorch using the Adam optimizer37 and a learning rate of 0.001. 
The DeepSynth code is available upon request from Edward J. Delp (ace@ecn.purdue.edu). DeepSynth training 
and segmentation was conducted using a computer system equipped with an Intel Core i7-6900K 3.2 GHz pro-
cessor, 128GB RAM and four NVIDIA Titan Xp GPUs, but DeepSynth can be run on a system with as little as 16 
GB of RAM and a single GPU (NVIDIA GEFORCE GTX 1080 or similar).

VteA image analysis. The use of DeepSynth-segmented nuclei for quantitative tissue cytometry was illus-
trated using VTEA (Volumetric Tissue Exploration and Analysis) software3,38. Segmentation results obtained 
from DeepSynth were used to define nuclei and fluorescence signal levels of TexasRed (anti-vimentin) and fluo-
rescein (Len agglutinin) were quantified in a region 2 voxels removed from the nuclear border. VTEA provides 
the ability to define the distance from nuclei at which fluorescence measurements will be obtained, an important 
feature that can be used to compensate for inaccuracies in the boundaries of the segmented nuclei. For inves-
tigators using other 3D image analysis software that samples the voxels immediately surrounding the nuclei, 
DeepSynth provides the capability to dilate the boundaries of the segmented nuclei, effectively accomplishing the 
same goal of ensuring sampling outside the boundaries of the nucleus.

comparisons of segmentation performance. Segmentation results obtained using DeepSynth were 
compared with results obtained from CellProfiler 3.039, Squassh40, and FARSIGHT41, image processing packages 
that are widely used in biomedical microscopy. In each case, comparisons were made with these tools using either 
default settings or with settings optimized to the best of our ability, as outlined below.

Figure 2. Comparison of segmentations obtained from DeepSynth with those obtained using software 
commonly used in biomedical imaging. Images collected from different depths of the volume shown in Fig. 1 
are shown in the top row. Segmentation results obtained using DeepSynth, FARSIGHT, Squassh and CellProfiler 
are shown in the rows below. Individual objects are rendered in different colors to facilitate evaluation of 
discrimination of individual nuclei. Supplementary Videos 2, 3 and 4 show animations of volume renderings 
of segmentations obtained using DeepSynth with those obtained using FARSIGHT, Squassh and CellProfiler, 
respectively, for a subvolume ranging from 130 to 162 microns depth in the sample.
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CellProfiler 3.0. CellProfiler segmentations were obtained using both the default settings and settings that were 
chosen to produce visually “optimal” results on preprocessed images. Typically, CellProfiler works by developing 
personalized task specific “pipelines” through the addition and arranging of functional modules. The default 
settings used here constitute a typical pipeline for segmentation using the “IdentifyPrimaryObject” module. The 
optimized settings were then developed by adding pre-processing and post-processing modules to the default 
pipeline based on our observations of the results obtained by the default settings. The final settings are chosen 
from the combination and arrangement of modules that provide the best results.

The inhomogeneity of microscopy images caused the center regions of images to be brighter than the corner 
regions. Thus, in the default settings results, the darker corner regions are poorly segmented. An illumination 
correction which uses a sliding window is added as pre-processing to improve the segmentation result of the 
corner regions. Illumination correction is followed by medium filtering to remove any artifacts caused by the 
illumination correction step.

Here are the steps we used in the optimized settings. First, we preprocessed the images with the illumination 
correction step which includes the background correction and 2D median filtering with the“MedianFilter” mod-
ule for each image in 2D. The window sizes for the illumination correction and 2D median filtering are tuned to 
achieve the best results.

Secondly, a preprocessing with rescaling image intensity and erosion is done to improve the segmentation 
result based on our testing. The “RescaleIntensity” module is used to reduce variation from image batches and 
make the result more reproducible. The “Erosion” module is used to separate touching nuclei. Then, a 3D median 
filtering with the “MedianFilter” module is done to the image volume to remove any artifacts caused by preproc-
essing. The window size for the 3D median filter is adjusted to achieve the best results. Note that the best results 
are determined by visual observation.

Finally, segmentation is done to process the whole volume in 3D with the Otsu’s thresholding42 and a 3D 
watershed35 with the “IdentifyPrimaryObject” module. CellProfiler image processing was conducted using a 
Macbook Pro equipped with an Intel i5 2.6 GHz processor and 8 Gb of RAM.

Segmentation 
technique

Time 
(entire 
volume)

Voxel based Object based

Type I Type II Accuracy Precision Recall F1

Sub-volume collected 75–112 microns from the surface

DeepSynth 94 sec 4.03% 3.81% 92.15% 72.80% 90.55% 80.71%

FARSIGHT Default 13 min 9.61% 0.92% 89.47% 65.94% 94.62% 77.72%

FARSIGHT Optimized 13 min 9.55% 1.01% 89.44% 78.09% 87.11% 82.53%

Squassh Default Hours 9.56% 0.39% 90.05% 92.94% 33.19% 48.92%

Squassh Optimized Hours 11.45% 0.36% 88.19% 90.41% 27.62% 42.31%

CellProfiler Default 15 min 7.15% 2.02% 90.83% 80.12% 58.37% 67.54%

CellProfiler Optimized 15 min 5.36% 3.06% 91.58% 71.04% 78.89% 74.76%

Otsu-3DWatershed 54 sec 8.99% 1.43% 89.58% 90.58% 52.52% 66.49%

Sub-volume collected 130–162 microns from the surface

DeepSynth 94 sec 3.24% 4.34% 92.42% 72.94% 92.54% 81.58%

FARSIGHT Default 13 min 4.07% 5.05% 90.88% 43.18% 67.86% 52.78%

FARSIGHT Optimized 13 min 4.08% 5.04% 90.88% 78.95% 68.18% 73.17%

Squassh Default Hours 8.64% 2.63% 88.73% 83.33% 35.21% 49.50%

Squassh optimized Hours 3.80% 4.71% 91.49% 76.47% 39.39% 52.00%

CellProfiler Default 15 min 1.30% 7.35% 91.35% 55.32% 48.15% 51.49%

CellProfiler Optimized 15 min 0.46% 10.95% 88.59% 28.57% 26.09% 27.27%

Otsu-3DWatershed 54 sec 3.76% 5.53% 90.71% 62.50% 40.98% 49.50%

Table 1. Quantitative analysis of segmentation results obtained from volume shown in Figs. 1 and 2. Segmentation 
results obtained from DeepSynth were quantitatively compared with those obtained from FARSIGHT, Squassh 
and CellProfiler using either default settings or settings optimized as described in “Methods”. The values for “Time” 
reflect the times required to obtain segmentations using. Accuracy was measured using both voxel-based metrics 
(voxel-by-voxel agreement with ground-truth data) and object-based metrics (agreement in the detection of 
objects with ground-truth data) in 64 by 64 by 64 voxel sub-volumes obtained 75–112 microns from the surface 
of the sample (top) and 130–162 microns from the surface of the sample (bottom). For voxel-based accuracy, 
type-I error (false positive rate) represents the fraction of voxels in the volume wrongly detected as belonging to 
nuclei and type-II error (false negative rate) represents the fraction of voxels wrongly detected as background. 
Object-based accuracy is measured using the F1 score, which is the harmonic mean of precision and recall, where 
precision is the ratio of the number of correctly identified nuclei to the sum of the number of correctly identified 
nuclei plus the number of objects incorrectly identified as nuclei and recall is the ratio of the number of correctly 
identified nuclei to the sum of the number of correctly identified nuclei plus the number of nuclei that failed to be 
detected. Details of the analyses are described in “Methods”.
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Squassh. For Squassh, we adjusted three parameters to to produce the visually best segmentation results. The 
first parameter is the “Rolling ball window size” from background subtraction. The default is no background sub-
traction. We set the window size large enough to have an object within the window. The second parameter is the 
“Regularization parameter” for segmentation. The default value of the “Regularization parameter” is 0.05. We use 
higher values to avoid segmenting noise-induced small intensity peaks. The third parameter is “Minimum object 
intensity” for segmentation. The default value of the “Minimum object intensity“ is 0.15. We use high values to 
force object separation. Squassh image processing was conducted using a computer system equipped with an Intel 
core i7-6900K 3.2 GHz CPU and 128 Gb of RAM.

FARSIGHT. In the case of FARSIGHT, four parameters σmin, σmax, rxy, and rz are adjusted. Here, σmin and σmax 
are minimum and maximum scale values of the Laplacian of Gaussian filter. rxy is used to define a search area in 
which objects are clustered together in the in xy dimension and rz is used to define a search area to create clusters 
along the z direction. FARSIGHT automatically estimates the values of these four parameters and denotes their 
values as the default setting. We tested 5 or more combinations of the 4 parameters including the default setting 
and chose the best-looking segmentation results denoted as an optimized result. FARSIGHT image processing 
was conducted using a computer system equipped with an Intel core i7-6900K 3.2 GHz CPU and 128 Gb of RAM.

Quantitative measurement of segmentation performance. Ground truth images of the original 
(not synthetic) 3D volumes were generated using ITK-SNAP43 a commonly used tool for 3D medical image 
segmentation. Each individual nucleus was manually selected and segmented in 3D using the graphical user 
interface of ITK-SNAP. The groundtruthing process involved manually labeling voxels of nuclei along all slices in 
the image volume. Adjacent nuclei were labelled with different colors for better visual representation.

Accuracy was measured using both voxel-based metrics (measuring voxel-by-voxel agreement with 
ground-truth data) and object-based metrics (measuring agreement in the detection of objects with ground-truth 
data). Voxel-based accuracy is defined as:
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v are defined as to be the number of segmented voxels that were labeled as true posi-
tives, true negatives, false positives, and false negatives, respectively, and Ntotal

v  denotes the total number of voxels 
in an image. Type-I error (false positive rate) is the ratio of the number of background pixels wrongly detected as 
nuclei (N fp

v ) to the Ntotal
v . Similarly, Type-II error (false negative rate) is the ratio of the number of nuclei pixels 

wrongly detected as background (N fn
v ) to the Ntotal

v .
Object-based accuracy is measured using the F1 score, which is the harmonic mean of precision (P) and recall 

(R). The number of segmented nuclei correctly identified as nuclei objects is denoted by Ntp
o , the number of seg-

Figure 3. Three-dimensional image collected from cleared kidney sample with non-specific fluorescence. 
(a) Volume rendering of rat kidney tissue following clearing. Red – TexasRed-phalloidin, Blue – Hoechst 
33342-labeled nuclei. A movie of the volume rendering is shown in Supplementary Video 5. (b) Single plane 
image from a subvolume of the image of nuclei that was used to derive the synthetic image volume. (c) Single 
plane image from the synthetic image volume obtained from volume shown in panel B. (d) Binary segmentation 
of the focal plane shown in panel c. Image volume shown in panel A is 512 microns across and 200 microns 
deep. Panels b, c and d represent an image field that is 64 microns across.
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mented nuclei that are non-nuclei but identified as nuclei by N fp
o , and the number of segmented nuclei that are not 

correctly identified as nuclei by N fn
o , respectively. Then, P and R are obtained as:
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Given the value of P and R, the F1 score is obtained as:

=
+

.F PR
P R

1 2

Following a previously described approach44, a “true-positive” nucleus is defined as a segmented nucleus that 
overlaps at least 50% with its corresponding ground-truth nucleus. Otherwise, the segmented nucleus is classified 
as a false positive. Conversely, a manually annotated nucleus that has no corresponding segmented nucleus is 
considered as a false negative (N fn

o ).

figures and videos. Volume renderings were constructed using Voxx45, videos were prepared using 
Metamorph (Molecular Devices, Inc) and compressed using TMGEnc (Pegasus, Inc.). Figures were prepared 
using Photoshop CC 2018 (Adobe, Inc.).

Figure 4. Comparison of segmentations obtained from DeepSynth with those obtained using software 
commonly used in biomedical imaging. Images collected from different depths of the volume shown in Fig. 3 
are shown in the top row. Segmentation results obtained using DeepSynth, FARSIGHT, Squassh and CellProfiler 
are shown in the rows below. Individual objects are rendered in different colors to facilitate evaluation of 
discrimination of individual nuclei. Supplementary Videos 6, 7, and 8 show animations of volume renderings 
of segmentations obtained using DeepSynth with those obtained using FARSIGHT, Squassh and CellProfiler, 
respectively, for a subvolume ranging from 31 to 50 microns depth in the sample.
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Results
Segmentation of nuclei in 3D image volumes collected from thick sections of rat kidney tissue.  
The DeepSynth segmentation technique was first tested in a 3D fluorescence image volume collected from rat 
kidney tissue. The image volume consists of 350 images collected to a depth of 175 microns into the tissue. Despite 
being optically cleared, the thickness of this volume is sufficient to compromise the contrast and resolution of the 
images collected from the deepest regions of the volume. The nuclei of the tissue were labelled with the DNA-
binding probe Hoechst 33342, and the tissue was also labeled with an antibody to vimentin, to label podocytes 
and with Lens culinaris agglutinin, to label the glycocalyx. The volume was collected using a combination of 
confocal microscopy (for Lens culinaris agglutinin and TexasRed anti-vimentin) and two-photon microscopy 
(for Hoechst-labeled nuclei).

Figure 1a shows a volume rendering of the first 124 microns of the resulting image volume, showing green 
labeling of the glycoproteins on the surface of renal tubules and blue labeling of nuclei throughout the volume. 
The dense labeling of nuclei obscures all but the very top of a glomerulus (labeled with anti-vimentin immuno-
fluorescence) located in the center of the volume. The interior of the volume can be seen in the animated volume 
rendering shown in Supplementary Video 1. As described in “Methods” a set of 200 synthetic image volumes were 
constructed and used for training the DeepSynth CNN. A typical image from the original volume used to derive 
synthetic data is shown alongside a typical synthetic image and the corresponding DeepSynth segmented image, 
in Fig. 1b–d, respectively.

Figure 1e,f provide an illustration of how nuclear segmentations can be used as a first step in a quantitative 
analysis of the cellular constituents of biological tissues. Using the nuclear segmentation provided by DeepSynth, 
VTEA 3D image analysis software3 was used to quantify the amount of fluorescein and TexasRed fluorescence in 
regions surrounding each of the 4445 nuclei in the volume. VTEA was then used to present these data as a scat-
terplot and, similar to an analysis of flow cytometry data, to draw a “gated” region on a scatterplot identifying cells 
high in vimentin, with intermediate levels of Lens culinaris agglutinin. The single image plane shown in Panel F 
shows that this gating strategy appears to effectively distinguish vimentin-rich podocytes not only from the cells 
of the surrounding tubular-interstitium, but also from glycocalyx-rich mesangial cells within the glomerulus. 
Based upon this gating, an analysis of the entire volume indicates that of the 4445 nucleated cells in the volume, 
793 are located in the glomerulus and 237 are podocytes. While it is formally possible to conduct a census of this 
kind manually, the process would be impractically tedious and time-consuming. The largely automated analysis 
described above was conducted in a matter of minutes.

The results obtained by DeepSynth segmentation at different depths in this volume are shown in Fig. 2. The 
series of original images displayed at the top of the figure demonstrate that the original images are compro-
mised both by vignetting (reduced signal at the periphery of each image) and by a loss of contrast with depth. 
Despite these challenges, DeepSynth retrieves nearly all nuclei from all regions of the field at all depths. Figure 2 
also shows comparisons with segmentation results obtained using FARSIGHT (http://www.farsight-toolkit.
org)41, Squassh40 and CellProfiler 3.039, three image analysis software packages commonly used by biomedical 
researchers. Results obtained from FARSIGHT, Squassh and CellProfiler reflect workflows in which images 
were pre-processed and segmentation parameters adjusted to provide the best results, as evaluated visually (see 
“Methods”). Insofar as DeepSynth derives object features from the data itself, it requires no adjustment of seg-
mentation parameters. Since evaluations of 3D segmentations in single planes can be misleading, we also pres-
ent comparisons in the form of 3D animations of volume renderings. Supplementary videos 2, 3 and 4 show 

Time (entire volume)

Voxel based Object based

Type I Type II Accuracy Precision Recall F1

DeepSynth 102 sec 2.14% 1.88% 95.98% 89.38% 95.26% 92.23%

FARSIGHT Default 13 min 30.33% 0.00% 69.67% 64.34% 97.53% 77.53%

FARSIGHT Optimized 13 min 28.58% 0.53% 70.90% 37.72% 97.73% 54.43%

Squassh Default Hours 24.75% 0.00% 75.25% 90.38% 16.61% 28.06%

Squassh Optimized Hours 19.54% 0.01% 80.45% 85.07% 20.14% 32.57%

CellProfiler Default 15 min 21.67% 0.31% 78.02% 80.82% 20.92% 33.24%

CellProfiler Optimized 15 min 14.94% 0.11% 84.95% 81.93% 72.08% 76.69%

Otsu- 3DWatershed 32 sec 17.88% 0.23% 81.89% 87.28% 53.36% 66.23%

Table 2. Quantitative analysis of segmentation results obtained from volume shown in Figs. 3 and 4. 
Segmentation results obtained from DeepSynth were quantitatively compared with those obtained from 
FARSIGHT, Squassh and CellProfiler using either default settings or settings optimized as described in 
“Methods”. The values for “Time” reflect the times required to obtain segmentations using. Accuracy was 
measured using both voxel-based metrics (voxel-by-voxel agreement with ground-truth data) and object-based 
metrics (agreement in the detection of objects with ground-truth data) in a 64 by 64 by 64 voxel sub-volume. 
For voxel-based accuracy, type-I error (false positive rate) represents the fraction of voxels in the volume 
wrongly detected as belonging to nuclei and type-II error (false negative rate) represents the fraction of voxels 
wrongly detected as background. Object-based accuracy is measured using the F1 score, which is the harmonic 
mean of precision and recall, where precision is the ratio of the number of correctly identified nuclei to the sum 
of the number of correctly identified nuclei plus the number of objects incorrectly identified as nuclei and recall 
is the ratio of the number of correctly identified nuclei to the sum of the number of correctly identified nuclei 
plus the number of nuclei that failed to be detected. Details of the analyses are described in “Methods”.

https://doi.org/10.1038/s41598-019-54244-5
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side-by-side volume renderings of the DeepSynth segmented volume, the original volume, and the segmented 
volumes obtained from the alternative software with and without optimization.

Results obtained from FARSIGHT and CellProfiler were similar to those obtained from DeepSynth at shallow 
depths, but the number of nuclei detected declined with depth, particularly for CellProfiler. Squassh likewise 
failed to detect many of the nuclei detected at depth by DeepSynth, but suffered a more pervasive problem in 
distinguishing individual nuclei, instead detecting a single object consisting of hundreds of individual nuclei.

In many cases, the differences in performance are difficult to evaluate visually. In order to quantitatively 
compare the segmentation performance of DeepSynth with that of FARSIGHT, Squassh and CellProfiler, we 

Figure 5. Three-dimensional image collected from fixed rat liver tissue. (a) Volume rendering of a thin section 
of rat liver tissue. Red – TexasRed-phalloidin, Green – Alexa488 anti-Mrp2, Blue – Hoechst 33342-labeled 
nuclei. A movie of the volume rendering is shown in Supplementary Video 9. (b) Single plane image from a 
subvolume of the image of nuclei that was used to derive the synthetic image volume. (c) Single plane image 
from the synthetic image volume obtained from volume shown in panel B. (d) Binary segmentation of the focal 
plane shown in panel C. Image volume shown in panel A is 256 microns across and 32 microns deep. Panels b, c 
and d represent an image field that is 32 microns across.

Time 
(entire 
volume)

Voxel based Object based

Type I Type II Accuracy Precision Recall F1

DeepSynth 37 sec 5.92% 1.79% 92.30% 87.09% 98.45% 92.42%

FARSIGHT Default 26 sec 4.21% 1.72% 94.07% 64.69% 91.92% 75.94%

FARSIGHT Optimized 26 sec 4.18% 1.78% 94.04% 86.45% 92.58% 89.41%

Squassh Default 10 min 4.46% 0.70% 94.84% 91.70% 75.47% 82.79%

Squassh Optimized 10 min 3.19% 1.31% 95.50% 94.49% 74.53% 83.33%

CellProfiler Default 10 min 2.66% 3.39% 93.95% 85.49% 73.65% 79.13%

CellProfiler Optimized 10 min 2.76% 2.34% 94.90% 83.49% 89.33% 86.31%

Otsu- 3DWatershed 29 sec 2.53% 3.51% 93.95% 82.59% 76.37% 79.36%

Table 3. Quantitative analysis of segmentation results obtained from volume shown in Figs. 5 and 6. 
Segmentation results obtained from DeepSynth were quantitatively compared with those obtained from 
FARSIGHT, Squassh and CellProfiler using either default settings or settings optimized as described in 
“Methods”. The values for “Time” reflect the times required to obtain segmentations using. Accuracy was 
measured using both voxel-based metrics (voxel-by-voxel agreement with ground-truth data) and object-based 
metrics (agreement in the detection of objects with ground-truth data) for the entire 3D volume. For voxel-
based accuracy, type-I error (false positive rate) represents the fraction of voxels in the volume wrongly detected 
as belonging to nuclei and type-II error (false negative rate) represents the fraction of voxels wrongly detected 
as background. Object-based accuracy is measured using the F1 score, which is the harmonic mean of precision 
and recall, where precision is the ratio of the number of correctly identified nuclei to the sum of the number of 
correctly identified nuclei plus the number of objects incorrectly identified as nuclei and recall is the ratio of the 
number of correctly identified nuclei to the sum of the number of correctly identified nuclei plus the number of 
nuclei that failed to be detected. Details of the analyses are described in “Methods”.
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quantified accuracy for each, based upon comparisons with a hand-segmented 64 by 64 by 64 voxel subregion 
of the volume. As described in “Methods”, accuracy was evaluated using voxel-based metrics (agreement in the 
definition of object boundaries) and object-based metrics (agreement in the identification of each object in the 
volume, without regard to the accuracy of its boundaries).

The results of these analyses, shown in Table 1, demonstrate that all techniques perform well with respect to 
voxel-based accuracy at both depths of the volume, reflecting excellent performance in accurately distinguishing 
the boundaries of nuclei. The discrepancy between these high accuracy measurements and the variable results 
shown in Fig. 2 reflect the shortcomings of voxel-based accuracy measurements; they are relatively insensitive to 
failures to detect or discriminate individual nuclei, a factor that is critical to the overall goal of characterizing indi-
vidual cells in a tissue. The results of the object-based analysis are more consonant with the visual appearance of 
the segmentations. The ability of DeepSynth to detect and discriminate nuclei throughout the volume is reflected 
in high F1 scores (the harmonic mean of precision and recall) at both depths. In contrast, the inability of Squassh 
to distinguish individual nuclei resulted in the low F1 scores at both depths of the volume. F1 scores obtained 
for segmentations generated by CellProfiler were reasonably high in the shallow volume, but declined at depth. 

Figure 6. Comparison of segmentations obtained from DeepSynth with those obtained using software 
commonly used in biomedical imaging. Images collected from different depths of the volume shown in Fig. 5 
are shown in the top row. Segmentation results obtained using DeepSynth, FARSIGHT, Squassh and CellProfiler 
are shown in the rows below. Individual objects are rendered in different colors to facilitate evaluation of 
discrimination of individual nuclei. Supplementary Videos 10, 11 and 12 show animations of volume renderings 
of segmentations obtained using DeepSynth with those obtained using FARSIGHT, Squassh and CellProfiler, 
respectively, for a subvolume extending through the entire depth of the sample.
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FARSIGHT generated the highest F1 score of any technique at shallow depths, but its performance declined in 
the deeper volume.

These quantitative analyses also demonstrate the difficulty of optimizing segmentation parameters. As dis-
cussed above, “optimized” segmentations presented for FARSIGHT, Squassh and CellProfiler reflect hours of 
effort to identify image preprocessing and segmentation parameter settings yielding the best results, as evaluated 
visually. In some cases, these adjustments quantitatively improved segmentation performance, but in others they 
had little effect, or even decreased accuracy scores. In the case of CellProfiler, adjustments that improved perfor-
mance in the shallow volume profoundly reduced performance in the deep volume.

Segmentation of nuclei in 3D image volumes of rat kidney containing non-specific fluorescence.  
One the strengths of deep-learning is the capability to develop discriminatory criteria that aren’t necessarily 
obvious to the human observer. Figure 3a and Supplementary video 5 show a rendering of an image volume col-
lected from cleared rat kidney tissue labeled with TexasRed-phalloidin (labeling actin red) and Hoechst 33342. 
While the DNA binding probe Hoechst 33342 strongly labels nuclei, the images also included fluorescence from 
unbound probe in the vasculature. This vascular probe can be seen as the triangular/filamentous labeling in the 
volume rendering, as well as in the magnified image of the region used to develop synthetic data and in the image 
of synthetic data (Fig. 3b,c, respectively).

Segmentations of this volume produced by DeepSynth, FARSIGHT, Squassh and CellProfiler are shown 
in Fig. 4 (and in Supplementary videos 6, 7 and 8). Whereas DeepSynth accurately discriminated nuclei from 
non-specific Hoechst fluorescence throughout the volume, the other image software struggled to varying degrees. 
In the case of FARSIGHT, the inability to discriminate nuclei resulted in a large number of spurious objects. 
Squassh likewise failed to distinguish nuclei from non-specific fluorescence, aggravating its inability to discrim-
inate adjacent objects resulting in a single object that extended throughout the volume. Of the three alterna-
tives, CellProfiler was the least impacted by the non-specific fluorescence, detecting fewer spurious objects than 
FARSIGHT, while being more effective at discriminating objects than Squassh.

These visual impressions are borne out in the quantitative analyses of accuracy, shown in Table 2. DeepSynth’s 
overall segmentation accuracy is markedly higher than that of the alternative approaches, according to either 
voxel-based or object-based criteria. DeepSynth’s superior ability to discriminate nuclei is evident in a Type I 

Figure 7. Mouse intestine - comparison of segmentations obtained from DeepSynth with those obtained using 
software commonly used in biomedical imaging. Images collected from different depths of the volume of nuclei 
collected from mouse intestine tissue are shown in the top row. Segmentation results obtained using DeepSynth, 
FARSIGHT, Squassh and CellProfiler are shown in the rows below. Individual objects are rendered in different 
colors to facilitate evaluation of discrimination of individual nuclei. Each panel is collected from a region of the 
sample that is 242 microns wide. Supplementary Videos 13, 14 and 15 show animations of volume renderings 
of segmentations obtained using DeepSynth with those obtained using FARSIGHT, Squassh and CellProfiler, 
respectively, for a subvolume ranging from 19 to 44 microns depth in the sample.
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error (false-positive rate) that is 7 to 14 fold lower than any of the other segmentations. Effects on object-based 
accuracy are even more impressive, although the effects of the non-specific fluorescence vary between software. 
In the case of FARSIGHT, which sensitively detects both real and spurious objects, and readily discriminates 
adjacent objects, the spurious objects compromise precision, with no effect on recall. In contrast, Squassh likewise 
detects both real and spurious objects, but cannot distinguish them, resulting in high levels of precision, but very 
low recall. Of the alternative software, CellProfiler performed best overall, particularly when optimized.

Segmentation of nuclei in shallow 3D image volumes collected from rat liver tissue. The first 
two examples presented above emphasize the challenges of segmenting image volumes collected deep into biolog-
ical tissues. However, the microscopy conducted by most biomedical researchers seldom extends much beyond 
a single layer of cells, either in tissue or grown in culture. In order to evaluate the performance of DeepSynth 
for segmenting the kinds of images volumes that are more commonly encountered in biological microscopy, 
we conducted a comparative analysis of a 32 micron thick section of uncleared rat liver tissue. Figure 5 and 
Supplementary video 9 show a rendering of a 3D volume collected from rat liver tissue labeled with fluorescent 
phalloidin (red) an antibody to Mrp2 (green) and Hoechst 33342 (blue).

Images of individual planes collected from this volume, shown in Fig. 6, show that contrast rapidly decreases 
with depth into this uncleared tissue, demonstrating that even thin volumes can present challenges similar to 
those encountered at much greater depths in cleared tissues. Nonetheless, the comparisons shown in Fig. 6 show 
that all of the approaches produced results that were visually similar. Voxel-based accuracy scores were like-
wise high for all approaches (Table 3). However, object-based accuracy was markedly higher for DeepSynth. 
Examination of Supplementary videos 10, 11 and 12 suggest that this difference may reflect better performance 
in distinguishing closely-packed nuclei.

Segmentation of nuclei in 3D image volumes using a network trained on data derived from a 
different image volume. The results here raise the question of how well a CNN trained on synthetic data 
derived from one volume performs for segmentation of an unrelated volume. In order to evaluate this question, 
we applied the CNN used to segment the image volume shown in Fig. 1 to a large image volume collected from 
cleared mouse intestine tissue. This image volume was noteworthy for the high density of nuclei and relatively 
poor axial resolution. The results, shown in Fig. 7 and Supplementary videos 13, 14 and 15 show that despite being 
trained on synthetic volumes derived from a different image volume, DeepSynth sensitively detected and dis-
criminated nuclei throughout the volume. In contrast, both Squassh and CellProfiler struggled with the density 
of nuclei in this volume, identifying objects consisting of vast networks of unresolved nuclei. Despite an apparent 
inability to clearly distinguish the boundaries of nuclei, FARSIGHT nonetheless was much more successful at 
distinguishing adjacent nuclei. Segmentation performance for this volume was not quantified, due to the diffi-
culty that we encountered in trying to reproducibly hand-outline the poorly-defined, densely distributed nuclei.

Discussion
With the development of digital detectors and methods of digital image analysis, fluorescence microscopy has 
been transformed from a relatively subjective technique into a quantitative technique. However, the approaches 
used for quantitative digital image analysis are now challenged by the enormous increase in the volume and com-
plexity of fluorescence microscopy data.

Once limited to two-dimensional images of relatively thin specimens, fluorescence microscopy was extended 
into three dimensions with the development of confocal microscopy, supporting 3D imaging of cells. The third 
dimension was subsequently extended from microns to millimeters with the development of two-photon micros-
copy, light sheet microscopy and the renewed development of methods of tissue clearing. The lateral scale of 
high-resolution microscopy was extended with the development of automated microscope systems such that it is 
now possible to collect 3D images of entire organs. The scale of microscopy is expanded still further in temporal 
studies that involve the collection of multiple image volumes over time. In parallel, the complexity of biological 
images has been expanded with the development of multiplexing techniques that make it possible to image more 
than 40 different target molecules in the same sample volume.

These new techniques have made it possible to collect image volumes of unprecedented data richness. 
However, extracting the information embedded in images of this size and complexity depends upon the devel-
opment of new methods of automated digital analysis1–3,46. The first step in automated digital image analysis is 
the delineation of the regions that are to be quantified which, in the case of large-scale microscopy are typically 
individual cells. In most samples, the boundaries of individual cells are difficult, if not impossible to distinguish 
in tissues (but see32,46,47), so that most studies employ a strategy in which individual cells are initially identified 
by their nuclei. Characterizations of the cells are then based upon fluorescence measurements made in regions 
surrounding the nuclei.

Nuclei are well-suited to automated segmentation as they can be brightly labeled with either DNA-intercalating 
probes or genetically expressed fluorescent protein chimeras, resulting in fluorescence images that have clearly 
defined borders. For this reason, nuclear segmentation has been used as a first step in large-scale quantitative anal-
yses of the cellular constitution of tissues, a procedure termed “3D tissue cytometry”2,3 or “3D histo-cytometry”1. 
These studies demonstrate an effective approach for extracting quantitative data from the complex and rich 3D 
image volumes collected from large tissue samples, supporting comprehensive characterizations of hundreds of 
thousands of cells in animal tissue samples and biopsies.

While nuclei are easier to segment than cells, they still present challenges to segmentation. First, the cell den-
sity in some tissues is so high that the images of the nuclei overlap with one another, making discrimination of 
individual nuclei more difficult. Second, due to the poorer axial resolution of microscope images, the upper and 
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lower boundaries of nuclei can be difficult to distinguish, compromising 3D segmentation. Finally, due to the 
cumulative effects of optical aberrations and scattering of light in tissues, image contrast decreases with depth of 
imaging, so that segmentation approaches that are successful in the shallowest regions of an image volume fail 
in the deepest regions. Each of these issues need to be addressed in order for image cytometry to realize its full 
potential as a tool in biomedical research. As a consequence, image segmentation is an active field of research in 
biological microscopy.

The challenge of segmentation is compounded by the variability in images collected in biological microscopy. 
The noise, background, contrast and resolution differences between images collected from different tissues, with 
different microscopes using different settings are such that conventional segmentation approaches developed 
for one set of studies perform poorly in other studies. The issue of image variability is obviated in segmentation 
approaches based upon deep-learning, which derive the characteristic features of objects from the sample images 
themselves.

The major drawback of deep-learning techniques is that the quality of the results depends upon the amount 
and quality of manually annotated training data. In the case of nuclear segmentation, training data is gener-
ated by manually outlining individual nuclei, a tedious process, particularly in 3D. Perhaps for this reason, deep 
learning approaches have been largely limited to segmentation of nuclei in 2D images21–25. The burden of manual 
annotation of 3D data was recently addressed by the Ronneberger laboratory32, who describe a process of “sparse 
annotation”, a process in which 3D objects are not completely circumscribed in the training data but rather are 
delineated in selected orthogonal slices.

Here we demonstrate 3D nuclear segmentation using a convolutional neural network trained on synthetic 3D 
data, obviating the need for manually annotated training data. Quantitative analyses demonstrate that DeepSynth 
generates nuclear segmentations that equal or surpass the accuracy of segmentations obtained using existing 
software, particularly under challenging conditions such as in images collected at depth, or from tissues with high 
nuclear density. Significantly, accurate segmentations were obtained for a range different kinds of images without 
the need to tune segmentation parameters for each.

The freedom from the need for optimization is an under-appreciated virtue of deep-learning-based seg-
mentation. The process of optimization is time-consuming and susceptible to bias. We also found it to be frus-
tratingly unpredictable. In some cases, hours of effort would be spent to identify settings yielding the most 
visually-satisfying results, only to find that “optimizing” the settings actually compromised quantitative measures 
of accuracy. Ideally, segmentation parameters would be optimized for quantitative measures of accuracy, but in 
practice, few investigators will invest the time to generate the ground-truth data necessary for accuracy meas-
ures. Moreover, even optimizing to a quantitative metric will not guarantee success; in some cases we found that 
adjustments that improved segmentations in some regions of a volume actually compromised segmentations in 
other regions.

The results presented in Fig. 7 demonstrate that satisfactory segmentations can be obtained using networks 
trained on different image volumes. In general, while superior results are obtained from networks specifically 
trained for a given volume, we have found that a network trained on a single volume can be effectively applied 
to segmentation of additional volumes that are similar with respect to the voxel dimensions and texture of the 
nuclei. Thus, a single network might be sufficient for a typical study that involves comparisons of multiple sam-
ples prepared and imaged in the same way. We are currently exploring this approach. We are also developing new 
SpCycleGAN training approaches designed to accommodate differences in the size and shape of nuclei which we 
believe may underlie a few cases where false-negative voxel-based errors were somewhat elevated relative to the 
other approaches. Finally, we are also examining transfer learning to extend our approaches to different types of 
cellular types and structures.

Data availability
The DeepSynth code is available upon request from Edward J. Delp (ace@ecn.purdue.edu). Original and 
segmented image volumes may be obtained from Ken Dunn (kwdunn@iu.edu).
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